TclPro™ User’s Guide

Scriptics Cor poration
Version 1.2

COPYRIGHT
Copyright © 1998, 1999 Scriptics Corporation. All rights reserved.

Information in this document is subject to change without notice. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or be any means
electronic or mechanical, including but not limited to photocopying and recorded for any
purpose other than the purchaser’s personal use, without the express written permission of
the Scriptics Corporation.

Scriptics Corporation
2593 Coast Avenue
Second Floor

Mountain View, CA 94043
U.S.A

http: //www.scriptics.com

TRADEMARKS

TclPro and Scriptics are trademarks of the Scriptics Corporation.

Other products and company names not owned by the Scriptics Corporation that appear in
this manual may be trademarks of their respective owners.

ACKNOWLEDGEMENTS

Michael McLennan is the primary developer of [incr Tcl] and [incr Tk]. Jim Ingham and Lee
Bernhard handled the Macintosh and Windows ports of [incr Tcl] and [incr Tk]. Mark
Ulferts is the primary developer of [incr Widgets], with other contributions from Sue
Yockey, John Sigler, Bill Scott, Alfredo Jahn, Bret Schuhmacher, Tako Schotanus, and Kris
Raney. Mark Diekhans and Karl Lehenbauer are the primary developers of Extended Tcl
(TclX). Don Libes is the primary developer of Expect.

TclPro Wrapper incorporates compression code from the Info-ZIP group. There are no extra
charges or costs in TclPro due to the use of this code, and the original compression sources
are freely available frorhttp://mww.cdrom.com/publ/infozip or

ftp://ftp.cdrom.com/publ/infozip.

NOTE: TclPro is packaged on this CD using Info-ZIP’s compression utility. The installation
program uses UnZip to read zip files from the CD. Info-ZIP’s software (Zip, UnZip, and
related utilities) is free and can be obtained as source code or executables from Internet
WWW sites includinghttp: //www.cdrom.com/publ/infozip.

Contents

Chapter 1 Introduction to TCIProo e 1
INstalling TCIPrOo 2

Installing TcIProfromCD 2

Installing TclProfromtheWeb 2

Installing Adobe Acrobat Reader, 2

Entering TclPro LicenseInformation. 3

About the TclPro Documentation. 4

For More Information.o 4

TclPro Technical SUPPOrt. e 5

Finding Information about Tcl/Tk ontheWeb. 5

T/ TKTrainiNg. . ..o e e 5

Related Documentationiiiiiitiiiii 5

Chapter 2 TclPro Interpreters and EXtENSIONS 7
TCIPro Interpreters . ..o 7

Running the TclPro InterpretersonUnix. ..., 7

Running the TclPro InterpretersonWindows 8
ExtensionsBundledwith TclPro. 8

[INCr TCl] . o e 8

EXPECt. .o 9

Extended Tcl (TCIX) . ..o e 9

Chapter 3 TclPro Debugger. ... 11
Overview of TclProDebuggercoiviiii i 11

Supported TCl VErsions 11

Starting TclProDebugger.o 12

The TclPro Debugger MainWindowvun.... 12

TheTool Bar ... 14

TheStack Display. 14

TheVariableDisplay ... 15
TheCodeDisplay i 16
TheResultDisplaycovvii e 17
Managing Projects.ot 17
CreatingaNew Project. 17
Openingan ExistingProject 19
SavingaProject 20
ClosingaProject. 20
Changing Project Settings.oov i 20
Changing Project Application Settings. 20
Changing Project Instrumentation Settings 23
Changing Project Error Settings.coooiiiinet, 25
Setting Default Project Settings oo 26
OpeningaFile. 28
Controlling your Applicationcco ... 28
Running Codewith TclProDebugger.t 28
RUNTOCUISOr . . . e 29
SteppingthroughCode. 29
StEPPING TN . . 29
SteppiNng OUL. . ..o 30
StEPPING OVEr . ..o 31
SteppingtoResult. ... 31
Interrupting the Application i, 32
Killingthe Application.......... ..., 32
Restarting the Application 32
Quitting TclProDebugger.o 32
UsSiNg Breakpoints.o et 33
Line-based breakpoints. 33
Variable Breakpoints. 33
Manipulating Breakpoints.ccoeiii i 33
Viewing Breakpoints in the BreakpointsWindow 34
Navigating Code ot e 36
GoingtoaSpecifiedLine. ... 36
Usingthe Find Utility e 36
FindingProcedures. 37
UsingtheWindow Menu ..., 38
DisplayingCodeandData.ccoiveiiiie i 38

Chapter 4

WatchingVariables i 38

DisplayingDatacovii i 40
ManipulatingData. e 41
Errorhandling. ... 42

Parsing ErrorHandling.t 42

RuntimeErrorHandling. i 43
Setting Preferences. 44

Appearance PreferenCes.t 45

Window Preferences. 46

Startup and Exit Preferences.o 47

Browser Preferences.o 48
About TclPro Instrumentationcoo .. 49
Debugging Remote, Embedded, and CGI Applications. 50

Modifying a Tcl Script for Remote Debugging 50

Remote Debugging Procedurest 50
Creating a “Wrapper” Script for Remote Debugging 51
Modifying an Existing Script for Remote Debugging........... 52

Creating a Remote Debugging Project. 52

Launching your Remote Application 53

Viewing Connection Statust 53
Using Custom Tcl Interpreters with TclPro Debugger. 54
TclPro Checker. ... 57
Supported TCIVersions.o 57
Using TclPro Checker. i 57
One-Pass and Two-Pass Checking 58
TCIPro Checker MeSSages.ot e e e 59

Controlling Feedback on Errorsand Warnings 60

Parsing Ermors. 61
SyNtax Errors 61
Platform Portability Warnings 61

SuggestionforUpgradingc i, 61
Performance Warnings. i 62
Usage Warningsot e 62

Warningand Error Flags ... 62

Suppressing SpecificMessages 63
Examples of Output from TcIPro Checker.......................... 63

Specifying Verbose Feedback, 64

Vi

Chapter 5 TclPro Compiler

Chapter 6

Specifying Quiet Feedback. 65

SpecifyingUseof Older Versionsooott. 65
Error Checking i 66
Errorand WarningChecking, 66
Checking for All Warningsand Errors. 67
.. 69
Supported TCl VErSIONS. 69
OV BNV BN .« et 69
Compilingyourcode.o 70
Bytecode Files. 70
Prepending Prefix Text. e 71
ChangesinBehavior i e 72
Example 1: Cloning Procedures 72
Whatisand isn't Compiled 73
Example 2: Procedures used with Namespace 74
Compiler COmponents.t 74
Creating Package Indexes. i 75
Distributing Bytecode Files 75
Compilation EITOrsot 76
TCIPIO WP . e 77
How the Internal File Archive Works in a Wrapped Application. 78
Wrapping an Application i 79
Wrapping Tcl Scriptsand Data Files 79
Specifying the Tcl Interpreter. 80
Specifying the Startup Tcl Script 81
Passing Arguments to the Startup Tcl Script 82
Specifying the Name of a Wrapped Application 82
Determining Path References in Wrapped Applications 82
Specifying TclPro Wrapper Command Line Arguments Using Standard
IPUL . e 84
Specifying Code to Execute at Application Startup 84
Wrapping Libraries and Packages. 84
Wrapping Libraries of Tcl Scripts 85
Wrapping Binary Shared Libraries. 85
Wrapping Tcl Script Packages 86
Wrapping Packages Containing Binary Shared Libraries 86

Chapter 7

Appendix A

Specifying a Temporary Directoryc.ccoviiiiineenn.... 87
Getting Detailed Wrapping Feedback 87
Static and Dynamic Linking with Wrapped Applications 87
Deciding Whether Static or Dynamic Linking is More Appropriate. . . 88
Creating and Distributing Dynamically-Linked Wrapped Applications 88

Wrapping Applications with a Custom Interpreter. 91
SpecifyingaCustom Interpreter., 91
Defining New -usesOptionscovvviiie e 92

Preparing an Applicationfor Wrapping, 9
Detecting When an ApplicationIsWrapped A
Modifying Custom Shells. i]
ChangingFileReferences. o7}

AccessingUnwrapped Files. ..., 95
Accessing Filesfrom a Shared Directory. 95
Accessing Wrapped Files Relative to a Script’s Directory 96
Auto-Loading Wrapped Tcl Script Libraries. 96

Changing the Windows Icon for a Wrapped Application. 96

Creating Custom Interpreters with TcIPro. ...t 99

Overview of the TclPro Development Environment 99
Locations of the Libraries. 100
Debug and Non-Debug Libraries for Windows 100
The Sample Application. i 101

Creating Regular Tcl Interpreters. i e 101
Creating Statically-Linked Interpreters 101

Statically Linking Windows Interpreters. 102
Statically Linking Unix Interpreters. 104
Creating Dynamically-Linked Interpreters. 105
Dynamically Linking Windows Interpreters 105
Dynamically Linking Unix Interpreters. 106

Creating Base Applications for TclPro Wrapper 107
Linking Windows Base Applications. 109
Linking Unix Base Applications 110
Modifying the Base Application Default MainFiles 110

SCriptics LICeNSE SeIVer 113

How Licensing Works i e e 113
How TclPro Applications Obtain Licenses 113

Vii

viii

Appendix B

How Scriptics License Server Manages Shared Network Licenses. .. 114

LicenseOverdraft . ..ot 114
Scriptics License Server Installation. 115
Installing the Scriptics License Server Software 115
Setting the Initial Configuration.............................. 115
Scriptics License Server Installed Files 116
Scriptics License Server Administration.o.... 118
Managing LiCeNSES.ttt 118
RevokKing LiCeNSeSo 118
Changing Email Notifications. 119
Setting Date Formats. 119
VIeWINg REPOMSot e 119
TCIPro Checker MESSAQES . ..ttt 121
TclPro Checker Message Descriptions.o oo v en s 124
ATQATIEIAIGS . o 125
argsNotDefault 125
badBoolean 125
badByteNUM 125
badColorFormat 126
badColormap. 126
DadCUrSOr . .o 126
badEVeNt 127
badFloat. 127
badGeometry. o 128
badGridMastero o 128
badGridRel 128
badindex 128
badint 129
badKey .. 129
badlevel 129
badLindex 129
badList. . . oo 130
badMemberName 130
badModeo 130
badOption 131
badPalette 131
badPiXel. . .. 131

badPriority 131

badProfileOpt 132
badResOUrCEo 132
badScreen 132
badSticky ... 132
badSwitch 133
badTah ... 133
badTabJust 133
badTlibFile. ... 134
badTraceOp. . . oo 134
badVersion 134
badVirtual 134
badVisual 135
badVisualDepth 135
badWholeNum 135
ClasSNUMATGS. . oot e 136
ClassOnly. ... 136
MISMaChOPLIONS o e 136
NOEVENT. . . 136
NOEX T, et 137
105t 11 137
NOSWITCNATG. . .ttt e 137
NOVIMUAl 137
nonDefAfterDef 138
NONPOMBItMaP 138
nonPortChannel i 138
NONPOMCMA 138
NONPOICOIOr. . ..ot e e e 139
NONPOIMCUISOT. . . .o 139
nonPortFile. 139
NONPOIKEYSYM .. .o e 139
NONPOIOPLION. . .. oot 140
NONPOIV ar ... 140
NSONIY . .\ 140
NSOrClassOnly e 140
UM A DS . ottt e e e ettt e e e 141
OptioNREqUITEdo 141
P S . . o 141

PrOCNUMATGS .« . ot 141

PrOCOULSCOPE . .« o o vttt e e et et 142
procProtected e 142
ServerANdPOrTo 142
SOCKELASYNC .\ ettt 143
SOCKEL SNV . . 143
toOManyFIeldArg . ..o 143
WarNAMDIQUOUS o e ettt e et i 143
warnDeprecated 144
WaIrNEXPOrtPaL.o 144
WX . e 144
WarNEXIraCloSe.o 144
warnifKeyword. 145
warnNamespacePat. 145
WarnPattern 145
warnRedefine 146
WaNRESEIVED . . .o 146
warnunsupported 146
WarnVarRef 146
WINAIPNA. . .. 147
WINBEgINDOL e 147
WINNOENUIL . .. 147
0T = G 149

Chapter 1
Introduction to TclPro

The TclPro™ development environment is a set of powerful development tools and
extended Tcl platform for professional Tcl developers. TclPro consists of:

TclPro Debugger
Find bugs quickly with features including breakpoints, single-
stepping, stack and variable display, and variable-based breakpoints.

TclPro Checker
Scan your Tcl scripts to identify a variety of potential problems
including syntax errors, misuses of the Tcl and Tk built-in commands,
and potential performance and portability problems. TclPro Checker
also helps you to upgrade from older versions of Tcl to the latest
releases by locating potential compatibility problems.

TclPro Compiler
Translate your Tcl scripts into bytecode files so that you can distribute
your applications without providing access to the original Tcl source
code. TclPro Compiler protects your intellectual property and prevents
customers from modifying your scripts.

TclPro Wrapper
Create a single executable file containing everything needed to run a
Tcl application. TclPro Wrapper makes it easy to distribute Tcl
applications to your users and manage upgrades in Tcl versions.

Tcl/Tk 8.0.5
The latest version of Tcl/Tk is pre-compiled and ready for use.

Bundled extensions
Several popular Tcl extensions—{incr Tcl], [incr Tk], TclX, and
Expect—are pre-compiled for all of the TclPro supported platforms.
The TclPro tools have built-in support for all bundled extensions.

® e 0 0 00
=

Enhanced interpreters
The protclsh and prowish Tcl interpretersinclude built-in support for
al bundled extensions and the Tcl bytecode files produced by TclPro
Compiler.

TclPro supports the following platforms:

* Windows 95, 98 and NT 4.0 (Intel)

e Solaris 2.5+ (SPARC)

e HP-UX 10.20+

e Irix 6.2+

e Linux (Intel/glibc2; for example, Red Hat 5.0+, SUSE 5.3+)

Installing TclPro

This section describes how to install TclPro from either aCD or the Scriptics Web
site, install the Adobe Acrobat Reader (if needed), and enter your license
information so you can run the TclPro applications.

Installing TclPro from CD

The TclPro CD contains installer applications that make installing TclPro very
easy. All you need to do is run the setup.sh (or setup.exe on Windows) program
located at the top level of the CD-ROM. The installation program will guide you
through the various installation options. Please see the TclPro Installation Guide
that shipswith this release for platform-specific details and additional instructions
about installing from the CD-ROM.

Installing TclPro from the Web

You can obtain TclPro from Scriptics’ Web site. To install TclPro from the web,
go to the TclPro download pagehgtp: //www.scriptics.convtclpro/eval. Follow

the instructions provided there to download the TclPro distribution and install it on
your system.

Installing Adobe Acrobat Reader
Note You need Acrobat Reader 3.0+ to view this guide in PDF format. If you already

have Acrobat Reader installed or do not wish to viewldiiero User’s Guiden
screen, you can skip this step.

Chapter 1

Toinstall Acrobat Reader from the TclPro CD, run the TclPro installation program
as described in “Installing TclPro from CD” select the Acrobat Reader package
when prompted.

To install Acrobat Reader from Scriptics’ Web site, go to
ftp: //ftp.scriptics.conVpub/tcl pro/adobe.

Entering TclPro License Information

You need a license to use any TclPro application. Scriptics sellNbotd User

Licenses andShared Network Licenses. A Named User License allows one specific
person to use TclPro. Shared Network Licenses allow anyone at your site to use the
TclPro applications, as long as the number of concurrent TclPro users doesn'’t
exceed the number of Shared Network Licenses that you purchase. To use Shared
Network Licenses, the system administrator for your site must install and configure
Scriptics License Server on your network.

If you install a local copy of TclPro on your system, the TclPro installer prompts
you for license information during installation. You can change your license
information afterwards by running the TclPro License Manager as described
below.

If you run a shared copy of TclPro from a server, you can either use the default
Scriptics License Server for that shared installation (which is set by the site
administrator when he or she installs that copy of TclPro), or you can run the
TclPro License Manager to override that default.

To run the TclPro License Managetr:

e OnaWindows system, select TclPro License Manager from the Start menu or
run the prolicense.exefile, which is contained in the win32-ix86\bin
subdirectory of the TclPro installation directory.

e OnaUnix system, to run the graphical version, run prolicense, whichis
contained in the platform-specific bin subdirectory of the TclPro installation
directory (solaris-sparc/bin for Solaris, linux-ix86/bin for Linux, hpux-
parisc/bin for HP-UX, and irix-mips/bin for IRIX).

* OnaUnix system, to run the command-line version, run prolicense.tty, which
is contained in the platform-specific bin subdirectory of the TclPro installation
directory (solaris-sparc/bin for Solaris, linux-ix86/bin for Linux, hpux-
parisc/bin for HP-UX, and irix-mips/bin for IRIX).

If you plan to use a Shared Network License, you need to know the host name and
port of a Scriptics License Server. If you do not know thisinformation, please
contact your system administrator. If you plan to use a Named User License, you
need alicense key. You can find your license key:

Introduction to TclPro

e0o 0000
w

¢ onyour CD-ROM case

e onthe packing list included with your TclPro shipment

* inanemail sent to you after you purchase TclPro

* inanemail sent toyou if you are downloading an eval uation copy

If you enter avalid Named User License key, your TclPro applications run using
that license. Otherwise, your TclPro applications attempt to obtain a Shared
Network License from any Scriptics License Server specified.

If you do not have avalid license, you may purchase one from
http: //www.scriptics.com/buy or obtain afree 30-day evaluation license from
http: //www.scriptics.comvtclpro/eval.

About the TcIPro Documentation

TclPro documentation consists of the following:
e Thisguidein print, PDF, WinHelp (Windows), and HTML (Unix) formats
e TclPro Installation Guide in print format

e Tcl and Tk command and C API reference pagesin WinHelp (Windows) and
HTML (Unix) formats

In this guide, Tcl commands, shell commands, and C functions appear in bold
format. Variables, file names, and URL s appear in italics.

When thisguide providesinstructions for selecting an item from amenu, it liststhe
options you need to select separated by “|” characters, with the accelerator keys
underlined For example, “selectlE | Open from the menubar” means that you
should click on the File menu in the application, then select the Open option from
that menu; alternatively, you could hold the <Alt> key while you type “fo”.

Tcl scripts, C programs, and computer output appear in a typewriter-style font.
Information that you type at a Tcl or shell prompt is inokd typewriter-style
font. The following shows a simple example where you enter a Tcl command in
tclsh and see the results:

% puts "2 + 2 = [expr 2 + 2]"

2+2=4

For More Information

This section lists sources of additional information about TclPro and Tcl/Tk.

TclPro Technical Support

Scriptics Corporation offers several levels of Technical Support. In addition to
phone & email support for qualified customers, we also have online FAQs, a
Known Bugs list, and other useful resources. For information for TclPro Technical
Support, please see Scriptics’ Web ditép: //www.scriptics.com/support.

Finding Information about Tcl/Tk on the Web
Web sites that provide information about Tcl/Tk include:

e TheTcl Resource Center provides an annotated index to Tcl-related Web sites
to help you find the information that you are seeking. See the Tcl Resource
Center at http: //www.scriptics.com/resource.

e The Tcl/Tk Consortium is a nonprofit organization dedicated to promoting
Tcl/Tk. Seetheir Web site at http: //www.tclconsortium.org.

The comp.lang.tcl newsgroup provides aforum for questions and answers about
Tcl. announcements about Tcl extensions and applications are posted to the
comp.lang.tcl.announce newsgroup.

Tcl/Tk Training

Scriptics offers both public and on-site technical training courses for novice and
advanced Tcl/Tk developers interested in harnessing the power of scripting. Our
introductory tutorials bring novice Tcl/Tk programmersthe skillsthey need to start
creating exciting applications. Our advanced courses improve your productivity,
showing how to create network applicationswith improved graphical features, and
how to use object-oriented techniques with [incr Tcl]. Scriptics instructors also
spend time showing how to link Tcl with your existing code base, and how to
package your Tcl code in reusable libraries.

For our current training schedul e and compl ete course descriptions, see our training
Web page: http://mww.scriptics.conmvtraining

Related Documentation

If you are new to Tcl/TKk, here are some programming guides that can help you get
started:

e Practical Programming in Tcl and Tk, by Brent Welch, published by Prentice
Hall, 1997.

e Tcl and the Tk Toolkit, by John Ousterhout, published by Addison-Wesley,
1994.

Introduction to TclPro

Chapter 1

e Graphic Applications for Tcl/Tk, by Eric F. Johnson, M&T Books, 1997.

* Effective Tcl/Tk Programming; Writing Better Programswith Tcl/Tk, by Mark
Harrison and Michael McL ennan, published by Addison Wesley, 1998.

e Tcl/Tk for Real Programmers, by Clifton Flynt, published by Academic Press
Professional, 1998.

e Tcl/Tk for Programmers Wth Solved Exercises That Work With Unix and
Windows, by J. A. Zimmer, published by |IEEE, 1998.

For acomprehensive list of books related to Tcl/Tk, browse the Tcl Resource
Center: http://mwww.scriptics.com/resource.

Chapter 2
TclPro Interpreters and Extensions

In addition to various Tcl development applications, TclPro is an extended Tcl
platform that includes enhanced Tcl interpreters and several bundled Tcl
extensions.

TclPro Interpreters

The TclPro installation includes two enhanced Tcl interpreters, protclsh80 and
prowish80. These interpreters are identical to the standard tclsh and wish
interpreters that are part of the Tcl and Tk distributions except for three
improvements:

protclsh80 and prowish80 are precompiled for all of the TclPro supported
platforms. You don't need to compile them from source files.

protclsh80 and prowish80 include support for all the extensions bundled with
TclPro, as discussed in “Extensions Bundled with TclPro” on page 8.

protclsh80 and prowish80 include an extension called tbcload. This
extension is required to run the bytecode files created by TclPro Compiler.

Running the TclPro Interpreters on Unix
To simplify running protclsh80 and prowish80 on Unix systems:

1)

2)

Add the TclPro bin directory to your PATH environment variable.

Thisis aplatform-specific directory in the install area of TclPro where al the
executables are kept. It is solaris-sparc/bin for Solaris, linux-ix86/bin for
Linux, hpux-parisc/bin for HP-UX, and irix-mips/bin for IRIX. For example,
if TclProwasinstalled in /opt/TclPro, you should add /opt/TclPro/solaris-
sparc/bin to the PATH environment variable on Solaris platforms.

If your scripts start with the following lines, they will be processed by
protclsh80 automatically:

#!/ bin/ sh
the next line restarts using protclsh80 \
exec protclsh80 "$0" "$@

You can modify thisline to include prowish80 or the interpreter of your choice.
See the manual pages for protclsh80 or prowish80 for more information.

Running the TclPro Interpreters on Windows

If you are using Windows, you do not need to modify your path; the TclPro
installer does this automatically. The TclPro installer also registers prowish80 to
handle files with the .tcl extension.

Extensions Bundled with TclPro

Chapter 2

TclPro bundles several widdy-used Tcl extensions with its distribution. Beyond
simply providing source code for the extensions, TclPro integrates the extensions
in several waysto makeit easier for you to use the extensionsin your applications:

* Each extension is pre-compiled for all of the TclPro supported platforms.
You don’t need to compile them from source files. Chapter 7, “Creating
Custom Interpreters with TclPro” on page 99 describes the locations of the
extension libraries and provides information about linking with them, if
needed.

* The enhanced TclPro interpreters, protclsh80 and prowish80, provide
built-in support for all bundled extensions.

* TclPro Checker and TclPro Debugger understand all new commands and
control structures implemented by each extension.

e TclPro Wrapper provides built-in support for creating wrapped
applications that use the bundled extensions.

The following sections describe each of the extensions bundled with TclPro.

[incr Tcl]

[incr Tcl] adds object-oriented programming support to Tcl. [incr Tcl] alows you
to create objectsin Tcl scripts, which act as building blocks for an application.
Each object can contain its own data and procedures for manipulating the object.
Objects are organized into classes with identical characteristics, and classes can
inherit functionality from one another.

[incr Tcl] includes the [incr Widgets] library of more than 50 “mega-widgets,”
including a combo-box, a tabbed notebook, a calendar, and an HTML viewer.
These widgets work just like the usual Tk widgets, so you can use them even if you
don't know anything about object-oriented programming. [incr Tcl] also comes
with the [incr TK] framework for creating your own mega-widget classes.

For more information about [incr Tcl], visit the web dit&p: //mww.tcltk.comyitcl.

Expect

Expect is a tool for automating interactive applications that have a command-line
interface. Expect makes it easy to automate repetitive tasks or to add a graphical
interface to an existing command-line tool.

For more information about Expect, visit the web bitp://expect.nist.gov. You
can also refer to the boddxploring Expect: A Tcl-based Toolkit for Automating
Interactive Programs, by Don Libes, published by O'Reilly & Associates, 1994.

Extended Tcl (TclX)

Extended Tcl (TclX) provides additional support for systems programming tasks
and large application development. Features of TcIX include:

e Enhanced file manipulation and scanning

e Additional list manipulation commands

e Additional math commands

e Additional string commands

e X/Open Portability Guide, Version 3 (XPG/3) message catal og support

e Extended Unix access

* A helpfacility

For more information about Tcl X, visit the web site http: //www.neosoft.comvtclx.

TclPro Interpreters and Extensions

e0o 0000
©

10

Chapter 2

Chapter 3
TclPro Debugger

TclPro Debugger provides avariety of features that help you to find and fix bugs
in Tcl scripts quickly. These features include:

Stepping functions for evaluating single Tcl commands or running to where
you have placed the cursor in the code

Display of variable values for all accessible stack frames

Full stack information and navigation around the stack and source code when
the application is stopped

Line- and variable-based breakpoints

An Eval Console in which you can enter code for the application to evaluate
dynamically when the application is stopped

The ability to interrupt code to determine the execution status of the
application that you are debugging

The ability to communicate with remote and embedded applications

Overview of TclPro Debugger

This section lists the platforms and Tcl versions that TclPro Debugger supports. It
then describes how to start TclPro Debugger and provides a tour of the TclPro
Debugger main window.

Supported Tcl Versions

TclPro Debugger can debug any Tcl/Tk script running in a Tcl version 7.6 and Tk
version 4.2 or later interpreter. Thisincludes any extensions to those interpreters
that do not radically redefine any standard Tcl commands.

11

12

Important

Chapter 3

Renaming or radically redefining any standard Tcl commands may cause TclPro
Debugger to fail. An example of aradical redefinition of the proc command would
beto redefineit to take four argumentsinstead of three. In particular, avoid altering
the following Tcl commands:

catch global proc trace
eval if puts uplevel
event incr return variable
exit info set vwait
expr namespace switch while

Starting TclPro Debugger

If you are running TclPro Debugger on aWindows system, select TclPro Debugger
from the Start menu or double-click the prodebug.exeicon. If you are running
Unix, add the release directory to your execution path, and enter prodebug at the
prompt.

The TclPro Debugger Main Window

Figure 1 showsthe main window that TclPro Debugger displayswhen it starts. The
main window includes the following subregions:

e Tool bar

e Stack display

e Variable display
* Code display

* Result display

Stack Display Project Title Tool bar Variable Variable Code

Eile Edit

3 TclPro Debugger: Fac
Yiew Debug

Breakpoint Display Display

LA BT i 1 B

Stack Frames | ariakle I\fal =] |
0 global Won 4
0 source fac.tcl ¥V result 4

Ll proc factorial result |

Line Breakpoint

Code Bar

13 # Tail-recursive implementation of the factorjial B
14 # Az a side-effect, the global value of "n" iE de
15 #
16

-- 17 proc factorial {result} {

® 117 global n

-- 19 if {%n <= 1} {

-- 20 return 5result
21 '

—% 2z et result [expr {5n * Sresult!}]

-- 23 incr n -1

o 24 return [factorial Sresult]
25}
Z2a
27 #
28 # Set max to the value of the command line argument. «|

ICode: QK Result: 4

|variab|e breakpoint | “Tl ...fdemosffalacﬁau:.tcl 122

| |
Variable Breakpoint Status Bar Result Display An asterisk File name and

appears if the line number
application is
uninstrumented

Figure 1 TclPro Debugger Main Window

TclPro Debugger

13

14

Chapter 3

The main window, as shown in Figure 1, includes menus and atool bar, in which
you run, step through, interrupt, kill, or restart your code. You can change the
appearance of TclPro Debugger by toggling the display of various €l ements of the
Main window:

Tool bar Select View | Toolbar from the menubar

Results display
Select View | Result from the menubar

Statusbar Select View | Status from the menubar

Line numbers
Select View | Line Numbers from the menubar

The Tool Bar

Figure 2 shows the tool bar, with callouts identifying each of the buttons. The
function of each button is described in the following sections.

Step Run to Eval
Over Cursor Restart Console Watch
Variable
m/Window
Run —— ! L 5 e
= BP0
; Procedure

Window

Figure 2 TclPro Debugger Tool Bar

When you hold your mouse over atool bar button, adescription of thefunctionality
of that button appears in the | eft side of the status bar.

The Stack Display

The Stack Display shows the most recent stack levels and highlights the current
location in your code when the application is stopped. If you select a stack level,
TclPro Debugger showsthe code and variable valuesfor that stack level inthe code
display and the variable display. When the application encounters a breakpoint, the
last stack frameis automatically selected and highlighted in the Stack Frame
display. The call stack includes an entry for each distinct scope or body of code. It
displays stack frame information in this format: stack level, Tcl command, and

Note

relevant arguments. Stack level O indicatesthe global level. Stack level 1 indicates
that a procedure isinvoked from level O; stack level 2 indicatesthat a procedureis
invoked from stack level 1, and so on.

If your code isin an event loop when you click the Stop button, no code is shown
in the Code display and the top level in the stack frame displays “event.”

The following example shows a sample stack frame:

gl oba

source nyScriptFile

proc nmyProc argl arg2 arg3
namespace eval nyNanespace
proc myproc3

upl evel

1 proc nyproc3 args

In this example, the stack level is reset to 0 byugilevel command; theiplevel
command can be called explicitly in your source code or implicitly by a callback.
As with any other procedure call, thamespace eval command creates a hew
level.

You can navigate through the application by clicking on specific stack frames,
which affects both the Variable and Code displays. When you double-click any
part of a stack frame, the Code display scrolls to and highlights the current
command in that stack frame. For example, if you want to see the code that caused
a stack frame to be created, you can double-click the frame directly above the frame
in question. In addition to highlighting the current command, if the last stack frame
is selected, TclPro Debugger indicates the current command with a yellow Run
Arrow in the Code bar. TclPro Debugger also indicates the current command with
a green triangular History Arrow in the Code bar. When you click a stack frame,
the Variable display shows the variables in that stack frame. For example: if you
want to see global variables, you can double-click any Level 0 stack frame. If you
click directly on an argument in@oc stack frame, the Variable Window scrolls

to and highlights the selected argument.

OwWwNE OO

The Variable Display

The Variable display shows all of the existing variables in the highlighted stack
frame. The value of each variable is updated whenever the application is stopped.
The value for each array appears as an ellipsis (...). You can expand and contract
the display of the array by clicking the ellipsis. When an array is expanded, each
index is listed with its corresponding value. You can click to the left of the name
of the variable to set a variable breakpoint, which causes the application to stop
whenever the chosen variable is modified. See “Manipulating Breakpoints” on

TclPro Debugger 15

16

Chapter 3

page 33. Large variables are abbreviated in the Variable display. To see the
complete value, double-click the variable, and the Data Display window appears.
See “Displaying Data” on page 40.

If the message “No variable info for this stack” appears in the Variable display, it
means that the stack level that is highlighted in the Stack display is hidden. Stack
levels are hidden as a result of calls to Tcl commandsila&t anduplevel. When

vwait is called, it creates a new stack, and all of the non-zero levels of the old stack
are hidden until thewait call returns. Whenplevel is called with the absolute

level forx, all of the levels of the old stack that are greater ¥ hidden until
theuplevel call returns.

The Code Display

The Code display shows exactly one Tcl code source at a time. A code source is
either a file opened in the File menu, a file that has been sourced by the application,
or a chunk of code dynamically created at runtime by commands saeil aEhe
Window menu lists all the open files, allowing you to select the file you want to
view. You can also select a code source to view from the Breakpoint and
Procedures windows. See “Using Breakpoints” on page 33 and “Finding
Procedures” on page 37.

When the application is stopped, an arrow or triangle appears in the code bar
indicating the current command with highlighted text. For example, in Figure 1 on
page 13, the portion of the code that is highlighted is code that is about to be
executed and it is also indicated by the yellow run arrow in the code bar. Code is
also highlighted if it is found using the Find command. See “Going to a Specified
Line” on page 36 for information on commands that you can use to move through
and search for specific portions of code.

The main window includes a status bar. The left portion of the status bar displays
the information about the state of the debugger session, or information about the
tool bar buttons if you place your cursor over a button. The center displays an
asterisk (“*") if the current code source is uninstrumented; see “About TclPro
Instrumentation” on page 49. The right portion displays the current file name and
line number.

If you see the message “No Source Code...” in the Code display, there are two
possible reasons:

* If your application isin the event loop when you click the Stop button, TclPro
Debugger cannot display code because no code is being eval uated.

* TclPro Debugger cannot display code for the first stack level labeled “global”
because your application’s code is sourced by code internal to TclPro
Debugger.

The Result Display

The Result display shows the result and completion code of the most recently
executed Tcl command. The Result display is not a scrolling window; TclPro
Debugger displays only as much of the result as can fit in the Result display. You
can double-click on the result to display it in the Data Display window (see
“Displaying Data” on page 40).

Note The performance of TclPro Debugger can decrease if your application produces
particularly long results (for example, reading a large file into a variable) and you
have the Result display visible. If you want to increase performance in cases like
this, toggle off the Result display by selectingw | Result from the menubar.

Managing Projects

You can manage multiplarojects with TclPro Debugger. TclPro Debugger saves
project information in files with thepj extension. Projects store a variety of
information about an application including:

e the name of theinitial Tcl script

e theinterpreter

e any command-line arguments you pass to the script
* the current working directory

e any line breakpoints you have set

e any variablesin your watch list

By default, when TclPro Debugger starts, it automatically reloads the last project
you had open. You can change this behavior as described in “Startup and Exit
Preferences” on page 47.

Note You must have a project open to perform any debugging actions.

Creating a New Project
To create a new project:

1) Select He | New Project from the menubar. If you have a project already open,
TclPro Debugger prompts you to save that project.

TclPro Debugger then opens the Project window shown in Figure 3.

TclPro Debugger 17

18

Chapter 3

Froject Fac

Application | Instrumentation | Eerrsl

— Debugging Type
& Local Debugging ¢ Remote Debugging

— Local Debugging

Script:

I LI Browse |

Script Arguments:
Wiarking Directan:
Interpreter:

IC:‘-,Pru:ugram Files\ TclProl.24kinkprowishB0.exe LI Erowse |

K, | Cancel | Apphy

Figure 3 The TclPro Debugger Project Window

2) Select Loca Debugging to debug a Tcl script running normally on your
system. Select Remote Debugging only to debug a remote, embedded, or CGlI
Tcl application. See “Debugging Remote, Embedded, and CGI Applications”
on page 50 for information on remote debugging.

3) In the Script field, type the path and name of the Tcl script to run, or click the
Browse button next to the field to locate the Tcl script.

4) (Optional) In the Script Arguments field, type any script arguments you want
to pass to the script when you run it under the debugger.

5) (Optional) In the Working Directory field, type the full path of the directory

that you want to use for the working directory inside the Tcl/Tk script. If you
don’t specify a working directory, TclPro Debugger uses the directory which
contains the Tcl script you are debugging.

Note

Tip

6) Inthe Interpreter field, type the path and name of the Tcl interpreter or click
the Browse button next to the field to locate the interpreter. You can use any
Tcl interpreter, such as prowish80, protclsh80, or acustom Tcl shell. You can
aso choose one from the drop-down list, which containsalist of Tcl
interpreters set by your project defaults.

TclPro Debugger works properly with most custom Tcl interpreters. However,

if your interpreter doesn't accept asits first command-line argument a Tcl

script to execute or if it doesn't pass subsequent command-line arguments to

the script using the standard argc and argv Tcl variables, then you must take

special steps to use your interpreter with TclPro Debugger. See “Using Custom
Tcl Interpreters with TclPro Debugger” on page 54 for more information.

If there are one or more interpreters you commonly use, you can change your
default project settings to include them in the Interpreter drop-down list:

a) Bring up the default project settings, as described in “Setting Default
Project Settings” on page 26.

b) Type the path and name of the Tcl interpreter or click the Browse button
next to the field to locate the first interpreter you want to appear in the
drop-down list.

c) Repeat b) for each interpreter that you want to add to the list.
d) Save your default project settings.

The interpreters you specify are now available for all new projects you create
afterwards.

7) The Instrumentation and Errors tabs allow you to fine tune TclPro Debugger’s
control over your application as you debug it. See “Changing Project Settings”
on page 20 for information on these tabs.

8) Click the OK button to apply your choices and close the Project window, the
Cancel button to cancel your choices and not open the new project, or the
Apply button to apply your choices and keep the Project window open.

Once you create your new project, TclPro Debugger displays the Tcl script file you
specified in the Code display of the main window. TclPro Debugger does not run
the script until you tell it to do so, as described in “Controlling your Application”
on page 28.

Opening an Existing Project
There are two ways that you can open an existing project in TclPro Debugger:

* Sdect File| Open Project from the menubar and sel ect the project file you want
to open from the file browser displayed.

TclPro Debugger 19

20

Chapter 3

* Sdect File | Recent Projects and select the project file you want to open.

If you already have a project open, TclPro Debugger first asks you whether or not
you want to save that project before opening the project you select.

When you open an existing project, TclPro Debugger restores al of the project
settings and breakpoints in effect when you saved the project. TclPro Debugger
also displays the Tcl script file that you were viewing when you saved the project.

Saving a Project

To save aproject, select File | Save Project from the menubar. The first time you
save aproject, specify thefile name and location for your project. TclPro Debugger
saves your project settings and any breakpoints and any watch variables you have
Set.

To save a project with a different name, elect File | SaveAs Project from the
menubar.

Closing a Project

To close a project, select File | Close Project from the menubar. If you made
changes, TclPro Debugger asks you whether or not you want to save the project
before closing it.

Closing aproject closes the project file and clearsall the TclPro Debugger displays.

Changing Project Settings

To change the settings of the currently open project, select File | Project Settings
from the menubar. TclPro Debugger displays the Project window shown in Figure
3 on page 18. From this window you can change the script, interpreter,
instrumentation, and error settings for the project as described in the sections
below.

Changing Project Application Settings

The Application tab of the Project window letsyou sel ect basic application settings
such as the Tcl script to debug and the Tcl interpreter to use. The contents of the
Application tab depend on the Debugging Type option you select:

Local Debugging
Debug a Tcl script running normally on your system.

Remote Debugging
Debug a remote, embedded, or CGI Tcl application. See “Debugging
Remote, Embedded, and CGI Applications” on page 50 for
information on remote debugging.

If you select the Local Debugging option, the Application tab appears as shown in
Figure 4.

Froject Fac

Application | Instrumentation | Errars |

— Debugging Type
& Local Debugging ™ Remate Debugging

— Local Debugging
Scriph:

IC:“.,Pngram Files\ TclProl 24 demoshfachfac tol ;I Browse |
Script Argurnents:

4 El

Whorking Directany:

ID:'\Users"-,Guest LI

Interpreter:

IC:\Pngram Files\ TelProl.24hinypratcish30 exe LI Browse |

Q. | Cancel | Apply

Figure 4 The Project Application Settings Tab, Local Debugging

You can change the following Local Debugging settings for a project:

Script Type the pathname of the Tcl script to run, or click the Browse button
next to the field to locate the Tcl script. You can also select the script
from the drop-down list, which lists scripts that you have used recently
in this project.

TclPro Debugger 21

22

Note

Chapter 3

Script Arguments

Type any script arguments you want to passto the script when you run
it under the debugger. You can also select the arguments from the
drop-down list, which lists the arguments that you have specified
recently in this project.

Working Directory

Typethefull path of the directory that you want to use for the working
directory inside the Tcl/Tk script. If you don’t specify a working
directory, TclPro Debugger uses the directory that contains the Tcl
script you are debugging. You can also select the working directory
from the drop-down list, which lists the working directories that you
have used recently in this project.

Interpreter Type the path and name of the Tcl interpreter or click the Browse

button next to the field to locate the interpreter. You can use any Tcl
interpreter, such g owish80, protclsh80, or a custom Tcl shell. You

can also choose one from the drop-down list, which contains Tcl
interpreters that have been installed in the standard locations on your
computer and any other Tcl interpreters that you have previously
specified for this project.

TclPro Debugger works properly with most custom Tcl interpreters.
However, if your interpreter doesn't accept as its first command-line
argument a Tcl script to execute or if it doesn't pass subsequent
command-line arguments to the script using the staratgedand

argv Tcl variables, then you must take special steps to use your
interpreter with TclPro Debugger. See “Using Custom Tcl Interpreters
with TclPro Debugger” on page 54 for more information.

If you select the Remote Debugging option, the Application tab appears as shown
in Figure 5.

Project Fac

Application Instrumentatiun] Errars l
Debugging Type
" Local Debugging * Remote Debugging

Port
Listen for remate connection on pont number: 2574

Ok, Cancel Apply

Figure 5 The Project Application Settings Tab, Remote Debugging

The only application setting you can change when debugging remotely isthe TCP

port that TclPro Debugger uses to communicate with the remote application. This

is the port that you need to pass to debugger _init when starting your debugging

session from a remote application. See “Debugging Remote, Embedded, and CGI
Applications” on page 50 for information on remote debugging.

After changing the Application tab settings, click the OK button to save your
choices and close the Project window, the Cancel button to cancel your choices and
close the Project window, or the Apply button to apply your choices and keep the
Project window open.

Changing Project Instrumentation Settings

The Instrumentation tab of the Project window, shown in Figure 6, lets you select
files and classes of procedures that TclPro Debugger should not instrument. You
might not want to instrument files in a Tcl library that you do not want to debug
(for example, standard Tcl libraries).

TclPro Debugger 23

Note For more information about instrumentation, see “About TclPro Instrumentation”
on page 49.

Froject Fac

Appliu:atic:nl Instrurnentation | Eerrsl

— Do natinstrument these files
glob Pattern I Ad
= Femove
Femaowe All
I
— Options
¥ Instrument dynamic procs. M Instrument Incr Tcl.
¥ Instrument auto loaded scripts. ¥ Instrument Tl
¥ Instrument Expect.

K, Cancel Apphy

Figure 6 The Project Instrumentation Settings Tab

The Instrumentation settings affect a project as follows:

Do Not Instrument These Files
The text box lists the absolute path and names of files that you do not
want TclPro Debugger to instrument.You can specify file name using
theglob pattern conventions (for example, “*/myLib/*"). See the Tcl
manual page on tigtob command for more information. All files that
match the glob pattern remain uninstrumented.

Important Remember to specify absolute paths for all files you want TclPro
Debugger not to instrument. Simply entering a file name such as

“foo.tcl” does not work. However, a pattern such as “*/foo.tcl” does
work.

Chapter 3

Note

Files listed in the text box remain uninstrumented even if they match
the criteria of other checkboxes selected in the Instrumentation tab.

To add afileor glob pattern to thelist, type thetext in the Glob Pattern
field and click the Add button or press the <Enter> key. To remove a
file or glob pattern from the list, click thefile or pattern to highlight it,
then click the Remove button. To remove all files and glob patterns
from the list, click the Remove All button.

Instrument Dynamic Procs
Instrument procedures that you create dynamically. For example,
selecting this check box instruments procedures created by the eval
command.

Instrument Auto Loaded Scripts
Automatically instrument auto-loaded scripts. You might want to turn
this option off if you are using only standard Tcl extensions.

Instrument [incr Tcl]
Instrument all your [incr Tcl] classes and methods.

Instrument TclX
Instrument control structuresin the TclX package, such asthe loop
command.

Instrument Expect
Instrument the control structures in the Expect package, such asthe
expect command.

After changing the Instrumentation tab settings, click the OK button to save your
choices and close the Project window, the Cancel button to cancel your choicesand
close the Project window, or the Apply button to apply your choices and keep the
Project window open

Changing Project Error Settings

The Errors tab of the Project window, shown in Figure 7, lets you specify how
TclPro Debugger handles errorsin your Tcl script:

Always Stop on Errors
TclPro Debugger notifies you each time it encounters an error in the
script (TclPro stops execution of your script even if your script catches
the error)

Only Stop on Uncaught Errors
TclPro Debugger notifies you only when it encounters an error not
caught by the script (TclPro stops execution of your script only if your
script does not catch the error)

TclPro Debugger

25

26

Note

Chapter 3

Never Stop on Errors

TclPro Debugger does not notify you about any errorsin the

application

For more information on how TclPro Debugger handles errors, see “Error

handling” on page 42.

Froject Fac

Applicatiun\ Instrurnentation \ Eerrsl
Errors

" Alweays stop on errars.
& Only stop on uncaught errars.

" Mewer stop on errors.

QI

Cancel

Apply

Figure 7 The Project Errors Settings Tab

Setting Default Project Settings

You can change any of the default project settings so that new projects you create
have those settings. Changing the default project settings doesn’t affect any

existing projects you might have.

For example, if you commonly use a set of packages that you don’'t want TclPro
Debugger to instrument, you could set those files in the default project settings.
Then, any new project you create would pick up those instrumentation settings by

default.

To set the default project settings:

1) If youhaveaproject already open, select File| Close Project from the menubar
to close that project.

2) Select File | Default Project Settings from the menubar. (TclPro Debugger
displays this option only if you have no projects currently open.)

TclPro Debugger displays the Default Project Settings window. This window
has the same tabs and settings available asin the Project window.

Default Project Settings

Application | Instrurmentation | Errars |

— Debugging Type
& Local Debugging ¢ Remote Debugging

— Local Debugging

Script:

I LI Browse |
Script Arguments:

| =

‘Working Directony:

| El

Interpreter:

IC:‘-,Pru:ugram Files\ TeclProl.24hinyprowishG0.exe LI Erowse |

K | Cancel | Apply

Figure 8 The Default Project Settings Window

3) Set the default project settings just as you set an individual project’s settings.
See “Changing Project Settings” on page 20 for a description of all project
settings.

TclPro Debugger 27

28

4) After changing the default project settings, click the OK button to save your
choices and close the Default Project Settings window, the Cancel button to
cancel your choices and close the Default Project Settings window, or the
Apply button to apply your choices and keep the Default Project Settings
window open

Opening a File

Tip

Opening afilein TclPro Debugger gives you the opportunity to create or check
existing line-based breakpoints in the file before the file is sourced in the
application. Breakpoints cause the application to stop before aline of code is
executed so that you can examine the state of the application that you are
debugging. See “Using Breakpoints” on page 33.

To open afile:
1) Select He | Open File from the menubar.

2) Type the full path and name of the file or browse and click the file that you
want to open.

The file that you opened appears in TclPro Debugger. You can view it using
the scroll bars and menus.

You can open a file at any time, even when an application is already running. When
you open a file, TcIPro Debugger reloads the file if the file has not been sourced by
the running application or if no application is running. If the application is running
and has sourced the file, modifications to that file cannot be seen in the Code
display until that file is sourced again or the file is reopened after the application is
terminated.

Controlling your Application

Chapter 3

This section describes how to use the basic features of TclPro Debugger.

Running Code with TclPro Debugger

Click the Run button to run your code with TclPro Debugger, as shown in Figure
2 on page 14. When the application stops, TclPro Debugger indicates the line of
code that it is processing with an arrow and highlights the portion of the line that it
is about to execute.

Once the application is running, it stops at these events:

* At breakpoints. For information about breakpoints, see “Using Breakpoints”
on page 33.

Note

Note

* If anerrorisdetected, TclPro Debugger stopsontheline of codethat generated
the error, and the code that caused the error is highlighted. See “Error
handling” on page 42.

* If you click the Run to Cursor icon in the tool bar, the application runsto the
line where you placed your cursor.

Run to Cursor

The Run to Cursor icon in the tool bar, as shown in Figure 2 on page 14, enables
you to create atemporary breakpoint that is automatically removed the next time
TclPro Debugger stops. When your application isstopped, you can movethe cursor
to the line of code where you want to stop, and press the Run To Cursor button.

If the application stops for any reason, such as encountering another breakpoint or
reaching the line containing the cursor, the temporary breakpoint is removed. The
operation of the Run to Cursor featureis similar to those of line-based breakpaints.
If the cursor isnot set, or if itison alinethat is either empty or contains only
comments or curly braces, clicking the Run to Cursor button is equivalent to
clicking the Run button. The application stops just before evaluating the first
command on the line regardless of where you place the cursor on aline of code.

Stepping through Code

TclPro Debugger offers four ways of stepping through your scripts: Step In, Step
Out, Step Over, and Step To Result. When your application is stopped, you can step
from the current command, indicated by the yellow run arrow in the code bar. To

use the stepping features, click the corresponding button on the tool bar when your
application is stopped. See Figure 2, “TclPro Debugger Tool Bar” on page 14.

If the application stops for any reason, such as encountering an error or breakpoint,
after any of the Step buttons is pressed, the step is considered to be completed.

Stepping In

The Step In feature provides the finest granularity at which you can stop and
inspect your application. Stepping in causes the application to stop just before
executing the next instrumented command. Stepping in is useful for following the
control flow of your application as it sources files, calls procedures, and evaluates
command substitutions.

For example, if your application is stopped on the command
nmyProc [incr x 5]

TclPro Debugger 29

30

Chapter 3

you can Step In and stop the application before it evaluates the subcommand
incr x 5. You can Step In again to stop the application on the first line of code in
the body of the myProc procedure.

The following list describes the rules of behavior for the Step In function:

* If the current command contains subcommands, the application stops just
before evaluating the first subcommand.

* If the current command is acall to an instrumented procedure, and all
subcommands, if any exist, have been evaluated, the application stops on the
first line of code in the body of the procedure.

¢ |f thecurrent commandisacall to the sour ce command, and all subcommands,
if any exist, have been evaluated, the application stops on thefirst line of code
in the sourced file.

e |f the current command is not a call to an instrumented procedure, and all
subcommands, if any exist, have been evaluated, the application stops on the
first instrumented command called by the current command.

e |f the current command does not call any instrumented code, then the Sep In
function behaves like the Sep Over function.

Stepping Out

Stepping out causes the application to stop before executing the next command
after the current stack level or body of code returns. The Step Out feature is useful
for backing out of code you are no longer interested in inspecting. For example: if
you are stopped in the body of the myProc procedure in the following application

1 source soneFile.tcl

2 nyProc [incr x 5]

3 nyNext Proc $x
and you would like to progress to the myNextProc $x command, you can Step Out
of the myProc procedure, and then Step In the myNextProc procedure.

The following list describes the rules of behavior for the Step Out function:

* If the current command is in the body of a procedure, the application stops
before executing the next command after the procedure returns.

* If thecurrent command isat the global leve of afilethat has been sourced, the
application stops before executing the next command after the code in the
sourced file is evaluated.

e |f thecurrent command isat the global level of the main script file, clicking the
Step Out button behaves like clicking Run button.

Stepping Over

Stepping over causes the application to stop just before executing the next
command after the current command in your application is fully executed. The
Step Over featureis useful for following the application as it progresses through a
body of code at the current stack level. For example, suppose you are stopped on
line 1 in the following application

1 source soneFile.tcl

2 set x 1

3 nyProc [incr x 5]

4 puts $x
If you Step Over the sour ce command, the application stops at set x 1. If you
continue to click Step Over, myProc [incr x 5] becomes the new current
command, followed by puts $x.

The following list describes the rules of behavior for the Step Over function:

e |f the current command is acall to an instrumented procedure, the application
stops before the executing the next command after the procedure returns.

e |f the current command isacall to the source command, the application stops
before the executing the next command after the code in the sourced fileis
evaluated.

¢ |f thecurrent command isthelast one at the current stack level or in the current
body of code, Step Over behaves like Step Out.

Stepping to Result

Stepping to Result executes the current command and stops execution. After using
Step to Result, TclPro Debugger highlights the command just executed and
displays the result and return code of that command in the Command Results
display of the debugger main window.

The Step to Result feature is useful for examining the results of nested commands.
For example, suppose you click Step In at line 3 in the following application:

1 source soneFile.tcl

2 set x1

3 nyProc [incr x 5]

4 puts $x
If you click Step to Result, your application executes the subcommand and stops.
You can then examine the result of the subcommand before continuing. By
comparison, clicking Step In again at this point would execute the subcommand
[incr x 5] and immediately Step In to myProc, and clicking Step Over would
execute both the [incr x 5] subcommand and the call to myProc before stopping.

TclPro Debugger 31

32

Note

Note

Note

Chapter 3

Interrupting the Application

Clicking the Stop button causes TclPro Debugger to interrupt the application while
itisrunning. You can interrupt the application at any time; when you interrupt, an
implicit breakpoint is added to the next command to be executed in the script. The
application stopsasit would at any other breakpoint, and you can then interact with
the application.

If your codeisin an event loop when you click the Stop button, no code is shown
in the Code display and the top level in the stack frame dispéssst.”

If your application is executing uninstrumented Code or is in a long-running
command, TclPro Debugger may not be able to stop the application immediately.

Killing the Application

Clicking the Kill button causes TclPro Debugger to end the application's process.
When you kill the application that you are debugging, information about its state is
no longer available. You can then restart the application or launch another
application.

You cannot terminate remote applications using the Kill button. You can terminate
a remote application by interrupting the application and typing “exit” in the Eval
Console. See “Manipulating Data” on page 41.

Restarting the Application

Click the Restart button to terminate the current application and then restart the
same application. This is equivalent to killing the application and immediately
restarting it. When you restart an application, TclPro Debugger automatically
reloads the main script. This is useful if you have modified the script to fix a bug
and want to start the application over to test the change.

If you have modified files other than the main script and wish to set or change
breakpoints in those files, you can open them by seleciim$®pen File from the
menubar rather than viewing the stale files from the Window menu.

Quitting TclPro Debugger

To quit TcIPro Debugger, seledid-| Ext from the menubar or click the Close
button in the TclPro main window.

Using Breakpoints

A breakpoint causes the application to stop so that you can examine its state. You
can add breakpoints in an application at any time. Using breakpoints, you can
obtain information, such as variables and their values, the current call stack, and
valid procedure names. TclPro supports two types of breakpoints: line-based and
variable breakpoints.

Line-based breakpoints

Line-based breakpoints enable you to specify aline of code where the application
should stop. Line-based breakpoints cause TclPro Debugger to stop before
executing each command and subcommand on the specified line. Line-based
breakpoints are persistent across runs of the application and debugger sessions.

TclPro Debugger does not stop at line-based breakpoints that are set in

uninstrumented lines of code, blank lines, comment lines, and lines that contain

only curly braces. However, variabl e breakpoints can betriggered if thevariableis
modified in uninstrumented code. See “About TclPro Instrumentation” on page 49
for information.

Variable Breakpoints

Variable breakpoints cause the application to stop when the variable is modified.
Variable-based breakpoints are not stored in the application after you close it, or
when the variable is removed, unset, or goes out of scope, for example: a local
variable in a procedure goes out of scope when the procedure returns.

Note The Variable breakpoints track the unique location where the variable is stored in
memory rather than the name of the variable. You can not set a variable breakpoint
until the variable exists in the application.

Manipulating Breakpoints

You can create breakpoints in the main Debugger window, as shown in Figure 1,
“TclPro Debugger Main Window” on page 13. To set a line-based breakpoint, click
the code bar in the left margin in the Code display. The line-based breakpoint
appears as a small stop sign, and causes the application to stop just before the line
is executed.

To create a Variable breakpoint, click the left margin in the Variable display
adjacent to the variable. The breakpoint appears as a large “V” in the Variable
display. The “V” also appears in the code bar of the Code display when the variable

TclPro Debugger 33

34

Chapter 3

breakpoint istriggered causing the application to stop. The variable breakpoint
triggers when the value of the variable changes. You can also create breakpointsin
the Breakpoint window; see Figure 9, “The Breakpoints Window.”

To delete a breakpoint, click the breakpoint in the Code or Variable display.

Viewing Breakpoints in the Breakpoints Window

To display the Breakpoints window, click the “B” in the tool bar or by selesty
Breakpoints from the menubar. The Breakpoints window displays line-based and
variable breakpoints, as shown in Figure 9.

Breakpoints E
Breakpoints:
Disabled Line
Breakpoint ——— 0 hig.tcl: 25 Show Code
Line Breakpoint '® hiqcUI. tcl: 15 e
Variable Breakpoint v |{ color: O}f {: } | Femaowve
Disabled Variable R {env: 0} {:)

Breakpoint Remaowe All

Figure 9 The Breakpoints Window

The line-based breakpoints in Figure 9 indicate the file and line number where the
breakpoint has been set. To select a breakpoint, click the line to the right of the
breakpoint in the Breakpoint window to highlight it. You can delete, disable, and
enable breakpoints:

* To delete abreakpoint, select the line in the Breakpoint window and click the
Remove button.

e Todisable a breakpoint, click the breakpoint in the Breakpoint window.

The disabled breakpoint is shown as a hollow stop sign for aline-based
breakpoint or hollow “V” for a variable-based breakpoint.

e To enable adisabled breakpoint, click it in the Breakpoint window.

Disabling and enabling breakpoints can be helpful when you want to keep all
of your breakpoints but may not want to use all of them at the same time.

Note

You can select multiple breakpoints to be disabled or enabled by clicking the
breakpoints while pressing the <Ctrl> key.

You can perform the following actions on a selected breakpoint:
* Click the Show Code button to show the code at a Line-based breakpoint.

Clicking this button causes TclPro Debugger to display the code containing the
corresponding line in the Code display.

¢ Click the Remove button to remove a sel ected breakpoint.
You can click the Remove All button to remove all of the breakpoints.

The information for avariable breakpoint in the Breakpoint window, as shownin
Figure 9, appears in the form of two sets. The first set contains the variable name
followed by the absolute stack level at which the variable breakpoint was created.
The second set contains information regarding the most recent occasion in which
the variable breakpoint was triggered. If the second set is empty, the variable
breakpoint has never been triggered. Otherwise, the second set contains the name
and stack level of the variablethat triggered the variable breakpoint. In most cases,
the second set will not differ from thefirst set. However, when avariableis aliased
by the global and upvar commands, any instance of that variable can trigger the
variable breakpoint. The second set is helpful when you have an aiasing bug in
your code.

The following is an example of an aiased variable a whose variabl e breakpoint
getstriggered by a variable named x:

1 proc foo {} {

2 upvar #0 a X

3 set x 52

4}

5 set a 50

6 puts "global var a is set”

7 set a 51

8 foo
If you stop this application on line 6, you can create a variable breakpoint for the
globa variable a. If you open the Breakpoint window, you will see the following:

{a: 0} {: }
If you continue to run the application, the variable breakpoint is triggered on line
7, the following appears in the Breakpoint window:

{a: 0} {a: 0}
If you continue to run the application again, the variable breakpoint is triggered
once more on line 3, the following appears in the Breakpoint window:

{a: 0} {x: 1}

TclPro Debugger

35

36

Navigating Code

Tip

Chapter 3

TclPro Debugger provides utilities that help you can navigate to specific portions
of the code that you are debugging, including Procedures window, the Goto
command, the Find command, and the Window menu.

Going to a Specified Line

1)
2)
3)

Select Edit | Goto Line from the menubar.
Type aline number in the text box.

Click the Goto Line button.

TclPro Debugger highlights the specified line.

You can also use the Goto What drop-down menu to move up or move down the
linesin your code from the insertion cursor. Select Move Up Linesor Move Down
Lines and type the number of lines that you want to move.

Using the Find Utility
Select Edit | Find from the menubar.

Type a code fragment or other string in the text box to locate that string. You
can choose among several find options:

1)
2)

3)
4)

Select Match Whole Word only to find those strings that match the entire
string that you typed. This option looks for white space as a delimiter, for
example: if you searched for the string “sea” you would find all instances
of “sea” but would not find “seashore”.

Select Match Caseto find strings that match the case of the string that you
typed. For example, with Match Case selected, searching for the string
“sea” would not match “Sea”.

Select Regular Expression to find strings that match the one you typed
using the search format for regular expressions; see the regexp manual
page for information. If you do not select this checkbox, it will perform
searches that match all characters exactly.

Select Search All Open Documentsto find matching stringsin al filesthat

are currently open. The Window menu displays alist of all open files. If

you don't select this options, TclPro Debugger searches only the current
file (the one shown in the Code display).

Click the Direction for the search: Up or Down (default).
Press the <Enter> key to start the Find process.

TclPro Debugger highlights the code that matches the string that you typed. If
the string is not found, the Code Display does not change. You can find
subsequent matching strings by clicking the Find again command or pressing
the <F3> key.

Finding Procedures

You can use the Procedures window, shown in Figure 10, to view the list of
procedures that have been defined in your application. To open the Procedures
window, click the “P” button in the tool bar in the main TclPro Debugger window,
or select ew | Procedures from the menubar.

Procedures E

Pattarn: I* Search

<

Show Uninstrumented Frocs.

B3

debugger_init “ Show Cod
L A1 _sowcode |

pko_mk Index
tclLog Instrument

tclMacPkgSearch

tclPkgSetup Uninstrurrent
tc1PkgUnknown R

tcl_enwTraceProc

unknawn LI

*means the procedure is uninstrumented

F 4+ & 4+ £ 4+ %

Figure 10 The Procedures window

To narrow down the list, you can type a pattern in the text box and click Search.
The default pattern is an asterisk (“*") which lists all of the defined procedures in
the application. Pattern strings can be one or more characters and follow the search
conventions that are used with the dldb command. The matches for the string

are shown in the body of the Procedures window. This is useful for finding specific
procedures if you have large applications with many procedures. For example: if
you type “tcl*” in the text box of the Procedures window shown in Figure 10,

tclL og, tclM acPkgSearch, and all other procedures beginning with “tcl” are
displayed in the display area of the Procedures window.

TclPro Debugger 37

38

You can display both instrumented and uninstrumented procedures by selecting
Show Uninstrumented Procs. TclPro Debugger indicates that a procedureis
uninstrumented by listing the procedure preceded by an asterisk (“*”) in the
Procedures window. For more information about instrumentation, see “About
TclPro Instrumentation” on page 49.

When you select a procedure from the list, you can perform any of the following
actions on it:

Show Code
Display the code where the procedure is defined, or the body of the
procedure if the procedure is dynamically defined.

Instrument
Instrument a selected procedure.

Uninstrument
Uninstrument a selected procedure.

Using the Window Menu

Select the Widow menu to display all of the files that are open in TclPro
Debugger.

Displaying Code and Data

Chapter 3

TclPro Debugger provides several windows in which you can display and monitor
specific aspects of the application that you are debugging. These include the Watch
Variable window, and the Data Display window. For information on the
Breakpoints window, see “Viewing Breakpoints in the Breakpoints Window” on
page 34.

Watching Variables

To open the Watch Variables window, click the “W” in the tool bar of the main
window Select Vew | Watch Variables from the menubar. The Watch Variables
window is shown in Figure 11 on page 39.

The Watch Variables window displays the variable names and their values at the
stack level that is highlighted in the stack display. The values in the Watch
Variables window are updated each time the application stops and also each time
you select a new stack level in the Stack display in the main window. If a variable
name is not defined at the selected stack level, then “<No Value>" appears instead
of a value.

wéatch W aniables

Yariable: | Add

Variable I Talue | Data Dizplay

x g

Remowe

Remove Al

WIS

Figure 11 The Watch Variables window

To add a variable name to the Watch Variables window:
1) Typethe variable namein the text box of the Watch Variables window.
2) Click Add or pressthe <Return> key.

The variable name and the current value of the variable are displayed in the
large window.

You can remove aspecific variable name by selecting theline, and clicking the
Remove button, or clicking Remove All to remove all the variables.

If you select avariable and click the Data Display button, the Data Display window
appears.

The Watch Variables window is useful for observing variables in different stack
levels that have the same name. For example: suppose the following script is
stopped just before executing line 10.

proc bar {x} {

puts $x
}

proc foo {y} {
baz [expr {$y + 3}]

}

9 set x 2
10 foo $x

The stack display is shown below:

O~NO OIS WNPE

TclPro Debugger

39

40

Chapter 3

0 gl obal

0 source sanple.tcl

1 proc fooy

2 proc bar x
If you are watching the variable named x, you will see the value change asyou
select different stack levels. Atlevel 2, x hasthevalue5. Atlevel 1, xisnot defined,
s0 “<No Value>" is displayed. At level 8,has the value 2.

Displaying Data

To open the Data Display window, double-click a variable in the Variable display
in the main window or double-click a variable in the Watch Variable window, or
select \lew | Data Display from the menubar. The Data Display window is shown
in Figure 12 on page 41.

The Data Display allows you to see the full unabbreviated value of a variable,
which can be helpful if you are looking at long strings.

There are two ways to change which variable is displayed in the Watch Variable
window:

* Double-click avariablein either the Variable display or the Watch Variable
window.

* Typethe variable name in the text entry box and type <Return> or click the
Inspect button.

The variable is linked to the stack level that is highlighted in the Stack display at

the time the variable is entered in the Data Display window. Once the variable is

entered, changing the stack level inthe Stack display will not affect the value of the
variable. The value that is displayed for the variable is updated each time the
application stops. If “<No Value>" appears, it means that either the variable was
unset or the stack level attached to the variable has returned. Like variable
breakpoints, a variable in the Data Display is associated with a location in memory.
Once “<No Value>" appears, the previous memory location is no longer reserved
for that particular variable, so “<No Value>" for the variable will reappear.

Data Display E

Text box for changing
the variable to inspect :
“ariakle: |resu|t Inspect

Stack level is linked

tothevariable | w/arighle Name: result Stack Level: 2
Drop-down menu

for choosing View As: |Line Wiap _|vJ
display options

20 j
Display area
< | »]

Figure 12 The Data Display window

Use the drop-down View As menu to select the format for the variables. TclPro
Debugger attempts to match the display to the variable type, for example, if the
variableis scalar, it will display with linewraps, and if it isan array, it will display
as an array. You can view the variable with the following formats:

Linewrap Wrapthelinewhen it exceedsthelength of the display window, which
is the default display for scalar variables.

Raw data Does not modify the display.

List TclPro Debugger treats the variable value as a Tcl list, extracts the
elements of thelist, and displays each element on a separate line.
Array Each element is displayed as a separate item with a name and value.

Note Ordered lists can be displayed as arrays.

Manipulating Data

To open the Eval console, click the “E” in the tool bar or sel@wwVEval Console
from the menubar. The Eval console is shown in Figure 13 on page 42.

Using the Eval console, you can invoke commands in an application any time that
the application is stopped. If you see something that is wrong or missing while
debugging a program, you can type the missing information in the Eval console and
it is immediately evaluated in the application.

TclPro Debugger 41

42

Tip

Ewval Console

Stack Level: IEI - |

9 % =et x 10 —
10
100% |

Figure 13 The Eval console

Using the Eval console, you can evaluate commands at any visible stack level. You
can also cal procedures from the Eval Console. You can choose among the
available stack levels using the Stack Level drop-down arrow. Choosing the stack
level is useful for setting global variables at level 0 and for calling procedures at
variouslevels. When the Eval Consolefirst appears, the default level isthe deepest
level in the stack display.

You can also change the stack level in the Eval console by typing <Ctrl+Plus> to
move to the next higher level stack frame or <Ctrl+Minus> to move to the next
lower stack frame.

Error handling

Chapter 3

TclPro Debugger detectsall errorsinthe application including runtime and parsing
errors.

Parsing Error Handling

A parsing error isan error that is caused by code that isnot syntactically valid. An
example of aparsing error isascript that ismissing aclose brace. TclPro Debugger
detects parsing errors during instrumentation, whenever afileis sourced or a
procedure is created dynamically by the application.

When a parsing error occurs, TclPro Debugger cannot understand the script's
control flow following the error, and cannot continue instrumenting the code.
TclPro Debugger displays a dialog box in which you choose to either quit the
application or continue the application with the partially instrumented script. If you
choose to continue debugging the partially instrumented script, the same error
appears as a runtime error if the code is executed. See “About TclPro
Instrumentation” on page 49 for details on the implications of continuing despite
the parsing error.

Runtime Error Handling

An example of auntimeerror is an attempt to read a non-existent variable. TclPro
Debugger detects all runtime errors, including both those caught and those not
caught by a Tcl script. How TclPro Debugger handles runtime errors depends on
the Error settings that you specify for your project. (See “Changing Project Error
Settings” on page 25 for more information on specifying your project Error
settings.) If you have set:

Always Stop on Errors
TclPro Debugger notifies you each time it encounters an error in the
script.

Only Stop on Uncaught Errors
TclPro Debugger notifies you only when it encounters an error not
caught by the script.

Never Stop on Errors
TclPro Debugger does not notify you when it encounters errors in the
application. Your application handles errors in the same manner as it
would if it were not running under TclPro Debugger.

When TclPro Debugger detects a runtime error in accordance with the rules above,
it stops execution of your application and displays a dialog box such as the one
shown in Figure 14.

TclPro Debugger 43

Tel Errar B

An error occurred while running the script.
This error may not be caught by the application and will
probablky terminate the scriptunless itis suppressed.

invalid command name "neuwMessage”
while executing

"newlMessage Sw "Smove to undo,

$jumped coords™"

Deliver Error Suppress Error

Figure 14 The TclPro Debugger Tcl Error Dialog

You have the choice of either delivering the error or suppressing the error:

Deliver Error
The application continues and the error is handled in the normal
fashion for Tcl. Clicking this button is equivalent to having run the
script without any debugger interference.

Suppress Error
TclPro Debugger suppresses the error, and continues executing the
application. The behavior in thiscase is asif no error had occurred.
You can continue to run or step through the application.

While your application is stopped, you can examine your Tcl script, view and
change variable values, set breakpoints, and use all the other features of TclPro
Debugger. If you single-step or run your application without first selecting whether
to deliver or suppress the error, TclPro Debugger delivers the error if your
application catches it and suppressesit otherwise.

Setting Preferences

You can specify preferences to customize TclPro Debugger. To modify
Preferences, select Edit | Preferences from the menubar. Click the tabs to select
your preferencesfor Appearance, Windows, Instrumentation, and Startup and Exit,
and Browser preferences.

Chapter 3

Appearance Preferences
The Appearance Preference tab is shown in Figure 15.

Appearance | YWindows | Startup & Exitl Brnwserl

— Fort

Type ICDurier Mew

= T

— Colors

Highlight | HighlightDnEerr- Highlight On Result |

Q. Cancel Apply

Figure 15 The Appearance Preference Tab

You can choose the following Appearance preferences:

Type
Size
Tip
Note
Highlight

The name of the font used to display code, stack frames, variables, etc.
The size of the font used to display code, stack frames, variables, etc.

TclPro Debugger attempts to optimize your font and size preferences.
If you type afont that is unavailable, TclPro Debugger finds the most
similar font on your computer and substitutesit. Scriptics recommends
that you only use fixed-width fonts.

Small font sizes can cause misalignment of the symbolsin the Code
Bar and their corresponding lines of code. If you experience problems,
increase the font size.

The color TclPro Debugger uses when it stopsto highlight the next
command it will execute

Highlight On Error

The color TclPro Debugger uses to highlight acommand in which it
finds an error

TclPro Debugger

45

46

Appearance | Windows | Startup & Exitl Brnwserl

— Ewal Console

Screen Buffe

Highlight On Result
Thecolor TclPro Debugger usesto highlight codeit just executed after
a Step To Result

After changing the Appearance tab settings, click the OK button to save your
choices and close the Preferences window, the Cancel button to cancel your
choices and close the Preferences window, or the Apply button to apply your
choices and keep the Preferences window open.

Window Preferences
The Windows Preference tab is shown in Figure 16.

r Size I 300 History Buffer Size I B4

— Code Window

Tab Size I a

I, Cancel Apply

Chapter 3

Figure 16 The Windows Preference Tab

You can modify the following Windows preferences:

Screen Buffer Size
The number of lines of output retained by the Eval console

History Buffer Size
The number of commands retained in the Eval console history buffer

Tab Size
The number of characters between each tab stop.

Appearance | Windows | Startup & Exitl Eiru:uwserl

— Startup

After changing the Windows tab settings, click the OK button to save your choices
and close the Preferences window, the Cancel button to cancel your choices and
close the Preferences window, or the Apply button to apply your choices and keep
the Preferences window open.

Startup and Exit Preferences
The Startup & Exit Preference tab is shown in Figure 17.

¥ Reload the previous project on stadup.

— Bt

& On exit, ask if the application should be killed. ¥ ‘Warn before killing the application.
 On exit, always kill the application.

" On exit, always leave the application running.

K Cancel Apply

Figure 17 The Startup & Exit Preference Tab

The Startup preference controls TcIPro Debugger’s behavior when you start the
debugger:
Reload the Previous Project on Startup

TclPro Debugger reloads the project you had open when you last
exited TclPro Debugger

The Exit preferences control TclPro Debugger’s behavior when you quit the
debugger:
On exit, ask if the application should be killed
TclPro Debugger prompts you to kill the application when you exit the
debugger

TclPro Debugger 47

48

Appearance | Windows | Startup & Exitl Brnwserl

— Browser

On exit, awayskill the application
TclPro Debugger aways kills the application when you exit the
debugger

On exit, dways leave the application running
TclPro Debugger leaves the application running when you exit the
debugger

Warn Before Killing the Application
TclPro Debugger always prompts you when you are about to perform
an action that would kill the application

After changing the Startup & Exit tab settings, click the OK button to save your
choices and close the Preferences window, the Cancel button to cancel your
choices and close the Preferences window, or the Apply button to apply your
choices and keep the Preferences window open.

Browser Preferences
The Browser Preference tab is shown in Figure 18.

& LUse default browser.

" Choose an alternative browser.

Comrmand Line:

Q. Cancel Apply

Chapter 3

Figure 18 The Browser Preference Tab

TclPro Debugger uses a Web browser to display the Scriptics Web site when you
click on the Scriptics URL in the About TclPro Debugger window and to display
online help on Unix systems.

You can select one of the following choices for your Web browser with TclPro:

Use the default browser
TclPro Debugger uses the default browser on your system. (This
option isn’t available on Unix systems.)

Choose an alternate browser
On Windows, you see the pathname of your default browser. You can
enter the pathname of an alternate browser here.

On Unix, TclPro Debugger displays a drop-down list with default
command line arguments for launching Netscape and Internet
Explorer. For these options to work, the executable for the browser
you select must appear in one of the directories in your PATH
environment variable. Alternatively, you can enter the pathname of a
browser, including any flags necessary so that TclPro Debugger can
launch the browser with a given URL (for example,
{usr/local/bin/netscape -no-about-splash)

After changing the Browser tab settings, click the OK button to save your choices
and close the Preferences window, the Cancel button to cancel your choices and
close the Preferences window, or the Apply button to apply your choices and keep
the Preferences window open.

About TclPro Instrumentation

When you begin running an application, TclPro Debugger transparently processes
the specified Tcl/Tk script. It modifies the code to enable communication between
TclPro Debugger and the script. This process is knovimsassmentation. TclPro
Debugger launches the application with the instrumented script in place of the
original script. Scriptics designed the instrumentation to be as unobtrusive as
possible. However, you can expect some slowdown in applications as a result of
the instrumentation.

You can specify which procedures to instrument in the Procedures window; see
“Finding Procedures” on page 37. You can also specify files and classes of
procedures to leave uninstrumented; see “Changing Project Instrumentation
Settings” on page 23. In addition to the files and procedures that you tell TclPro
Debugger not to instrument, there are also some instances of dynamically created
code that TclPro Debugger cannot instrument. These iniflstitements with
computed bodies and callbacks from Tcl commawésen the application is
executing uninstrumented code, it cannot communicate with TclPro Debugger. If
you want to interrupt or to add a breakpoint to the script while uninstrumented code
is executing, the application cannot respond until it reaches the next instrumented
statement.

TclPro Debugger 49

50

TclPro Debugger indicates that a procedure or file is uninstrumented by listing the
procedure or file name preceded by an asterisk (“*”) in the Procedures window,
Windows menu, and the Code display status bar.

Debugging Remote, Embedded, and CGI Applications

Important

Chapter 3

In some cases, TclPro Debugger can't directly launch your application. Some
examples where this is often true include CGl applications, embedded applications,
and applications that must run on a system other than your debugging system.

For applications such as these, TclPro Debugger supportte debugging. In

remote debugging sessions, your application starts as it normally would and then
establishes a special connection to TclPro Debugger. You can then use TclPro
Debugger to perform all debugging tasks as you would in a local debugging
session.

To debug a remote application, you must perform the following steps:
e Modify your Tcl script to work with TclPro Debugger.
e Create aremote debugging project in TclPro Debugger.

e Launch your application as you normally would. Your application establishes
aconnection to TclPro Debugger and you can begin your debugging session.

The following sections describe how to perform these tasks.

Modifying a Tcl Script for Remote Debugging

For your application to establish and maintain communication with TclPro

Debugger, you must modify your application to sour ce the prodebug.tcl file, which

is contained in the platform-specific bin subdirectory of your TclPro installation

(for example, C:\Program Files\TclProl.2\win32-ix386\bin\prodebug.tcl). Then,

your script must call the debugger _init procedure and, optionally, the

debugger _eval and debugger _break procedures. You can modify your script in

one of two ways: create a new “wrapper” script that sources your existing script, or
modify your existing script.

If your application and TclPro Debugger are not running on the same system, and
your script sources another script, you can debug that script only if the script also
exists on your local system with the same absolute pathname.

Remote Debugging Procedures

Thedebugger_init procedure makes the initial connection with TclPro Debugger:

debugger _init ?host? ?port?

The host is the name of the machine on which TclPro Debugger isrunning. The

host defaults to “localhost.” Thaort is the TCP port that TclPro Debugger uses to
communicate with the application. The port defaults to 2576 debagger _init
procedure contacts the debugger instance running on the specified host via the
specified port. Thelebugger _init procedure also automatically instruments any
Tcl scripts sourced by the script.

Thedebugger init procedure returns 1 if it successfully connects to TclPro
Debugger; otherwise it returns 0. You must dabugger _init before calling
debugger_eval ordebugger break.

Note If your embedded application uses multiple subsequent interpreters, that is, it quits
and restarts a Tcl interpreter more than once, each main Tcl script is treated as an
individual application and must make a new connection with TclPro Debugger.

Thedebugger eval procedure instruments Tcl code so TclPro Debugger can
control the application whilscript is evaluated:

debugger _eval script
You can wrap your whole script inside tthebugger _eval block. Any scripts that
you sour ce within adebugger_eval block are also instrumented.

Note Thedebugger_eval procedure behaves like tbeal command if your application
is not currently connected to TclPro Debugger.

Thedebugger_break procedure causes your remote application to break in much
the same way as if it had encountered a breakpoint:

debugger _break ?nessage?
Thedebugger break procedure is useful for debugging dynamic code. The only
difference between the behaviorddbugger break and a line breakpoint is that
debugger break evaluates thmessage argument, if it is present, before breaking.
When your script encountergdabugger break procedure, TclPro Debugger
displays a dialog box. If thexessage argument is present and not empty, TclPro
Debugger displays the message string in the dialog box.

Note Thedebugger break procedure has no effect if your application is not currently
connected to TclPro Debugger.

Creating a “Wrapper” Script for Remote Debugging

If you decide to create a new script, that script should sour ce the prodebug.tcl file,
call debugger _init, and then sour ce the file that was originally the main script of
your application. This new script becomes the main script of your application.
Your new main script may look like the following:

TclPro Debugger 51

Set TclProDirectory to the platformspecific bin

subdirectory of your TclPro distribution

set TclProDirectory "/usr/local/Tcl Prol.2/sol aris-sparc/bin"
source [file join $Tcl ProDirectory prodebug.tcl]

debugger _init $host $port

source $nyOri gi nal Mai nScri pt

Modifying an Existing Script for Remote Debugging

If you decide to modify your existing script, you must change it to sour ce the
prodebug.tcl file and call the debugger _init procedure. Once debugger _init is
called, other files sourced by the script will automatically be instrumented. If you
want TclPro Debugger to instrument code in the file that calls debugger _init, the
code that you wish to instrument must be encapsulated in acall to the
debugger_eval procedure. See “About TclPro Instrumentation” on page 49 for
more details on instrumentation.

Your new main script may look like the following:

Set TclProDirectory to the platformspecific bin

subdi rectory of your TclPro distribution

set TclProDirectory "/usr/local/Tcl Prol.2/sol aris-sparc/bin"
source [file join $Tcl ProDirectory prodebug.tcl]

debugger _init $host

debugger _eval {

... your code goes here ...

}

Creating a Remote Debugging Project

Before you begin debugging a remote application, you must create a remote
debugging project in TclPro Debugger. This causes TclPro Debugger to listen on
a specified port for your application to establish a connection.

To create a remote debugging project:
1) Create a new project as described in “Creating a New Project” on page 17.

2) Select the Remote Debugging option of the Project Application Settings Tab.
See “Changing Project Application Settings” on page 20.

3) Enter the port number you specified in tiebugger _init procedure in the
Listen For Remote Connection On Port Number field. The default port is 2576.

Chapter 3

Launching your Remote Application

After you have modified your application for remote debugging and created a
remote debugging project in TclPro Debugger, you can launch your remote
application for debugging.

Simply run your application as you would normally. Your application stops just
beforeit evaluates the first command in the debugger _eval script, or thefirst time
it sources afile, whichever comesfirst. TclPro Debugger displaysyour scriptinits
Main window, and you can begin debugging as you would alocal application.

Viewing Connection Status

You can view the connection status while debugging by selecting View |
Connection Status from the menubar. TclPro Debugger displays the Connection
Status window shown in Figure 19.

% Connection Status =] E3

Status of connection to debugged application.

Projecttype: Local
Connect status: Connected
Listening port: nfa
Local socketinfo: 127.0.0.1 localhost 17000
Feersocketinfa: 127.0.0.7 localhost 1231

Close |

Figure 19 The Connection Status Window

The Connection Status Window displays the following information:

Project Type
Whether the project isloca or remote.

Connection Status
Whether or not the application has established a connection to TclPro
Debugger.

Listening Port
The port number on which TclPro Debugger listens for a connection
from aremote application. You can set this port for remote debugging

TclPro Debugger 53

54

in the Listen For Remote Connection On Port Number field of the
Project Application Settings Tab. See “Changing Project Application
Settings” on page 20. The default port is 2576.

Local Socket Info
The IP address and socket number on the system running TclPro
Debugger used for communication with a remote application. This is
created only after a connection is established.

Peer Socket Info
The IP address and socket number on the system running the remote
application used for communication with TclPro Debugger. This is
created only after a connection is established.

Using Custom Tcl Interpreters with TclPro Debugger

#!/ bi n/ sh
#\

TclPro Debugger works properly with most custom Tcl interpreters. However, to
properly instrument and execute your application, TclPro Debugger must be able
to pass debugging information to your Tcl script as command-line arguments.
Therefore, if your interpreter doesn't accept as its first command-line argument a
Tcl script to execute or if it doesn't pass subsequent command-line arguments to
the script using the standaarfjc andargv Tcl variables, then you must take special
steps to use your interpreter with TclPro Debugger.

First, you must create a special Tcl wrapper script. The listing below shows a
sample implementation of such a script for Unix systems. To use it, you must either
change the line setting tleendPrefix variable, replacing “tclsh” with whatever
command you need to run your Tcl interpreter, or you must set your
PRODEBUG_TCLSH environment variable to contain that command.

exec protclsh80 $0 ${1+"$@}

if {$argc < 1} {
puts stderr "wong # args: |ocation of appLaunch.tcl is required"

}

if {[info exists env(PRODEBUG TCLSH)]} {
set cndPrefix "$env(PRODEBUG TCLSH)"

} else {

set crmdPrefix "tclsh"

}

set custonftScriptName "/tnp/launchScript.[pid]"
set appLaunchPath [lindex $argv 0]

Chapter 3

set f [open $custonScri pt Name w
puts $f "

file delete -force $custontcri pt Nane
set argv0O [list $appLaunchPat h]

set argv [list [lIrange $argv 1 end]]
set argc \[llength \$argv\]

source \ $argv0

cl ose $f

catch {

}

eval exec $cndPrefix [list $custonScriptName 2>@tderr >@tdout <@tdin]

Then, to debug your application select the wrapper script as your interpreter (that
is, type the path and name of thewrapper script in the Interpreter field of the Project
Application Settings Tab). Specify the script and any script arguments for your
application in the Project Application Settings Tab as normal.

TclPro Debugger

55

56

Chapter 3

Chapter 4
TclPro Checker

TclPro Checker helps you find errorsin a Tcl script quickly before you run the
script. Using TclPro Checker can help you find problems in new scripts, in scripts
from older versions of Tcl/Tk, or in scripts that you have ported from another
operating system. You can use TclPro Checker to assess the quality of a body of
Tcl code or to quickly examine large Tcl files. TclPro Checker also warns about
potential incompatibilitiesto help you upgrade applicationsto the latest rel eases of
Tcl, Tk, and [incr Tcl].

Supported Tcl Versions

By default, TclPro Checker verifies scriptswritten for Tcl version 8.0. You can use
TclPro Checker with the packages and versions of Tcl, Tk, and [incr Tcl] listed in
Table 1.

Table 1 Packages and Version Numbers

Tcl Tk [incr Tcl]
7.3 3.6, 15

74 4.0 20

75 4.1 21

7.6 4.2 22

8.0 (default) 8.0 (default) 3.0 (default)

Using TclPro Checker

To check afile using TclPro Checker, type the procheck command with afile
name, for example:

procheck foo.tcl

57

58

If your code contains errors or warnings, TclPro Checker provides feedback by
default that |ooks similar to this:

Product information Version information

TC|P¥0 Checker -- Version 1.2.0

Copyright (C) Scriptics Corp. 1998-1999 All rights reserved.
foo.tcl

foo.tcl:24 (nonLiteral Expr) jexpression is not a literal value|
expr ?n * $result

Error indicator MessagelD Explanation

File name and line number

You can specify multiple file names on the same line, for example:
procheck fool.tcl foo2.tcl

To check all the files in a directory, use the asterisk (“*") with.ttidfile
extension, for example:

procheck *.tcl
If you don't specify any filegprocheck expects input from standard input.

For other examples of output, s&xamples of Output from TclPro Checker” on
page 63

One-Pass and Two-Pass Checking

Chapter 4

By default, TcIPro Checker performs a two-pass scan of your scripts. The first pass
accumulates information about user-defined procedures and user-defined
[incr Tcl] classes. This information includes:

e the number of arguments for procedure definitions and [incr Tcl] constructor
definitions

e the scope of procedures (namespace, protection level)

e redefinition of procedures using the Tcl rename command

e imports and exports of namespace procedures

* class structures of inherited [incr Tcl] classes

The second pass uses this information to provide warnings and error messages
concerning the usage of the user-defined procedures, including:

* calling a procedure with the wrong number of arguments
e caling an[incr Tcl] class constructor with the wrong number of arguments

* redefining existing procedures, by either the rename command or by defining
aprocedure or class with and identical name

e caling [incr Tcl] class procedures out of scope
» calling class procedures with invalid permissions (private or protected)

TclPro Checker properly handles all variations of user-defined proceduresin
namespaces.

Note TclPro Checker does not currently check the following:

* variable usage (for example, attempting to use the value of an undefined
variable or attempting to perform math operations on alist variable)

e [incr Tcl] class methods
e argument types passed to user-defined procedures
e redefinition of built-in Tcl, Tk, or [incr Tcl] commands

Also, if you define a procedure multiple times, TclPro Checker generates a usage

error when calling that procedure only if the call fails to match any of procedure
definitions. Because of the dynamic nature of procedure definition and

redefinition, TclPro Checker can’'t determine which argument list is currently valid
for the given procedure call.

TclPro Checker does not automatically scan scripts that are sourced by your script.
Therefore, you must include on theocheck command line all files that define
user procedures and classes used by your script.

For a quicker but less comprehensive check of your scripts, you can use the
procheck -onepass option to force TclPro Checker to perform a one-pass scan of
your scripts. A one-pass scan does not check for any of the potential errors or
misuses of user-defined procedures and [incr Tcl] classes described above.

You can also use thar ocheck -verbose option to get a list of all commands used
by the scripts you specify that are not defined in that collection of scripts. If you
don’t include theverbose option, TclPro Checker doesn’t warn you about
undefined procedures.

TclPro Checker Messages

TclPro Checker examines your code and displays a message describing each error
or potential mistake that it detects. Depending on the type of script that you are
checking, you may want to limit the types of problems that it reports rather than see
the entire output from TclPro Checker.

TclPro Checker 59

60

Chapter 4

Each message generated by TclPro Checker liststhefile and the line number where

the error or warning occurred, a messagel D, a description of the error or warning,

and an error indicator, which is a caret (“") that indicates the code fragment in
which the error occurred. The messagelD is the word in parentheses just after the
file and line number information. It provides information about the type of problem
that generated the error or warning, which are listed below. Using TclPro Checker
you can specify types of errors and warning that you want to suppress, which
allows you to focus to more strategic errors or warnings. TclPro Checker provides
suggestions, when possible, on ways to fix the problems that it indicates in the error
or warning text. In the example in Figure 20, Checker indicates that there is a
missing close brace.

Filename and line ,
number with error ~ MessagelD Error or warning text

If00.tc| 1163 | |(parse) ! |parse error: missing close brace

proc checkWord { tokens index {
N

L=

Error indicator

Figure 20 Anatomy of a TclPro Checker Message

You can limit output in the following ways:

e Limiting errors and warnings by type: an error is either a parsing or syntax
error, and warnings indicate possible problems with platform portability,
upgrade, performance, or usage issues. Warnings indicate code fragments
where there may be an error, but the code fragment may be appropriate in its
context.

* Specifying groups of messages to suppress, for example, you might want to
suppress messages related to usage warnings.

Controlling Feedback on Errors and Warnings
Messages are grouped into two types of errors and four types of warnings.

Parsing Errors

TclPro Checker generates a parsing error when it encounters commands that
cannot be parsed by the Tcl parser, such as amissing curly brace or badly formed
list. For example: thefollowing code generates aparsing error becauseitismissing
aquote at the end of the puts statement:

proc foo {} {
puts "hello

}
In cases like this, TclPro Checker attempts to move past the procedure where the
parsing error was found, and continue to check additional commands after the
parsing error.

Syntax Errors

TclPro Checker generates a syntax error when it encounters any errors that will
cause your script to fail, such as the wrong number of arguments or invalid types
or options. For example, the following code generates a syntax error is because the
wrong humber of arguments are supplied:

set x 3 45
Only commands defined in Tcl, Tk, or [incr Tcl] are checked for syntax errors.

Platform Portability Warnings

TclPro Checker generates warnings when a command is used that may be
nonportable between various platforms.

set file [open $dir/$file r]
In this example, the filejoin command should be used so that the correct directory
and file separator is used, that is, “\” on Windows and “/” on Unix.

Suggestion for Upgrading

Upgrade warnings indicate features that have changed in a later version.

nanespace foo {
variable bar 0

}
When [incr Tcl] was upgraded to 3.0, it inherited the Tcl namespace command.
The syntax of defining a namespace has changed from older versions of [incr Tcl]
because of this. With earlier versions of [incr Tcl], correct usage was:

nanespace foo {body}
With [incr Tcl] 3.0, correct usage is shown below:

nanespace eval foo {body}

TclPro Checker 61

62

Chapter 4

Performance Warnings
TclPro Checker generates a warning when a performance-optimization
opportunity is detected. For example: if your code included:

set x [expr $x * $y]
it would generate a performance warning because performance isimproved with
curly braces, as shown below:

set x [expr {$x * $y}]

Usage Warnings

TclPro Checker generates a warning when a command is used in a manner that is
possibly incorrect but is still syntactically legal. For example, the incr command
expects avalue and not a reference below:

i ncr $counter

Warning and Error Flags

You can control which types of errors and warnings are listed by TclPro Checker
by specifying one of the -W flags on the TclPro Checker command line. Table 2
shows the flags that control the level of messages for warning and errors.

Table 2 TclPro Checker Warning and Error Flags

Flag Description

-W1 Display parsing and syntax errors.

-W2 Display parsing and syntax errors, and usage warnings.

-W3 Display parsing and syntax errors, portability warnings, upgrade

warnings, performance warnings, and usage warnings.

-Wall Displays all messages and errors. Thisisthe default.

Asan example, the first time you check your script you might want to display only
errors but not warnings. You might first run TclPro Checker with the -W 1 flag,
which only displays parsing and syntax errors, but does not display any warnings.
After examining the output from running with the -W 1 flag and fixing any errors
that were reported, you might run with the -W 2 flag to see avariety of additional
warnings.

Suppressing Specific Messages

Each warning or error message has an associated messagel D. You can filter out the
display specific warnings or errors by specifying -suppressto prevent that type of
messagel D from being displayed. You might want to filter out certain messages
because they point out items that do not apply to the script that you are checking,
for example: if you are porting a script to only one platform, you do not care
whether your script has portability issues.

In the following example, the messagelD is “nonPortCmd”:

foo:tcl:53 (nonPortCmd) use of non-portable command

regi stry val ues $key
N

You can suppress this type of message by specifguppress nonPortCmd on
the command line, for example:

procheck -suppress nonPortcnd foo.tcl

Tip You can suppress multiple messagelD types at the same time by specifying
-suppr ess with the multiple instances of messagelDs in quotation marks, for
example:

procheck -suppress "nonLiteral Expr badOpti on" foo.tcl
You can also specifysuppress with the messagelD for each instance of the
message ID that you want to filter, for example:

procheck -suppress nonLiteral Expr -suppress badOption foo.tcl

For a complete list of all the messagelDs, see Appendix B, “TclPro Checker
Messages.”

Examples of Output from TclPro Checker

To provide examples of TclPro Checker output, here is the sample &uri,
that is checked in the examples that follow:

TclPro Checker

64

foo.tcl

set $y 3
set x [expr $y + 5]
set Xy z

if {$x > 6}
{

}

puts out "world"

proc foo {args bar} {

puts "hello, world"

}
proc p {{a 0} b} {

}

puts -nonew "hell 0"

Specifying Verbose Feedback

You can specify the -ver bose argument when you run TclPro Checker. When you
specify -verbose, TclPro Checker displaysthe error information in three lines and
the version and summary information when TclPro Checker exits, for example:

procheck -verbose foo.tcl
The feedback from the command line with -ver bose specified looks similar to this:

foo.tcl:1 (warnVarRef) variable reference used where vari abl e nane expected

set $y 3
N

foo.tcl:3 (nonLiteral Expr) expression is not a literal value

expr $y + 5

foo.tcl:5 (numArgs) wong # args

set Xy z
N

foo.tcl:7 (noScript) mssing a script

if {$x > 6}

foo.tcl:12 (argAfterArgs) argunent specified after

proc foo {args bar} {
N

"args"

foo.tcl:16 (nonDef AfterDef) non-default arg specified after default
proc p {{a 0} b} {
N

Chapter 4

Packages Checked | Version

tk

[incr Tcl]

Nunber of Errors: 2
Nunber of Warnings: 4

Specifying Quiet Feedback

You can specify the -quiet argument when you run TclPro Checker. When you
specify -quiet, TclPro Checker displays the basic error information on one line
with the messagel D, instead of the three-line output that includes the code body
and the error indicator, for example:

procheck -quiet foo.tcl
The output with the -quiet argument appears as follows:

Tcl Pro Checker -- Version 1.2.0
Copyright (C) Scriptics Corp. 1998-1999. Al rights reserved.

f 0o.
f 0o.
f 0o.
f oo.
f oo.
f oo.

tcl:
tcl:
tcl:
tcl:
tcl:
tcl:

1 (warnVarRef) variable reference used where variabl e name expected
3 (nonLiteral Expr) expression is not a literal value

5 (numArgs) wong # args

7 (noScript) missing a script

12 (argAfterArgs) argunent specified after "args"

16 (nonDef AfterDef) non-default arg specified after default

Specifying Use of Older Versions

You can run TclPro Checker and specify -use with an older version of Tcl or Tk.
To check for older versions of any package, use the -use option and specify the
version to check. For example, to check afile written for Tcl7.5/Tk4.1, type.
procheck -use "tcl7.5" -use "tk4.1" foo.tcl
When you specify older versions of Tcl/Tk, the versions of Tcl and Tk must paired
so that the each version of Tcl is matched with the version of Tk that was released
along with it. The following example includes incompatible versions and should
not be used:
procheck -use "tcl7.5" -use "tk3.6" foo.tcl
The correct version pair is.

procheck -use "tcl7.5" -use "tk4.1" foo.tcl

TclPro Checker 65

A listing of compatible versions is shown in Table 1, “Packages and Version
Numbers” on page 57.

Tip Tk and [incr Tcl] are checkeahly if you explicitly specify them on the command
line with -use option. If you do not specify a version for Tk or [incr Tcl], the
versions default to 8.0 and 3.0 respectively.

Error Checking

The command line in following example reque$tsl error checking, which
includes only parsing and syntax errors:

procheck -W foo.tcl
The feedback from the command line wAti 1 specified looks similar to this:

Tcl Pro Checker -- Version 1.2.0
Copyright (C) Scriptics Corp. 1998-1999. Al rights reserved.

foo.tcl

foo.tcl:5 (numArgs) wong # args
set Xy z

N

foo.tcl:7 (noScript) mssing a script
if {$x > 6}

Error and Warning Checking

The command line in following example requeMt& error checking, which
includes parsing errors, syntax errors, upgrade warnings, and performance
warnings.

procheck -W2 foo.tcl
The feedback from the command line withi 2 specified looks similar to this:

Tcl Pro Checker -- Version 1.2.0
Copyright (C) Scriptics Corp. 1998-1999. Al rights reserved.

foo.tcl
foo.tcl:1 (warnVarRef) variable reference used where variabl e nane expected
set $y 3

N

foo.tcl:5 (numArgs) wong # args
set Xy z
N

foo.tcl:7 (noScript) mssing a script
if {$x > 6}

N

Chapter 4

Checking for All Warnings and Errors

The command line in following exampl e requests -W 3 error checking, which
includes parsing errors, syntax errors, upgrade, portability, and performance
warnings.

procheck -W8 foo.tcl
The feedback from the command line with -W 3 specified looks similar to this:

Tcl Pro Checker -- Version 1.2.0
Copyright (C) Scriptics Corp. 1998-1999. Al rights reserved.

foo.tcl
foo.tcl:1 (warnVarRef) variable reference used where variabl e nane expected
set $y 3

N

foo.tcl:3 (nonLiteral Expr) expression is not a literal value
expr $y + 5
N

foo.tcl:5 (numArgs) wong # args
set Xy z
N

foo.tcl:7 (noScript) mssing a script
if {$x > 6}
N

foo.tcl:12 (argAfterArgs) argunent specified after "args"

proc foo {args bar} {
AN

foo.tcl:16 (nonDef AfterDef) non-default arg specified after default
proc p {{a 0} b} {

TclPro Checker

67

68

Chapter 4

Chapter 5
TclPro Compiler

Traditionally Tcl code has been distributed in source form. This had the advantage

of being simpleto use and allowing users to customize the code, but it had some
disadvantages: you can't keep proprietary information secret and it may be harder
to support users if they modify the code. TcIPro Compiler eliminates these
disadvantages by translating the Tcl scripts into bytecode format. You can
distribute bytecode files to users to protect your intellectual property and simplify
support.

Supported Tcl Versions

Overview

You must use Tcl/Tk Version 8.0.3 or later to load programs compiled with TclPro
Compiler. Earlier versions are not supported.

Tcl code was traditionally interpreted on an as-needed basis. Before Tcl Version
8.0, the Tcl core did not include an internal compiler. Tcl Version 8.0 included a
compiler; however, this compiler was internal to the interpreter, and compiled
scripts could not be saved for later use. TclPro Compiler lets you compile scripts
independently of execution, then store them so you can load and execute the
bytecode file when you want to.

When you use TclPro Compiler, the bytecode file is stored as Tcl byte codes with
the default extensiotbc. For example: if you compile the scripb.tcl with

TclPro Compiler, the bytecode file is storedastbc. When you want to use the
bytecode file, you casource it without spending the time to recompitm.tcl.

You can distribute a bytecode file; this allows you to avoid shipping the Tcl source
code, thus keeping your code secure. Bytecode files can also be used with TclPro
Wrapper to create bundled applications that don’t require special installation; see
Chapter 6, “TclPro Wrapper.”

69

70

Compiling your code

Note

TclPro Compiler compiles Tcl files, and after compiling, creates an output file with
the .tbc extension. To compile a Tcl script, enter:

C. > proconp filenane.tcl
This command creates the output file filename.tbc.

You can specify multiple file names on the command line; the bytecode files will
have the same names as the input file with extension .tbc. You can also use
wildcard specificationsin the file names following the glob conventions. For
example: to compileal .tcl filesin C:\dir1, type:

C.> proconp c:\dir1*.tcl

When afileis compiled, the output fileis placed in the same directory asthe input
file, with the same name, and extension .tbc.

To rename afile while compiling it, use the -out flag to create asingle filewith a
custom name. You specify the command in the form: procomp -out newfilename
oldfilename, for example: to rename foo.tcl to bar.tst, you would type:

C.> proconp -out bar.tst foo.tcl
The -out flag can also specify adirectory, for example: the following command:

C.> proconp -out c:\dir2 c:\dirl*.tcl

generates the set of files with the same name with the .thc extension, but the files
are placedin C\:dir2.

You can only specify asingle input if the -out flag does not specify adirectory.

You can aso force TclPro Compiler to overwrite all output files that already exist
using the -for ce flag. This flag deletes the output file before running TclPro
Compiler to ensure that the compilation does not fail because of permission errors.
Because TclPro Compiler creates the output file with the same permissions as the
input file, the .thc file generated from aread-only .tcl fileis aso read-only. Asa
result, recompiling aread-only file will fail unless you specify the -for ce flag.

Bytecode Files

Chapter 5

TclPro Compiler creates an internal representation of the Tcl script using the Tcl
bytecode compiler that is built into the Tcl core. It performs additional
computations, and then emitsarepresentation of the bytecodefileto the output file.
The output file itself isasimple Tcl script that loads the bytecode run-time
package, tbcload, and then invokes a command in that package to load and run the
bytecodefiles.

Bytecode files arejust Tcl scripts. This allows you to use bytecodes anywhere you
would use Tcl scripts. For example: you can sour ce bytecode files. You can store
a.tbc scriptinaTcl variable, for example, by reading the .tbc file or reading it from
a socket and then execute it using the eval command. You can use the .tbc scripts
to drive protclsh80 or prowish80.

Prepending Prefix Text

Becausethe bytecodefileisaTcl script, there might be situations where you might
want to add some specialized setup code at the start of the script. For example, if
you want to directly execute a script file under Unix it should start with the
following lines:

#!'/ bi n/ sh

the next line restarts using protclsh80 \
exec protclsh80 "$0" "$@

See the manual page for protclsh80 for more information. By default, TclPro
Compiler preserves everything from the start of the file to the first non-blank or
non-comment line. Therefore in this example, TclPro Compiler adds these three
lines to the top of the script it generates.

You can override this default behavior with the -prefix option. controls which
prefix string is prepended to the output file. Table 3 lists the -prefix options
available.

Table 3 TclPro Compiler -prefix options

Type Function
none Do not add a prefix string.
auto Extract the prefix from the input file;

everything from the start of the file to the first
non-comment line is prepended to the output
file. (Default)

tag Extract the prefix from the input file;
everything from the start of the file to the first
occurrence of acomment line starting with the
text “Tcl::Compiler::Include” is prepended to
the output file

filename Extract the prefix text from a specified file.

See the procomp.1 manual page for more information.

TclPro Compiler

71

72

Changes in Behavior

Chapter 5

There are few differences between the behavior of bytecode files and Tcl scripts
that are not compiled. This section explains these differences.

TclPro Compiler has the following limitations:
e Only those procedures that are defined at the top level can be compiled.

* Theinfobody command on compiled procedures does not provide meaningful
information; see “Example 1: Cloning Procedures” on page 72

However, these limitation do not prevent the affected procedures from being
compiled at runtime. The contents of the bytecode file are a representation of the
internal structures of the compiled Tcl script, without the source code. Procedures
defined in the source file are compiled and their internal structures are also stored
without source code. Thus, compiled procedure bodies cannot be read or accessed
through thenfo body command. As a consequence, you cannot depend on being
able to read procedure bodies in the bytecode, as shown in Example 1.

The commandhfo body on a compiled procedure cannot return the actual body of
the procedure because that information is not available. Instead, it returns a
fabricated script containing:

* A comment, which identifies this body of code as belonging to a compiled
procedure.

* Anerror command: thisisused as an aidein detecting unsupported uses of info
body, as shown in Example 1.

Example 1: Cloning Procedures

Scriptsthat use the bodies of proceduresin computationswill not work properly if
the procedures have been compiled. For example, the script below usesinfo body
to extract the body of one procedure and use it to create another procedure that is
identical.

#clone.tcl - -

proc len {a} {
return [string length $a]

proc lenl {a} [info body |en]
puts "[len {abc}] + [lenl {nonkey}]

The two calls to proc create two procedures, len and lenl, with identical bodies.
If you run the clone.tcl file, you get this output:

C.> protcl sh80 cl one.tcl
3+6

Bytecode files, however, do not contain any sources for compiled procedure
bodies, and info body returns a standard value.

If you run the clone.tbc file, you get this output:

C.> protcl sh80 cl one.tbc

called a copy of a conpiled script

whi | e executing

"error "called a copy of a conpiled script""

(procedure "lenl" line 2)

i nvoked fromwithin

"# Conpiled -- no source code avail able

error "called a copy of a conpiled script""

i nvoked fromw thin

"t bcl oad: : bceval {

Tcl Pro ByteCode 1 0 1.0 8.0

6 049 1200280666 -1-1

49

[QE<! (H&s!/HWk!' E' <! *Ki <!/’ vpv1f As! +EE<! 208X! 0f A9v4u8X! 1’ 8X! z

6=t - Om+. .."

(file "clone.tbc" line 17)
Note that the call to lenl resulted in an error being thrown; this error comes from
the script returned by the info body len command. The script throws the error
rather than failing silently to help you to detect unsupported uses of info body
command. If you need to use the body of a procedure in a computation, do not

compile that procedure.

What is and isn't Compiled

TclPro Compiler will compile most of the Tcl codein your applications, but it can't
compile absolutely every Tcl command. Where TclPro Compiler cannot compilea
command it leavesit in text form where it will be compiled at runtime when the
command isinvoked. Your bytecode files will still execute correctly even if some
commands aren't compiled, but uncompiled commands mean that part of your
source is more easily accessible to your users. This section discusses what TclPro
Compiler can and cannot compile.

Whenit compilesascript, TclPro Compiler dividesthe script upinto its component
Tcl commands and compiles each one. If TclPro Compiler can determine that the
argument to acommand isa Tcl script, then it compiles that script also. However,
if TclPro Compiler can't determine that an argument is a script, then it leaves that
argument as a string. For example, TclPro Compiler can identify all the Tcl scripts
used as arguments to standard Tcl commands, such as the bodies of if, while, and
proc commands. However, in the following script TclPro Compiler can't tell that

the argument to the do10 procedure is a script:

TclPro Compiler

73

74

proc dol0 {script} {
for {set i 1} {$i <= 10} {incr i} {
eval $script
}
}
dol0 {puts "hello"}
In general, if you write a procedure that takes a script as an argument, TclPro
Compiler can't tell that the argument is a script, rather than, say, an ordinary string
value, so it can't compile that argument. Again, the bytecode file will behave
correctly; the unknown argument will be compiled when it is actually executed.

TclPro Compiler has these limitations:

e [incr Tcl] codeis not compiled.

e Bodies of dynamically created procedures cannot be compiled.

* Procedures within the scope of namespace eval are not compiled
Thefollowing exampleillustrates the constraints with procedures and namespaces.

Example 2: Procedures used with Namespace

TclPro Compiler does not currently understand the namespace eval command
enough to know that arguments to namespace eval form a Tcl script, so that
nothing that follows namespace eval is compiled, including procedures.

Example 2 shows two procedures: a procedure defined inside a namespace eval
construct and one defined outside it. In this example, namespace eval prevents
procedure bodies from being compiled.

Exanple2.tcl--

nanmespace eval sanple {
namespace export not_conpil ed conpiled

proc not_conpiled {al a2} {
return [list $al $a2]

}

proc sanple::conpiled {al a2} {
puts "hell o"

Compiler Components

TclPro Compiler is made up of two components:

e TclPro Compiler generates abytecodefile from aTcl script containing internal
structures. See “Creating Package Indexes” on page 75.

Important

* Theruntime loader, tbcload, takes the bytecode file, loads the bytecodes into
an interpreter, and executes them. See “Distributing Bytecode Files” on
page 75.

Creating Package Indexes

After you compile Tcl package scripts intbc files, you can use the
pkg_mkIndex command to create package index files for ytharfiles. After
creating the index files, users of your package will transparently load your
bytecode files instead of the original script. Creating package index fildbdor
files requires theekg_mkindex -load tbcload option:

C. > pkg_nklndex -load thcload $dir *.tbc

You must use Tcl 8.0.5 or later to create package index files for.4pofiles.

Distributing Bytecode Files

Compiled.thc files execute package require tbcload command. Thebcload
package must be accessible via standard package loading mechanisms in order for
the .tbc file to be interpreted successfully.

Because therotclsh80 andprowish80 interpreters include thidcload package,
tbcload is found automatically when thtbc files are processed by these
interpreters. There might be situations where you are unable to or do not want to
use theorowish80 or protclsh80 interpreters, for example: if you are creating your
own Tcl/Tk extensions, or growish80 or protclsh80 are too large to distribute to
your customers.

Thetbcload package is available as a shared library (such.dd an Windows
and.so on Solaris) and as a static library. The shared library exports the two
package initialization proceduré&shcload_Init andTbcload_Safel nit, which are
required by the Tdload command. You can use the shared library as you would
any other Tcl package:

e Usepkg_mklndex to create a package index file.

e Make sure that the shared library and index file are placed in a directory
accessible to the package load mechanism.

If you follow the above guidelines, you can ship your bytecode files and the
tbcload shared library to customers; assuming that your customers are using Tcl
8.0.3 or later in their application, they can run your bytecode files.

TclPro Compiler 75

76

If you are building you own extensions, you can either use the tbcload as a
dynamically loaded Tcl package as described above, or you can add it to your
application asastatic package. Inthelatter case, your Tcl_Appl nit procedure must
contain the following code:

#i ncl ude <proTbcLoad. h>

if (Tbcload_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

}
Tcl _StaticPackage(interp, "tbcload", Thcload_Init, Tbcload_Safelnit);

Compilation Errors

TclPro Compiler provides an added check that your code is syntactically correct.
A benefit of compiling procedure bodies in advance isthat some syntax errors are
caught at compilation rather than at runtime. Because Tcl procedures in standard
Tcl code are compiled on an as-needed basis, errors are not caught until you run the
procedures. TclPro Compiler informs you of errorsthat are caught when it
compilesthefile.

This example shows an error message from a compilation. The file contains
syntactically incorrect Tcl code.
Sample for a bad file (fail.tcl):

note the m ssing close-brace
set msg {

If you run this code in an interpreter, you see the following error message:
% protcl sh80. exe fail.tc
m ssi ng cl ose-brace
whil e conpiling
"set meg { ..."
(file "fail.tcl" line 15)
If you compile, you get this output:
conpilation of "fail.tcl" failed: missing close-brace
TclPro Compiler savesthe error generated by the compilation. In this example,
TclPro Compiler displays the string “missing close-brace” and displays the error
message. You will need to fix syntax errors like this one before TclPro Compiler
can compile the script. For help in tracking down errors, see Chapter 4, “TclPro
Checker.”

Chapter 5

Chapter 6
TclPro Wrapper

An application that you write in Tcl can consist of many components, such as:
e Oneor more Tcl scripts

e Either astandard or acustom Tcl interpreter

e Thestandard Tcl libraries and support files (for example, init.tcl)

e Optionaly, the standard Tk libraries and support files

e Optionally, one or more extensionsimplemented as libraries of Tcl scripts
e Optionally, additional data files such as bitmaps

Traditionally, if you wanted to distribute an application that you wrote in Tcl, you
would need to make sure that all of thefileslisted above that your application used
were installed on your target system. You would also need to make sure that the
system was configured properly so that your application could find al of thefiles
it needed.

TclPro Wrapper can greatly simplify the process of distributing an application that

you writein Tcl. TclPro Wrapper isatool that collectsall of the filesneeded to run

a Tcl application—such as Tcl scripts, graphics and other data files, Tcl extensions,
a Tcl interpreter, and the standard Tcl and Tk libraries—into a single executable
file, which is called avrapped application. A user can then install this file

anywhere on their system and execute it without needing to install any other
packages or otherwise configure their system.

You invoke TclPro Wrapper using tipeowrap command from the command line.
For example, the following command creates an executable rmaydggp.exe that
contains awish interpreter, the standard Tcl and Tk libraries, the Tcl scripts
myApp.tcl andhelp.tcl, and several GIF images from a subdirectory naimagdes:

C.> prowap -out nyApp.exe nyApp.tcl help.tcl images*.gif
Executing the resultingyApp.exe file is equivalent to entering:

C.> wi sh nyApp. tcl

77

78

How the Internal File Archive Works in a Wrapped Application

Note

Important

Chapter 6

Theinternal file archive of awrapped application contains all Tcl scripts and data
filesthat you specify when you wrap an application. TclPro Wrapper incorporates
special support into the wrapped application that allows Tcl scriptsin the wrapped
application to accessfilesin the internal file archive just as if they were stored
individually on disk. In other words, your Tcl scriptsin awrapped application can
execute standard Tcl commands such as sour ce and open to accessfilesin the
internal file archive.

Thefilesin the internal file archive are read-only.

Whether your Tcl script attempts to access afile from the internal file archive or
from disk is determined by the following rules:

e |f you attempt to access a file using an absol ute pathname (for example,
{user/kate/images/widget.qgif), then your Tcl script always looks for the file on
your disk.

e |f you attempt to access afile using arelative pathname (for example,
images/widget2.gif), then your Tcl script first looks for the filein the internal
filearchive. If it finds afile in the archive with the exact relative pathname
specified, then it uses that file; otherwise, it looks for the file on your disk.

By default, files that you specify in your prowrap command with relative
pathnames retain that pathname in the archive. Filesthat you specify with absolute
pathnames are stripped of their drive and root directory characters. You can aso
modify this behavior by using the prowrap -relativeto argument. See
“Determining Path References in Wrapped Applications” on page 82 for
information on how pathnames for files in the internal archive of a wrapped
application are determined.

The internal file archive isn't a full-fledged filesystem. Instead, the files are stored

in the equivalent of a flat table. This has several important implications for
accessing files in the archive:

e The current working directory of your Tcl script has no relevance to the
pathname you should use to access afile in the archive. For example, if there
isafilein the archive that you wrapped with the relative pathname
interface/main.tcl, then the two source commands in the following code
fragment both access that same file in the archive:
cd /tnp
source interface/ main.tcl
This accesses the sane file as above in a wapped application

cd /usr/local/bin
source interface/min.tcl

e TheTcl glob command doesn’t match any files in the archive. For example, if
you wrap the file$mages/cardl.gif andimages/card2.gif, theglob pattern
“images/*.qif” fails to match either of these files. If you have an application
that depends on tlgtob command to produce arbitrary lists of wrapped files,
you need to rewrite it to use explicit lists of wrapped files. If you use a variable
to contain the file list, one technique you can use is to set the value of the
variable when you wrap the application usingghewr ap -code option. The
following example uses the Unix back-quote command evaluation and shell
filename expansion techniques to set the variatdgelist to contain a list of
files in the wrappedimages directory:

% prow ap nmyApp.tcl inages/*.gif \
-code "set imagelList [list ‘echo images/*.qgif]"

e |f you attempt to access afile on disk using arelative pathname, and there
happens to be afile in the archive with the same pathname, your Tcl script
accesses the filein the archive rather than the file on the disk. Thisisreferred
to asfile shadowing.

* If you attempt to access afile in the archive and afile with that pathname does
not exist, then your Tcl script attempts to access the file on disk. Thisis
referred to as fall-through.

“Changing File References” on page 94 provides guidelines for writing your
applications so that they use wrapped files and unwrapped files properly.

Wrapping an Application

This section describes how to wrap your application.

Wrapping Tcl Scripts and Data Files

To wrap one or more Tcl scripts and any associated data files (for example,
bitmaps), simply list all the files as arguments toghawvrap command. For
example, suppose you have an application consisting of a single scriggditel..
To wrap it, enter:

C.> prowap app.tcl
This creates a wrapped application cappealvrapout.exe on Windows systems or
prowrapout on Unix systems. When you run the wrapped application, itwishs
to execute youapp.tcl script. In other words, running the wrapped application in
this case is the same as executing:

C.> wish app.tcl

TclPro Wrapper 79

80

Important

Chapter 6

By default, prowrap includesin your wrapped application a customized wish Tcl
interpreter with built-in support for the [incr Tcl], [incr Tk], [incr Widgets], TclX,
and Expect (Unix systems only) extensions. “Specifying the Tcl Interpreter” on
page 80 describes how you can specify a different Tcl interpreter

If your application has several script files, just include them opitberap
command line. For example,app.tcl sources the filestils.tcl andhelp.tcl from
theaux subdirectory, you can wrap them with the following command:

C.> prowap app.tcl aux\utils.tcl aux\help.tcl

By default, your wrapped application sources the first file you list iptloarap
command. So in this example, when you execute your wrapped application, it
sourcesapp.tcl. You can change this behavior with Hsgartup option, as
described in “Specifying the Startup Tcl Script” on page 81.

You can use wildcard characters in your file names to specify multiple files. On
Unix systems, the shell you use (thasls,csh, etc.) handles wildcard expansion.
On Windows systemg@rowrap uses Tcl'gglob command to handle wildcard
expansion. (See the Tgllob reference page for details of its operation.) So, in the
above example, iftils.tcl andhelp.tcl were the onlytcl files in theaux

subdirectory, you could accomplish the same effect as above with the following
command:

C.> prowap app.tcl aux*.tcl
The files that you wrap are stored in the wrapped application’s internal file archive.
For information on how pathnames are handled for wrapped files, see Table 5,
“Resolving File Pathnames When Wrapping an Application” on page 83.

Specifying the Tcl Interpreter

By default,prowrap includes thavish Tcl interpreter, the [incr Tcl], [incr TK],

[incr Widget], TclX, and Expect (Unix only) extensions, and all of the binary
libraries and library script files neededish and the extensions. The wrapped
application is statically linked with all of the appropriate libraries, so it is not
dependent on any other files; you can distribute it as a stand-alone application.

You can specify a different interpreter or different extension options witlhisee
flag. For example, the following command includesttieh interpreter (with no
extensions) and all of the binary libraries and library script files needtalishy

C.> prowap -uses tclsh app.tcl libl.tcl lib2. tcl

The-usesflag is a convenience to simplify the use of certain standard
configurations. Differentuses options provide predetermined sets of Tcl

interpreters, extensions, and library files needed by the interpreter and extensions.

TclPro Wrapper then automatically includes all of those files with your wrapped
application. Table 4 lists the values of -uses for which TclPro Wrapper has built-
in support.

Table 4 Predefined -uses Options
Option Description

tclsh Includes the tclsh interpreter (with no extensions) and all of the Tcl
library script files. Produces a statically-linked application.

wish Includesthe wish interpreter (with no extensions) and all of the Tcl and
Tk library script files. Produces a statically-linked application.

bigtclsh Includes the tclsh Tcl interpreter, the [incr Tcl], TclX, and Expect
(Unix only) extensions, and all of thelibrary script filesneeded by tclsh
and the extensions. Produces a statically-linked application.

bigwish Includes the wish Tcl interpreter, the [incr Tcl], [incr TK],

(default) [incr Widget], TclX, and Expect (Unix only) extensions, and all of the
library script files needed by wish and the extensions. Produces a
statically-linked application.

tclsh-dynamic Includes the tclsh interpreter (with no built-in extensions), but not the
Tcl library or library script files. Produces a dynamically-linked
wrapped application, as discussed in “Creating and Distributing
Dynamically-Linked Wrapped Applications” on page 88.

wish-dynamic Includes thewish interpreter (with no built-in extensions), but not the
Tcl or Tk library or library script files. Produces a dynamically-linked
wrapped application, as discussed in “Creating and Distributing
Dynamically-Linked Wrapped Applications” on page 88.

In addition to the optionslisted in Table 4, you can also define new configurations
of your own with their own -uses values. See “Defining New -uses Options” on
page 92 for details.

Specifying the Startup Tcl Script

By default, your wrapped application sources the first file you list iptbherap
command. You can use thaartup option to specify a different file to source
when your application starts. This can be very helpful if you use wildcard
characters to specify files to wrap. For example, consider the case of wrapping
three Tcl scriptsdisplay.tcl, help.tcl, andmain.tcl, all in the same directory, and
wanting to sourcenain.tcl when you start your application. You could accomplish
this with:

TclPro Wrapper 81

82

Note

Chapter 6

C.> prowap -startup main.tcl *.tcl
You can create awrapped application that displays an interactive Tcl shell by
specifying the empty string (*”) as thgtartup argument. Upon startup, the
application doesn'sour ce any files automatically. Users can then access through
the Tcl shell any additional files that you wrap with the application. For example:

C.> prowap -uses tclsh -startup "" fool.tcl foo2.tcl foo3.tcl
A user could then run the wrapped application sowtce fool.tcl, foo2.tcl, or
foo3.tcl from the Tcl shell as desired.

Passing Arguments to the Startup Tcl Script

With theprowrap -arguments option, you can specify additional arguments to
your wrapped application that are treated just as if they were submitted to your
unwrapped application on the command line. The arguments appear inahgvTcl
variable. The arguments you specify are inserted before any command-line
arguments entered by the end user when they execute your wrapped application.

You must provide the arguments as a single argument qr dheap command

line; use proper quoting conventions of your command shell to accomplish this.
For example, the following passes the argumdmdight 50 -width 20 to the

main.tcl script:

c:>prowap main.tcl ing*.gif -argunents "-height 50 -wi dth 20"

Specifying the Name of a Wrapped Application

The default name of the wrapped application producea tyr ap is prowrapout

on Unix orprowrapout.exe on Windows. You can use thaut option to specify a
different name for the application. For example, the following creates a wrapped
application with the nameyapp.exe:

C. > prowap nyapp.tcl utils.tcl -out nyapp.exe

On Windows systemgyrowr ap automatically adds thexe extension if you omit
it from the application name.

Determining Path References in Wrapped Applications

As discussed in “How the Internal File Archive Works in a Wrapped Application”
on page 78, you must use relative pathnames to access files stored in the internal
archive of a wrapped application. The proper pathname to use to access a file from
the archive depends on yqurowrap command arguments.

By default, filesthat you specify in your prowrap command with relative
pathnames retain that pathnamein the archive. Filesthat you specify with absolute
pathnames are stripped of their drive and root directory characters. For example,
consider in the following:

C.> prowap myApp.tcl D:\tcl\comon\utils.tcl
To source D:\tcl\common\utils.tcl from within your wrapped application, you
would need to use a command such as.

source [file join tcl common utils.tcl]
You can also change the resulting pathname for awrapped file with the -relativeto
directory option to prowrap. The -relativeto flag instructs TclPro Wrapper to
wrap al file name patterns that follow relative to the directory you specify. Asan
example, consider the following:

C. > prowap myApp.tcl -relativeto D:\tcl\conmon \

D:\tcl\comon\utils.tcl

In this case, the resulting pathname for D:\tcl\common\utils.tcl from within your
wrapped application is simply utils.tcl.

Table 5 summarizes how wrapped file pathnames are determined.

Table5 Resolving File Pathnames When Wrapping an Application
Path Type Using Resulting Wrapped File Example
-relativeto Pathname
flag?
Relative No Thegivenrelative pathname (including images/icon.gif and../lib/control.tcl
any “.” or “..” relative pathname remain the same
references)
Relative Yes The pathname of the file relative to theages/icon.gif with -relativeto
-relativeto directory images becomescon.gif
.Jlib/control.tcl with -relativeto ../lib
becomesontrol.tcl
Absolute No The full pathname of the file without/usr/local/tcl/lib/common.tcl becomes
the root directory usr/local/tcl/lib/common.tcl
Absolute Yes The pathname of the file relative to thesr/local/tcl/lib/common.tcl with
-relativeto directory -relativeto /usr/local/tcl becomes
lib/common.tcl

TclPro Wrapper 83

84

Chapter 6

Specifying TclPro Wrapper Command Line Arguments
Using Standard Input

Many command shellshavealimit to the number of charactersthey accept asinput.
Although thisisrarely a problem when wrapping just afew Tcl scripts, you might
exceed thislimit if you use wildcard expansion and wrap lots of datafiles or Tcl
packages.

To get around this limitation, prowrap allows you to specify arguments from

standard input using the -@ option. Arguments from standard input are processed
after all other arguments on the prowrap command line.

Specifying Code to Execute at Application Startup

The -code option allows you to provide Tcl code that your application executes
when it starts. The application executes the code early in the application
initialization sequence, before Tcl_Init or any other package initialization
procedures are invoked. You can specify multiple -code options, in which case
TclPro Wrapper arranges for the application to execute these scriptsin the order
that they appear on the prowrap command line.

One common usefor the -code option isto set the auto_path variable to handle Tcl
script libraries wrapped with your applications. For example, the following
prowrap command wraps an application with alibrary in the
/usr/local/lib/common directory and setsthe auto_path variable so that the library
isloaded properly on execution:

% prow ap nyscript.tcl -relativeto /usr/local \

fusr/local/lib/common/*.tcl /usr/local/lib/comon/tcll|ndex \
-code "l append auto_path |ib/comobn" -out nyscript

Wrapping Libraries and Packages

Often, your application will use various Tcl libraries and packages. This section
describes how to wrap libraries and packages with your application.

In this section, alibrary refersto either:

* A collection of Tcl scripts contained in adirectory that al so contains a tcllndex
file generated by the auto_mkindex command

* A binary shared library that an application can load using the load command

Inthisbook, a package refersto acollection of Tcl scriptsor binary shared libraries
in adirectory that also contains a pkgl ndex.tcl file generated by the pkg_mkIndex
command.

Note You don't need to take any special steps to wrap applications that use the Tcl
extensions bundled with TclPro (for example, [incr tcl]) if you specify the
appropriate built-ipprowr ap -uses option. See “Specifying the Tcl Interpreter” on
page 80 for more information.

Wrapping Libraries of Tcl Scripts

You must take special steps to auto-load Tcl script libraries that you wrap with your
application. For example, if a library consists of the fildg.tcl anddisplay.tcl,

and they and thtlIndex file are stored irfusr/local/lib/common, an unwrapped

Tcl script that used this library would contain the following command to auto-load
the library:

| append auto_path /usr/local/lib/comobn
This command would fail to auto-load your library in a wrapped application
because of the absolute pathname. You can correct this problem in one of two
ways:

e Changeyour application to test if it is executing as awrapped application, and
then set the auto_path variable appropriately:
if {[info exists tcl_platforn(isWapped)]} {
| append auto_path |ib/conmmon

} else {
| append auto_path /usr/local/lib/comon

}
Then wrap your application as follows (remember to wrap the tclIndex file in
addition to the Tcl script files):
% prow ap nyscript.tcl -relativeto /usr/local \
lusr/local/lib/common/*.tcl /usr/local/lib/comon/tcllndex

* Settheauto_path variable using the -code option of the prowrap command.
The -code option executes the Tcl code that you provide before executing the
Tcl scripts of your application. Thus, the following prowrap command
accomplishes the same results as above (remember to wrap thetclindex filein
addition to the Tcl script files):
% prowrap nyscript.tcl -relativeto /usr/local \

/fusr/local/lib/comon/*.tcl /usr/local/lib/comobn/tcll|ndex \
-code "l append auto_path |ib/comon"

Wrapping Binary Shared Libraries

Important Wrapped applicationsthat load shared libraries must use a dynamically-linked Tcl
interpreter such astclsh-dynamic or wish-dynamic. If you use a statically-linked
Tcl interpreter such astclsh or wish, you will receive an error stating that the load

TclPro Wrapper 85

86

Important

Important

Chapter 6

command is not supported when executing the wrapped application. For more
information on selecting a Tcl interpreter for your wrapped application, see
“Specifying the Tcl Interpreter” on page 80.

You can't wrap binary shared libraries. There are two options for creating a
wrapped application that uses a binary shared libraries:

e Create acustom Tcl interpreter that links a static version of the library.

TclPro Wrapper requires specially-written Tcl interpreters to work with

wrapped applications. Any custom interpreters that you use must follow the
guidelines described in “Creating Base Applications for TclPro Wrapper” on
page 107.

* Wrap your application (without the binary shared library) with a dynamically-
linked Tcl interpreter such astclsh-dynamic or wish-dynamic. Then include
thebinary shared library in your distribution that you provideto customers. See
“Creating and Distributing Dynamically-Linked Wrapped Applications” on
page 88 for details.

Wrapping Tcl Script Packages

Packages that consist entirely of Tcl scripts don’t need any special handling when
wrapping. TclPro Wrapper understampitglndex.tcl files and automatically adds
wrapped directories to your applicatiotcs pkgPath variable if they contain
pkglndex.tcl files.

For example, if you have a package storefisn/local/lib/common and you have
generated akglndex.tcl file in that directory using thekg_mkIndex command,
you can wrap the package automatically withrewrap command such as:

% prow ap nyscript.tcl -relativeto /usr/local \
[usr/local/lib/comon/*.tcl -0 nyscript

Wrapping Packages Containing Binary Shared Libraries

You can't wrap packages that contain binary shared libraries. There are two
options for creating a wrapped application that uses packages with binary shared
libraries:

e Create acustom Tcl interpreter that links a static version of the package.

TclPro Wrapper requires specially-written Tcl interpreters to work with

wrapped applications. Any custom interpreters that you use must follow the
guidelines described in “Creating Base Applications for TclPro Wrapper” on
page 107.

* Wrap your application (without the packages) with a dynamically-linked Tcl
interpreter such as tclsh-dynamic or wish-dynamic. Then include the
packages in your distribution that you provide to customers. See “Creating and
Distributing Dynamically-Linked Wrapped Applications” on page 88 for
details.

Specifying a Temporary Directory

Theprowrap -temp argument allows you to specify a directory that TclPro
Wrapper uses to temporarily hold files created during the wrapping process. By
default, TclPro Wrapper uses the directory given by eifliP, TMP, or

TMPDIR environment variables, which are checked in that order. On Unix, the
directory falls through to th&mp directory if no environment variable exists.

For example, the following us&\Temp as a temporary directory for wrapping on
a Windows system:

% prowap -tenp C:\Tenp fool.tcl foo2.tcl

Getting Detailed Wrapping Feedback

You can get TclPro Wrapper to give you more detailed information about what it
is doing and which files it is wrapping by specifying gnewr ap -ver bose option.

Static and Dynamic Linking with Wrapped Applications

TclPro Wrapper allows you to create either statically-linked or dynamically-linked
wrapped applications:

* A staticaly-linked application copies all the code it needsfrom librarieswhen
you compile it. Once you compile the application, you no longer need the
libraries to be able to run the application.

e A dynamically-linked application contains mechanismsfor loading the code it
needs from libraries as needed while the application is running. The
application requires the libraries to be present while it runs so that it can
dynamically load and executethelibrary code. On Windows, theselibrariesare
usually referred to as DLLs (Dynamic Link Libraries). On Unix systems, they
are often called shared libraries, because severa application can use them at
the same time.

TclPro Wrapper 87

88

Important

Chapter 6

Deciding Whether Static or Dynamic Linking is More
Appropriate

In general, Scriptics recommends that you create statically-linked wrapped
applications. A statically-linked application is usually simpler to distribute and
maintain. It contains your scripts and datafiles, a Tcl interpreter, and everything
€l se needed to run the application. On the other hand, if you distribute a
dynamically-linked application, you must be sure that the target system hasthe Tcl
(and Tk, if needed) libraries and library script files (such asinit.tcl) properly
installed and configured. If your application uses Tcl extensions (such as

[incr Tcl]), then those extensions must also be installed and configured on your
target system. Furthermore, if a user accidentally deletes a shared library, or
another software package installs an incompatible version of one, your
dynamically-linked application will no longer work on that system.

Because of system limitations, statically-linked wrapped applications can'’t load
shared libraries. Therefore, if you needdad shared libraries (or auto-load
packages that contain binary shared libraries), you must either create a
dynamically-linked wrapped application or create a custom Tcl interpreter that
links a static version of the library.

You also might consider distributing dynamically-linked wrapped applications.
However, for a dynamically-linked wrapped application to work, your target
systems must have all needed libraries installed and configured properly.
Dynamically-linked applications are smaller than statically-linked ones, which can
be beneficial if you plan to distribute several wrapped applications.

Creating and Distributing Dynamically-Linked Wrapped
Applications

To create a dynamically-linked wrapped application, wrap your application with
either the-uses tclsh-dynamic option (to use theclsh interpreter) oruses
wish-dynamic option (to use thwish interpreter).

For a Windows application, if your target system has the same version of TclPro
installed and your application doesn’t use any extensions other than those bundled
with TclPro, you can simply copy your application to the target system. You can
run the application from anywhere on the target system.

For a Unix application, if your target system has the same version of TclPro
installedin exactly the same directory as on your devel opment system and your
application doesn't use any extensions other than those bundled with TclPro, you
can simply copy your application to the target system. You can run the application

from anywhere on the target system. Although the requirementsin this case are
restrictive, it isactually fairly common for a company to make the TclPro

installation available on a shared directory of afile server. If al users mount the
TclPro installation in the same location on their systems, they al effectively have

the same TclPro configuration.

For all other cases, you must create a special distribution to install on your target

system that contains your application and al binary librariesand library script files
required by your system. (The rest of this section refers to this distribution
directory as $DIST.) You must copy these files from the TclPro installation
directory. (The rest of this section refersto this directory as $TclPro).

Your resulting distribution tree should have the following structure:

$DI ST/

-lib/

--tcl 8.0/

--%platform

--tk8.0/ (optional)
--itcl 3.0/ (optional)
itk3.0/ (optional)
--iw dgets2.2/ (optional)
---iwi dgets3.0/ (optional)
---tcl X8.0.5/ (optional)
--tkX8.0.5/ (optional)

---lib/ (Unix only)

*.s0

---bin/

| ---wrapped application(s)

-*.dl

(W ndows only)

The following steps describe how to create this distribution directory:
1) Create adynamically-linked wrapped application with prowrap. The -uses

tclsh-dynamic and -uses wish-dynamic options automatically handle setting
theappropriate values of thetcl_library andtk libraryvariables, aswell asany
similar library variables for the extensions bundled with TclPro, so that your
application can find the script libraries. If you use any additional extensions

with your application, you must include a-code option to your prowr ap

command setting any similar library variables for those extensions. You can
use the following example as a template:

TclPro Wrapper

89

90

-code "set tcl _library [file join [file dir [info nameofexec]] lib tcl8.0]"

Chapter 6

You would need to replace “tcl_library” and “tcl8.0” with values appropriate
for your extension.

2) Create a distribution directory with whatever name you want.
3) Create the directo§DIST/lib.

4) Copy the entire contents $tclPro/lib to $DIST/lib. Optionally, you can omit
from $DIST/lib any extensions your application doesn’t use (for example,
don't copy$TclPro/lib/tcIX8.0.5 and its contents if your application doesn’t
use TclX).

5) If your application uses any additional extensions (beyond those bundled with
TclPro) which have directories and files residing in the Tcl script library
directory (thdib subdirectory of the Tcl installation directory), then copy those
directories and files t&DIST/lib.

6) Create the directoi$DIST/$platform, where$platform is the platform-
specific subdirectory as used by TclPro. Table 6 lists the appropriate
subdirectory names (for examplen32-ix86 for Windows systems).

Table 6 Platform-Specific TclPro Subdirectories

Platform TclPro Platform Subdirectory
HP-UX hpux-parisc

IRIX/Mips irix-mips

Linux/x86 linux-ix86

Solaris/SPARC solaris-sparc

Windows 95/NT(x86) win32-ix86

7) Create the directo§DIST/$platfornvhin.

8) Copy or move your dynamically-linked wrapped application to
$DIST/$platform/bin.

9) For Unix distributions:
a) Create the directo§DIST/$platformvlib.

b) Copy all shared libraries fro8vclPro/$platformvlib to
$DIST/$platfornvlib (for example, cop$TclPro/solaris-sparc/lib/*.so to
$DIST/solaris-sparc/lib). Optionally, you can omit from
$DIST/$platfornvlib any extensions your application doesn't use (for
example, don’t cop$Tcl Pro/$platformvlib/libtclx8.0.5.s0 if your
application doesn’t use TclX).

Tip

¢) If your application uses any additional extensions (beyond those bundled
with TclPro) which have shared libraries, or if your application uses any
other shared libraries, then copy those libraries to $DIST/$platfornvlib.

10) For Windows distributions:

a) Copy all shared libraries from $TclPro\win32-ix86\bin to
$DIST\win32-ix86\bin (for example, copy $Tcl Pro\win32-ix86\bin*.dll to
$DIST\Win32-ix86\bin). Optionally, you can omit from
$DIST\Win32-ix86\bin any extensions your application doesn't use (for
example, don't cop$Tcl Pro\win32-ix86\bin\tcIx805.dII if your
application doesn’t use TclX).

b) If your application uses any additional extensions (beyond those bundled
with TclPro) which have shared libraries, or if your application uses any
other shared libraries, then copy those librariedXtST\win32-ix86\bin.

11) Use whatever installation method you want to copy the irsT
distribution tree to your target systems. You can install the distribution
anywhere you like on the target system; however, users can’t move the
wrapped application from the distribution trel’s directory.

If you want to distribute more than one dynamically-linked wrapped application,
you can include all of those application$l ST/$platform/bin. If you do this, be
sure to includell of the extensions and libraries neededlbpf your applications.

Wrapping Applications with a Custom Interpreter

Important

You can wrap an application with a Tcl interpreter other than those supported by
the built-inprowrap -uses options. You can specify custom interpreters on either
an as-needed basis or, if you frequently use the same interpreter, you can create
your own customuses option.

Only specially-written Tcl interpreters work with wrapped applications. The built-
in prowr ap -uses options automatically use supported Tcl interpreters. However,
any custom interpreters that you use must follow the guidelines described in
“Creating Base Applications for TclPro Wrapper” on page 107.

Specifying a Custom Interpreter

The exact procedure for wrapping an application with a custom shell depends on
whether you are creating a statically- or dynamically-linked application and
whether your custom interpreter is simply an extension of a standard interpreter or
a substantially new interpreter:

TclPro Wrapper 91

92

Chapter 6

* If you are creating a statically-linked application, and your custom interpreter
issimply an extension of a standard interpreter, you can specify the -uses
option corresponding to the standard interpreter you extended and then specify
your customer interpreter with the -executable option to override the standard
interpreter. This automatically wraps all the library script files required for the
standard interpreter (for example, init.tcl) and saves you the trouble of having
to specify them all individually in your prowrap command. For example:

% prow ap -uses tclsh -executable nmytclsh app.tcl

* If you are creating astatically-linked application that does not use the standard
Tcl initialization and library files, you must specify the interpreter to use with
the -executable option and prevent TclPro Wrapper from including any default
binary librariesor library script files by specifying an empty string asthe-uses
argument. Then list any special initialization or other auxiliary files required
by your interpreter in your prowrap command. For example:

% prowap -uses "" -executable nylnterp app.tcl \
-relativeto /fusr/local/lib /usr/local/lib/*.tcl

e |f you are creating a dynamically-linked application, then your application
depends on al shared libraries and library script files (for example, init.tcl)
aready being installed and configured on your target system. In this case, you
must specify the interpreter to use with the -executable option and prevent
TclPro Wrapper from including any libraries or library script files by
specifying an empty string as the -uses argument. For example:

% prow ap -uses "" -executable nylnterp app.tcl

Defining New -uses Options

TclPro Wrapper recognizes files with the .uses extension as providing additional
-uses configurations. For example, afile new.uses directory definesaconfiguration
named “new” that you can use asuaes option.

When you specify auses option, TclPro Wrapper checks to see if it is a built-in
configuration first. If not, if looks for auses file with the proper name in the
lib/prowrapuses directory of the TclPro installation (that Igy/prowrapuses

should be at the same level aslilbécl8.0 directory). If TclPro Wrapper doesn’t
find the proper file there, it finally checks the directory from which you execute

prowrap.
You can also specify an absolute or relative path as an argumeniLtseaption.

For example, specifyingises C:\Tcl\Wrapper\custom causes TclPro Wrapper to
use the configuration fil€:\TcI\Wr apper\custom.uses.

Note

TclPro Wrapper evaluates the contents of a .uses file when it prepares to wrap an
application with that configuration. The .uses file must contain a Tcl script that
returns a Tcl list providing additional TclPro Wrapper command-line arguments.
These arguments should typically specify a Tcl interpreter with the -executable
options and any additional initialization and support files required by the
interpreter.

The lib/prowrapuses directory of the TclPro installation contains Tcl scripts
showing the definitions of the built-in -uses options. You can use these files as
templates for creating your own -uses configurations.

Modifying these files does not change the behavior of the built-in -uses
configurations; they are only samplefiles. To usethem, you can copy them, rename
them, and modify them as needed.

For example, supposeyou create acustom, statically-linked Tcl interpreter with the
name siteTclshl1.0 and placeit in the directory /usr/local/tcl/sitel.0/bin. In addition
to the standard Tcl script library files, located in /usr/local/tcl/lib/tcl 8.0, your
custom interpreter requires the custom initialization and support files site.tcl,
siteApp.tcl, and help.txt, which you place in the directory /usr/local/tcl/sitel.0/lib.
Your custom interpreter uses a custom Tcl variable, site library, to locate its
initialization and support files. To define this interpreter and support filesas a
custom -uses option named “siteTclsh”, create the féeTclsh.uses and place it
in thelib/prowrapuses directory. ThesiteTclsh.uses file would contain:
siteTcl sh. uses
return [list \
-executable /usr/local/tcl/sitel. 0/ bin/siteTclshl.0 \
-relativeto /usr/local/tcl \
fusr/local/tcl/lib/tcl8.0/*.tcl \
fusr/local/tcl/lib/tcl8.0/tcllndex \
lusr/local/tcl/sitel.0/lib/site.tcl \
lusr/local/tcl/sitel.0/lib/siteApp.tcl \
lfusr/local/tcl/sitel.0/lib/help.txt \
-code "set tcl _library lib/tcl8.0"
-code "set site_library sitel.0/lib"]
You could then wrap applications using this custom shell by specifyingisee
siteTclsh option. For example, the following TclPro Wrapper command would
create a wrapped application basedsivgilclshl.0 with filel.tcl as the startup
script:

% prow ap -uses siteTclsh filel.tcl file2.tcl

TclPro Wrapper 93

94

Preparing an Application for Wrapping

Chapter 6

There are minor differences in the way an application runs when it is wrapped
versus when it runs unwrapped. However, it is relatively easy to modify your
application so that you can test it in unwrapped form, then wrap the samefilesfor
distribution. This section shows you how to change your application to ensure that
it works properly both unwrapped and wrapped.

Detecting When an Application Is Wrapped

Because there are minor differences in the behavior of unwrapped and wrapped
applications, you need to be able to detect whether your application is wrapped or
not. TclPro Wrapper automatically creates the variable tcl_platform(iswapped)
when it wraps your application, so your application simply needsto test for the
existence of thisvariable to determine whether or not it iswrapped. The following
code fragment demonstrates how to usetcl_platform(is\rapped):
if {[info exists tcl_platforn(isWapped)]} {
Application is wapped

} else {
Application is not w apped

}

Modifying Custom Shells

TclPro Wrapper requires specially-written Tcl interpreters to work with wrapped
applications. The predefined prowr ap -uses options (described in “Specifying the

Tcl Interpreter” on page 80) automatically use appropriate interpreters. However,
if you want your application to use a custom interpreter, you use must write that
interpreter following the guidelines in “Creating Base Applications for TclPro
Wrapper” on page 107.

Changing File References

Writing an application to work properly both unwrapped and wrapped can be tricky
when it comes to file access. You want to prevent accidental fall-through and file
shadowing, as discussed in “How the Internal File Archive Works in a Wrapped
Application” on page 78. The key points to keep in mind are:

* Allfilesintheinternal archive of awrapped application have relative
pathnames

* If you use the -relativeto option when wrapping afile, the pathname of afile
intheinternal archiveisdifferent from its corresponding unwrapped pathname
(see “Determining Path References in Wrapped Applications” on page 82)

* A wrapped application aways searches for afilein itsinternal file archive
before searching the disk whenever it encounters arelative pathname to afile

Accessing Unwrapped Files

If your wrapped application attempts to access unwrapped files using relative
pathnames, it runs the risk of accidentally accessing afilein the internal archive
instead (that is, file shadowing). To ensure that your application always accesses
unwrapped files when desired, you should aways use absolute pathnamesin a
wrapped application.

In particular, you should be careful in how your application handles caseswhere a
user can enter afilename. If auser enters arelative pathname for afile, you should
convert it to an absolute pathname. For example, if the variable path contains a
relative file name, you can create an absolute file name by appending it to the
current working directory:

set path [file join [pwd] $path]

Accessing Files from a Shared Directory

Files shared by multiple applications or projects are typically put in a shared
directory, often on afile server. An application myscript.tcl might then accessthose
filesasfollows:

set shared {Z:\tcl\comon}

source [file join $shared help.tcl]

source [file join $shared display.tcl]
Unfortunately, because of the absolute pathname, the code above no longer works
if you wrap the files in the shared directory with the application.

However, you can easily modify this code to work either unwrapped or wrapped
by testing to see whether the application is wrapped and modifying the value of
shared appropriately. For example:
if {[info exist tcl_platform(isWapped)]} {
set shared common

} else {
set shared {Z:\tcl\conmmon}

}

source [file join $shared help.tcl]

source [file join $shared display.tcl]
You would then need to wrap the shared files using the -relativeto flag asin the
following example:

C.> prowap nmyscript.tcl -relativeto Z:\tcl Z:\tcl\comon*.tcl

TclPro Wrapper

95

96

Accessing Wrapped Files Relative to a Script's Directory

A common trick to avoid hard-wiring pathnamesinto scriptsisto figure out where
the script islocated with theinfo script command and then accessing filesrelative
to the script’s directory. For example:

set hone [file dirnane [info script]]

source [file join $hone help.tcl]
source [file join $home display.tcl]

Auto-Loading Wrapped Tcl Script Libraries

You must take special steps to auto-load Tcl script libraries that you wrap with your
application. “Wrapping Libraries of Tcl Scripts” on page 85 describes the changes
you need to make to your application.

Changing the Windows Icon for a Wrapped Application

Important

Important

Chapter 6

On Windows, wrapped applications receive a default icon. You can use a
commercial or shareware icon manager to change the applications icon.

You should always make a backup copy of the wrapped application before using
the icon manager in case the icon manager corrupts your application.

You can also use Microsoft Visual C++ 5.0 or later on a Windows NT system to
change the wrapped application icon in one of two ways.

These procedures don’t work on Windows 95/98 because of system limitations.
The first way to change the icon

1) Close any open workspaces.

2) Open the wrapped application in Visual C++.

3) Select He | Open from the menu and browse for the wrapped application
executable.

4) Select File of Type: Executable.

5) Select Open as: Resources. A window appears with the executable’s resources
and the name of the application in the title bar.

6) Click the icon folder to display the application’s default icon.

7) Open the icon resource.

8) A window appears with the application icon.

9) Draw or paste your application icon.

10) Save the executable with your changes. Selext Bave from the menu.

11) Create a shortcut on your Windows desktop to see your change.

The second way to change the icon isto link your own executable; see Chapter 7,
“Creating Custom Interpreters with TclPro.” After you have completed the linking
process, invoke the Visual C++ resource compiler to link your application
resources. The wrapped application icon, visible on the Windows Desktop and to
the Windows Explorer, is the first icon in the icon resources.

TclPro Wrapper 97

98

Chapter 6

Chapter 7
Creating Custom Interpreters with TclPro

This chapter describes how to create both regular Tcl interpreters and Tcl
interpreters that you can use with the TclPro Wrapper. In general, you create Tcl
interpreters with TclPro just as you would with the free Tcl distribution. However,
TclPro makesit easier to build custom Tcl interpreters by providing precompiled
libraries for Tcl, Tk, and all bundled extensions on each platform supported by
TclPro. TclPro aso provides libraries that support the tbcload extension, whichis
required to read the bytecode files created by TclPro Compiler, and the TclPro
Wrapper library, which you need to create interpreters (that is, base applications)
for use by TclPro Wrapper.

Important The development libraries and other files described in this chapter are part of the
TclPro “C Development Libraries” installation component. You must install the
TclPro “C Development Libraries” component if you want to use these files to
create custom Tcl interpreters.

Remember, there is often no need for you to create a custom Tcl interpreter. If all
you want to do is to incorporate a new extension, it is usually easier to use the built-
in load andpackage facilities of Tcl. Also remember thatrotclsh or prowish

already have built-in support for the extensions bundled with TclPro.

Note This chapter assumes that you are already familiar with writing custom Tcl
interpreters; therefore, it concentrates on describing the unique features of building
a custom Tcl interpreter with the TclPro distribution. For detailed instructions on
writing a custom Tcl interpreter, consult the references listed in “For More
Information” on page 4.

Overview of the TclPro Development Environment

This section provides general information about the TclPro development
environment including the location of the libraries and sample files, and special
comments about the compilation options of the Windows libraries.

99

100

Chapter 7

Locations of the Libraries

All of the precompiled libraries shipped with TclPro are located in subdirectories
of the TclPro installation directory. The libraries are organized by platform, with
directory names as shown in Table 7.

Table 7 Locations of TclPro Libraries Relative to the Installation Directory

Platform Library Subdirectory

HP-UX hpux-parisc/lib

IRIX/Mips irix-mips/lib

Linux/x86 linux-ix86/lib

Solaris/SPARC solaris-sparc/lib

Windows 95/NT(x86) win32-ix86\lib (static and export libraries)

win32-ix86\bin (dynamic libraries)

For example, if you install TclPro in C:\Program Files\TclProl.2, the static and
export Windows libraries are in C:\Program Files\TclProl.2\win32-ix86\ib.

Debug and Non-Debug Libraries for Windows

TclPro includes both debug and non-debug versions of all Windows libraries
shipped. If you compile your application with debug options, you should be certain
to link with libraries compiled with compatible debug options so that you can
properly debug your extensions.

TheWindowslibraries shipped with TclPro are compiled with Visual C++ withthe
following compilation flags:

IMD Dynamic library, no debug
/MDd Dynamic library with debug
IMT Static library, no debug

/MTd Static library with debug

You should compile and link all components of your application with consistent
compilation settings. To set these compilation flagsin aVisual C++ Developer
Studio project, display the Project Settings dial og, select the C/C++ tab, and select
the Code Generation category. The compil ation flags mentioned above correspond
to the following Use Run-time Library selections:

IMD Multithreaded DLL

/MDd Debug Multithreaded DLL
IMT Multithreaded
IMTd Debug Multithreaded

The Sample Application

The TclPro “C Development Libraries” component installs a sample application in
the demos/sampleApp subdirectory of the TclPro installation directory (for

example C:\Program Files\TclProl.2\demos\sampleApp). Refer to the README

file in that directory for a description of its contents.

The directory includes a Makefile for creating statically- and dynamically-linked
versions of a sample interpreter and wrapped application. The applications
demonstrate many of the topics discussed in this chapter. You might find the
Makefile and the source files it compiles useful templates for creating your own
custom interpreter.

Creating Regular Tcl Interpreters

Important

You write Tcl interpreters with the TclPro development environment just as you
would with the free Tcl distribution. Simply implemérdl_Appl nit to perform
whatever initialization your application requires, and €all Main or Tk_Main

from your main program. Then compile your program and link with either the static
or dynamic libraries as appropriate.

TclPro Wrapper requires specially-written Tcl interpreters to work with wrapped
applications. Any custom interpreters that you use with TclPro Wrapper must
follow the guidelines described in “Creating Base Applications for TclPro
Wrapper” on page 107.

Creating Statically-Linked Interpreters

When writing a statically-linked interpreter, you must explicitly initialize all
extensions that are statically linked with your application. Typically, this consists
of adding code to your applicatioif&l_Applnit procedure calling the

extension’d nit procedure and then callifigl StaticPackage to register the
extension as a statically-linked package. Then at compilation, you must link your
application with static versions of every library that your application needs.

Creating Custom Interpreters with TclPro 101

102

For example, the main sourcefile for aTcl application that is statically linked with
tbcload and [incr Tcl] contains code similar to the following that shown below.
You would then need to link this application with the tbcload and [incr Tcl]
libraries in addition to the Tcl library.

#include "tcl.h"

static int M/Applnit(Tcl _Interp *interp);

i nt

mai n(argc, argv)
int argc; /* Number of command-line argunents. */
char **argv; /* Values of conmand-line argunents. */

Tcl _Main(argc, argv, MyApplnit);

return 0; /* Needed only to prevent conpiler warning. */

}

static int

MyAppl ni t (i nterp)

Tcl _Interp *interp; /* Interpreter for application. */

{
if (Tel _Init(interp) == TCL_ERROR) {
return TCL_ERROR;
}
if (Tbcload_Init(interp) == TCL_ERROR) {
return TCL_ERROR;
}
Tcl _StaticPackage(interp, "tbcload", Tbcload_Init,
Tbcl oad_Safelnit);
if (ltcl_Init(interp) == TCL_ERROR) {
return TCL_ERROR;
}
Tcl _StaticPackage(interp, "ltcl", Itcl_Init, Itcl_Safelnit);
return TCL_CK;
}

Statically Linking Windows Interpreters

To create a statically-linked Tcl application under Windows, you link your
application with the static version of the Tcl library and, if needed, the Tk library.
You also must link with al other Tcl extension libraries used by your application,
and any other application-specific libraries your application might use (for
example, custom driver software for interacting with a special peripheral device).

Chapter 7

The TclPro static Windows libraries are located in the win32-ix86\lib subdirectory
of the TclPro installation directory. Table 8 lists the static libraries shipped with
TclPro.

Table 8 Windows Librariesfor Static Linking

Library Description

tcl80s.lib Tcl static library without debugging symbols
tcl80sd.lib Tcl static library with debugging symbols
tk80s.lib Tk static library without debugging symbols
tk80sd.lib Tk static library with debugging symbols
thcload10s.lib tbcload static library without debugging symbols
tbcload10sd.lib tbcload static library with debugging symbols
itcl30s.lib [incr Tcl] static library without debugging symbols
itcl30sd.lib [incr Tcl] static library with debugging symbols
itk30s.lib [incr Tk] static library without debugging symbols
itk30sd.lib [incr TK] static library with debugging symbols
tcIx805s.lib TelX without debugging symbols

tcIx805sd.lib TclX with debugging symbols

tkx805s.lib TkX without debugging symbols

tkx805sd.lib TkX with debugging symbols

Note that TclPro uses the convention of ending a static library with the letter “s”;
this makes it easy to distinguidib files that are export libraries for a dynamic
library from corresponding static libraries. For exam@&0.lib is the export

library fortcl80.dll, whereadcl80s.lib is the Tcl static library. Note also that the
“d” convention is used as well, so theB0sd.lib is a static library built with debug
options. The “d” libraries were all built with th®l Td flag, the others witiM T.

If you use the “d” libraries, link your application withBCMTD.LIB; otherwise
link it with LIBCMT.LIB.

Creating Custom Interpreters with TclPro 103

Statically Linking Unix Interpreters

To create a statically-linked Tcl application under Unix, you link your application
with the static version of the Tcl library and, if needed, the Tk library. You also
must link with all other Tcl extension libraries used by your application, and any
other application-specific libraries your application might use (for example,
custom driver software for interacting with a special peripheral device). Unlike
Windows, there are no separate debug and non-debug libraries.

All of the Unix libraries shipped with TclPro are located in subdirectories of the
TclProinstallation directory. The libraries are organized by platform, with
directory names as shown in Table 7 on page 100. Table 9 liststhe static libraries
shipped for Unix systems.

Table 9 Unix Libraries for Static Linking

Unix Library Description
libtcl8.0.a Tcl static library
libtk8.0.a Tk static library
libtcload10s.a thcload static library
libitcl30s.a [incr Tcl] static library
libitk30s.a [incr TK] static library
libtclx8.0.5.a TclX static library
libtkx8.0.5.a TkX static library
libexpect5.29.a Expect static library

Note ThelRIX libraries are compiled with the -n32 flag.

Note that many of the static libraries end with the letter “s”; this is especially useful
in that it eliminates some ambiguities in the interpretatio loiker flags. For
exampleltbcload10 refers to the shared library implementatiorthadioad,
whereasltbcload10s refers to the static version. If the “s” convention were not
used, thel flag for either would bdtbcload10, and which one of the two libraries

is used for the linking would depend on the resolution rules currently active in the
linker.

104 Chapter 7

Creating Dynamically-Linked Interpreters

Aside from implementing either Tcl_Applnit or TK_Applnit as appropriate and
calling Tcl_Main or Tk_Main from your main program, there are no special
reguirements for writing a dynamically-linked interpreter. Because your

application automatically loads extension libraries as needed, you don't need to
register them witfTcl_StaticPackage or initialize them with their corresponding

Init procedures.

Dynamically Linking Windows Interpreters

To create a dynamically-linked Tcl application under Windows, you link your
application withexport libraries, which have dib extension. At run-time, your
application loads the dynamic library corresponding to that export library, which
has the same name as the export library ldit axtension. You don't need théb

file at run-time.

You link your application with the appropriate Tcl library and, if needed, the
appropriate Tk library. You don’t need to link with any other Tcl extension
libraries; your application loads the dynamic libraries for any other extensions as
needed at run-time. You must also link with any other application-specific libraries
your application might use (for example, custom driver software for interacting
with a special peripheral device).

The TclPro Windows libraries are located in subdirectoriegin32-ix86 in the
TclPro installation directory. Table 10 lists the dynamic libraries shipped and their
corresponding locations.

Table 10 Windows Libraries for Dynamic Linking

Dynamic Library Export Library

bin\tcl80.dlI
bin\tcl80d.dll
bin\tk80.dll
bin\tk80od.dll
bin\tbcload10.dl|
bin\tbcload10d.dll
bin\itcl30.dll
bin\itcl30d.dll

lib\tcl80.lib
lib\tcl80d.lib
lib\tk80.lib
lib\tk80d.lib
lib\tbcload10.lib
lib\tbcload10d.lib
lib\itcl30.lib
lib\itcl30d.lib

Description

Tcl without debugging symbols

Tcl with debugging symbols

Tk without debugging symbols

Tk with debugging symbols

thcload without debugging symbols
thcload with debugging symbols
[incr Tcl] without debugging symbols
[incr Tcl] with debugging symbols

Creating Custom Interpreters with TclPro 105

106

Chapter 7

Table 10 Windows Libraries for Dynamic Linking (Continued)

Dynamic Library Export Library Description

bin\itk30.dll lib\itk30.lib [incr Tk] without debugging symbols
bin\itk30d.dll lib\itk30d.lib [incr Tk] with debugging symbols
bin\tcIx805.dll lib\tcIx805.1ib TclX without debugging symbols
bin\tcIx805d.dlI lib\tcIx805d.lib TclX with debugging symbols

bi n\tkx805.dl| lib\tkx805.lib TkX without debugging symbols
bin\tkx805d.dlI lib\tkx805d.lib TkX with debugging symbols

Notethat TclPro uses the convention of ending the name of alibrary that was built
with debugging options with the letter “d.” For exampdi80d.dll is the Tcl DLL
built with debugging turned on and80d.lib is its export library. The “d” libraries
were all built with theéM Dd flag, the others withiv D.

If you use the debug libraries, also link your application M8VCRTD.LIB;
otherwise link it withMSVCRT.LIB.

Dynamically Linking Unix Interpreters

To create a dynamically-linked Tcl application under Unix, you link your
application directly with the appropriate shared libraries. Unlike Windows, there
are no export libraries, and you don't need separate debug and non-debug libraries.

You link your application with the appropriate Tcl library and, if needed, the
appropriate Tk library. You don't need to link with any other Tcl extension
libraries; your application loads the dynamic libraries for any other extensions as
needed at run-time. You must also link with any other application-specific libraries
your application might use.

All of the Unix libraries shipped with TclPro are located in subdirectories of the
TclProinstallation directory. The libraries are organized by platform, with
directory namesas shownin Table 7 on page 100. Table 11 liststhe shared libraries
shipped for Unix systems.

Table 11 Unix Libraries for Dynamic Linking

Unix Library Description
libtcl8.0.s0 Tcl shared library
(libtcl8.0.9 on HP-UX)

libtk8.0.s0 Tk shared library

(libtk8.0.9 on HP-UX)

libtcload10.s0 thcload shared library
(libtcload10.9 on HP-UX)

libitcl30.s0 [incr Tcl] shared library
(libitcl30.9l on HP-UX)

libitk30.s0 [incr TK] shared library
(libitk30.9 on HP-UX)

libtclx8.0.5.s0 TclX shared library
(libtc!x8.0.5.91 on HP-UX)

libtkx8.0.5.s0 TkX shared library
(libtkx8.0.5.9 on HP-UX)

libexpect5.29.s0 Expect shared library
(libexpect5.29.9 on HP-UX)

Note ThelRIX libraries are compiled with the -n32 flag.

Creating Base Applications for TclPro Wrapper

This section describes how to create a Tcl interpreter that you can use with TclPro
Wrapper, otherwise known as abase application. Base applications require special
support for accessing files from the wrapped application’s internal file archive.

Note You can also use a base application as a regular Tcl interpreter for an unwrapped
applications.

In general, writing a base application is the same as writing a regular Tcl
interpreter. Typically, the only changes you have to make are:

Creating Custom Interpreters with TclPro 107

* Include proWrap.h in your application (prowkap.h is located in the include
subdirectory of the TclPro installation directory)

e Cal Pro WrapTcIMain or Pro WrapTkMain from your application
instead of Tcl_Main or Tk_Main

e Compile prowrapTclMain.c or proWwrapTkMain.c (which are located
respectively in the lib/tcl8.0 and lib/tk8.0 subdirectories of the TclPro
installation directory) and link your application with the resulting object file

* Link your application with the appropriate TclPro Wrapper library

Other than these changes, you write your base application as you would aregular
interpreter and link it with all other libraries you would typically need to link with
(for example, tcl80s.lib, thcload10s.lib, itcl30s.lib, etc.). See the appropriate
section of “Creating Regular Tcl Interpreters” for detailed instructions.

Unless you have modified the stand@oll Main or Tk_Main procedures, you

should not have to make any changes tqtb&tapTclMain.c or

prowrapTkMain.c files. See “Modifying the Base Application Default Main Files”

on page 110 if you need to make changes to these files or write your own versions
of these procedures.

Note File access functions in the Tcl and Tk C libraries (for example,
Tcl_OpenFileChannel andTk_GetBitmap) access files in the internal archive of
a wrapped application in the same manner as file access procedures in Tcl scripts
(for example source andopen). See “How the Internal File Archive Works in a
Wrapped Application” on page 78 for more information on the internal file archive
of a wrapped application.

Tip If you are writing a new interpreter, you can use the files listed in Table 12 as
templates for your interpretemrsain andTcl_Appl nit procedures. You can also
review these files for guidelines for modifying an existing custom Tcl interpreter
for use as a base application.

108 Chapter 7

The sample application, described in “The Sample Application” on page 101, uses
these files to create the interpreters for the sample applications. You can review the
makefile in thedemos/sampleApp subdirectory for guidelines for creating your

own makefiles.

Table 12 Base Application Template Files

Interpreter Template File Description

lib/tcl8.0/proTclWinMain.c Default implementation of a Windows Tcl interpreter

lib/tk8.0/proTkWinMain.c Default implementation of a Windows Tk interpreter

lib/tcl8.0/proTclUnixMain.c Default implementation of a Unix Tcl interpreter

lib/tk8.0/proTkUnixMain.c Default implementation of a Unix Tk interpreter

Linking Windows Base Applications

The TclPro Wrapper libraries are available in only static versions. However, you
must use different versions of the library depending on whether you are creating a
statically- or dynamically-linked base application.

The Windows TclPro Wrapper libraries are located inih82-ix86\lib
subdirectory of the TclPro installation directory. Table 13 lists the Windows
TclPro Wrapper libraries shipped with TclPro.

The TclPro distribution ships two types of static libraries for creating base
applications: a static library compiled wittd T and one compiled wittM D.
These files are in th@in32-ix86/lib directory.

Table 13 Windows TclPro Wrapper Libraries

Library Name

wrapper10x.lib

wrapper10xd.lib

wrapper10s.lib

wrapper10sd.lib

Description

TclPro Wrapper library for dynamically-linked base applications
(compiled with /M D)

TclPro Wrapper library for dynamically-linked base applications,
debug version (compiled with /M Dd)

TclPro Wrapper library for statically-linked base applications
(compiled with /M T)

TclPro Wrapper library for statically-linked base applications,
debug version (compiled with /M Td)

Creating Custom Interpreters with TclPro 109

110

Chapter 7

The convention is used that names of the libraries for use with dynamically-linked
base applications end with the letter “x”. Use the “s” libraries to create statically-
linked base applications.

If you link against the “x” library, link again8SVCRT.LIB; if you link against the
“xd” library, link againstMSVCRTD.LIB. If you link against the “s” library, link
againstLIBCMT.LIB; if you link against the “sd” library, link against
LIBCMTD.LIB.

Linking Unix Base Applications

On Unix systems, there is only one version of the TclPro Wrapper library, which
is namedibwrapper10s.a. The library is contained in the platform-specific library
directory, as shown in Table 7 on page 100. (For example, the Linux library is
linux-ix86/lib/libwrapper10s.a.)

Modifying the Base Application Default Main Files

ThePro WrapTclMain andPro WrapTkMain procedures replace the standard
Tcl_Main andTk_Main procedures in a base application. The source for these
procedures are containedgrowapTclMain.c or prowtapTkMain.c, which are
located respectively in tH&/tcl8.0 andlib/tk8.0 subdirectories of the TclPro
installation directory.

Unless you have modified the stand@oll Main or Tk_Main procedures, you
should not have to make any changes tgtb@tapTclMain.c or
prowrapTkMain.c files. If you have modified the standafd_Main or Tk_Main
procedures and need to make similar modificatiod& toWrapTclMain or
Pro_ WrapTkMain, you can simply copproWwrapTclMain.c or
prowapTkMain.c and modify the copy as needed.

If it is not feasible for you to make the modifications to a copy of
prowrapTclMain.c or prowrapTkMain.c (for example, the modifications are too
extensive), you can change your existing interpreter code as follows:

1) Change th&@cl_Main or Tk_Main declarations and definitions to
Pro WrapTclMain or Pro WrapTkMain.

2) In your application initialization, determine if the current application is
wrapped, and if so, perform some additional processing on the command line
arguments. For example, fBro WrapTclMain:

Note

3)

4)

if (Pro_Wapl sWapped(Tcl _Get NameOf Execut abl e(),
& appedsSt ar t upFi | eNane, &w appedArgs)) {
if (wappedStartupFileNanme != NULL) {
fileName = wrappedSt art upFil eNane;
}

if (wappedArgs !'= NULL) {
saveArgc = argc;
saveArgv = argyv;
Pro_W apPr ependAr gs(w appedAr gs, saveArgc, saveArgv, \

&argc, &argv);
newArgv = argv,
}
}
i f (wappedStartupFil eName == NULL) ({
if ((argc > 1) && (argv[1][0] '="-")) {
fileName = argv[1];
argv0 = fil eNaneg;
argc--;
ar gv++;
}
}

This code segment sets things up so that, if the application is wrapped, the
wrapped start-up script file (if it was set with the -startup option of prowr ap)
is sourced after all other initialization. Also, if additional arguments were
supplied during the wrapping process (with the -ar gumentsflag), they are
inserted between argv[0] and argv[1]. If the application is not wrapped, the
code behaves exactly like Tcl_Main and Tk_Main.

Call Pro_Wraplnit to initialize the Wrapper library:
Pro_Waplnit(interp);

If your application creates multiple interpreters, you need to called
Pro_Wraplnit only once, for the main interpreter.

Free the newArg variable near the end of your Pro WrapTclMain or
Pro WrapTkM ain implementation.
if (newArgv != NULL) {

ckfree((char *) newArgv);

argc = saveArgc;

argv = saveArgv;

Creating Custom Interpreters with TclPro

111

112

Chapter 7

Appendix A
Scriptics License Server

Scriptics License Server manages Shared Network Licenses for the Scriptics
productsin use at your site. A Shared Network License can replace several Named
User License keys, provide easy TclPro accessto alarger number of developers,
and eliminate the need for users to manage and install their own license keys.
Scriptics License Server also maintains records about the usage of TclPro products
for your reference.

How Licensing Works

All Scriptics products require alicense to run. Scriptics sells both Named User
Licensesand Shared Network Licenses. A Named User License allows one specific
person to use TclPro. Shared Network Licenses allow anyone at your siteto usethe
TclPro applications, as long as the number of concurrent TclPro users doesn't
exceed the number of Shared Network Licenses that you purchase.

This section describe how TclPro applications determine which license to use and
how the Scriptics License Server manages Shared Network Licenses.

How TclPro Applications Obtain Licenses

When a user runs a TclPro application, it attempts to obtain a license. The
procedure it follows depends on whether the user has installed a local copy of
TclPro or is using a shared copy from a server.

If the user has a local copy of TclPro, he or she must have entered license
information, either during installation or after wards by running the TclPro License
Manager, as described in “Entering TclPro License Information” on page 3. In this
case, the application attempts to obtain a license in the following order of
precedence:

1) Ifthe user entered a valid permanent Named User License, the application uses
that license.

113

114

Appendix A

2) If the user entered a hosthame and port of a Scriptics License Server, the
application attempts to obtain a Shared Network License from that server.

If the user is using a shared copy of TclPro from a server, he or she can either use
the default Scriptics License Server for that shared installation (which is set by the
site administrator when he or sheinstalls that copy of TclPro), or he or she can run
the TclPro License Manager to override that default. In this case, the TclPro
application attempts to obtain alicense in the following order of precedence:

1) If the user ran TclPro License Manager and entered avalid permanent Named
User License, the application uses that license.

2) If the user ran TclPro License Manager and entered a hostname and port of a
Scriptics License Server, the application attempts to obtain a Shared Network
License from that server.

3) Otherwise, the application attempts to obtain a Shared Network License from
the default Scriptics License Server for that installation.

How Scriptics License Server Manages Shared Network

Licenses

Scriptics License Server allows a maximum number of concurrent users equal to
the number of Shared Network Licenses that you purchase. For example, if you
have purchased 10 Shared Network Licenses, then up to 10 users can use TclPro
applications at the sametime. A user isdetermined by their user account. The same
user account on different hosts counts as only one user. A single user using more
than one TclPro application at the same time also counts as only one user.

License Overdraft

Scriptics includes a generous “overdraft” policy with Scriptics License Server that
allows you to exceed your concurrent user limit in emergency situations. This
policy accommodates occasions where you temporarily need additional licenses
before you have had time to purchase them.

When Scriptics License Server receives a request for a license in excess of the
number of licenses you have purchased, Scriptics License Server records an
“overdraft day.” Multiple overdraft instances on a single day count as only one
overdraft day.

For the first 10 overdraft days that occur, Scriptics License Server continues to
issue “overdraft licenses,” which allow the TclPro applications causing the
overdraft to continue to run. After 10 overdraft days, the Scriptics License Server
no longer issues overdraft licenses and strictly enforces the concurrent user limit.

When a TclPro application causes an overdraft, it displays a warning message to
the user. Scriptics License Server also notifiesthe site administrator by email. The
Scriptics License Server daily and weekly reports include the number of licenses
in use and the number of overdraft occurrences. See “Viewing Reports” on
page 119 for more information on reporting.

Scriptics License Server Installation

Important

Scriptics License Server runs on Unix systems only. You should install Scriptics
License Server on a reliable server that is accessible by all TclPro users. You don't
have to install Scriptics License Server and TclPro on the same system.

Typically, the server starts Scriptics License Server automatically using a standard
init.d script, which is created automatically during installation. You rarely should
need to start or stop Scriptics License Server manually.

Installing the Scriptics License Server Software

You can install Scriptics License Server from either the TclPro CD or the Unix
installation download available from the Scriptics web site
(http:/Iwww.scriptics.comvtclpro). Runsetup.sh and select the Scriptics License
Server option.

Log in as theoot user to install Scriptics License Server.

The installation program prompts you for a port number for the Scriptics License
Server. Although you can select any free port on your system, Scriptics
recommends that you select the default value of port 2577.

Setting the Initial Configuration

After installing Scriptics License Server, you must configure it through its Web
browser interface. To display the Scriptics License Server Web interface, launch a
Web browser and open the following URL.:

http:// host nane: port/

hostname s the hostname of the system running Scriptics License $eveis the
port number you assigned during installation.

The first time you connect to the Scriptics License Server Web interface, it displays
the Set Initial Configuration page that prompts for initial configuration
information:

Scriptics License Server 115

116

Note

Appendix A

Your Company Name
Your company name appears on the main page of the Web interface.
Thisnameis also displayed by programs that get licenses from this
server.

Administrative Name and Password
Accessto the administrative pages are password protected. On the Set
Initial Configuration page you choose the name and password for the
first administrator account. You can define other name/password pairs
or change existing one from the Change Passwords page
(/admin/password.tml).

Email Contact Address
Scriptics License Server send email messagesto the site administrator
that contain usage reports as well as problem naotifications. You can
add more email addresses and tune what events trigger email later
using the Email page (/admin/email.tml).

OK to Email Scriptics
Scriptics License Server send email messagesto Scripticsfor problem
notification. You change this setting later using the Email page
(/admin/email.tml).

After you configure Scriptics License Server, opening http://<hostname> : <port>
displays the Scriptics License Server Home page. From that page, you can
administer server settings, manage license keys, and generate reports. See
“Scriptics License Server Administration” on page 118 for more information.

You can reset Scriptics License Server and delete all configuration information
except the license keys you have installed (but including administrator names and
passwords) by executimyolserver -reset. After resetting Scriptics License

Server, it displays the Set Initial Configuration page the next time you open its Web
interface.

Scriptics License Server Installed Files

The installation program installs the following filesiiistallDir> is the
installation directory you specify during installation):

[etclinit.d/prolserver
The shell script that starts Scriptics License Server when the system
boots. You can use run this script with #art or stop argument to
start or stop Scriptics License Server manually. The exact location of
this file depends on your operating system (for exanigti@init.d,

[etc/re.dfinit.d, or /shin/init.d). The peer directories rc2.d and rc0.d
contain symbolic links to this file, which your system usesto start
Scriptics License Server during boot and halt it during shutdown.

<installDir>/prol server.boot
Thisscriptiscreated only if you do not install ScripticsLicense Server
asroot. Thisisacopy of the script that needs to be installed under
[etc/init.d in order to automatically launch Scriptics License Server
when the system boots. The exact location depends on the operating
system.

<installDir>/prolserver
The Scriptics License Server application program.

<installDir>/prolserver.conf
Themain configuration file. Thisfilestorestheinstallation settingsfor
Scriptics License Server. Consult the prolserver man page for
information about the setting for thisfile. Changesto thisfile take
place when you restart Scriptics License Server.

<instalIDir>/prolserver.state
Thisis a state checkpoint file. Thisfile is tamper-resistent so you
should not edit thisfile. Doing so causes you to lose state about active
licenses, administrator passwords, and notification email addresses.

<instalIDir>/prolserver.pid
Thisfilerecordsthe process D of ScripticsLicense Server soit can be
shutdown.

<instalIDir>/htdocs/
A directory containing the files implementing the Scriptics License
Server Web interface.

Ivar/log/prolserver.<port>.log
Thisisthelog file for the server. <port> is the port number assigned
to this Scriptics License Server. Thisfile keeps weekly, daily, and
current usage statistics. It is compacted automatically so it should not
get too large. Each day at midnight the records about the current usage
are collected into one daily record, and each week records about daily
usage are collected into one weekly record. You can change the
location of thisfile by editing the prolserver.conf file. Consult the
prolserver man page for details.

/etc/INSTALL.LOG
A log of the Scriptics License Server installation.

Scriptics License Server

117

118

Scriptics License Server Administration

Appendix A

You manage Scriptics License Server using a Web browser interface. To display
the Scriptics License Server home page, launch a Web browser and open the
following URL.:

http:// host nane: port/
hostname isthe hostname of the system running Scriptics License Sever. port isthe
port number you assigned during installation.

The Scriptics License Server Web interface provides severa pages for
administering server settings, managing license keys, and generating reports.
Access to administrative pagesis password protected using the Basic
Authentication scheme supported by all browsers. When you initialy configure
your Scriptics License Server, you specify the name and password for the first
administrator account. You can define other name/password pairs or change
existing ones from the Change Passwords page (/admin/password.tml).

Each page contains documentation describing the information displayed and the
actions you can perform. Therefore, this guide provides only an overview of the
Web interface. Consult the Web interface for more detailed information.

Managing Licenses

Shared Network Licenses are distributed as encoded keys. You can add, upgrade,
and delete Shared Network License keys from the Manage Licenses page
(/admin/license.tml). This page also displays the license keys currently installed.

Licensekeysare specificto aTclPro release (for example, 1.2). When new releases
appear, Update Service customers can upgrade their keys automatically. The

“Upgrade Key” buttons on the Manage Licences page contact Scriptics and verify
your eligibility for the upgrade. If eligible, a new license key is returned and added
to your system automatically.

Revoking Licenses

In some circumstances you may need to revoke a license in use by one user so that
another user can obtain the license. For example, a user may have gone on vacation
while leaving TclPro Debugger running. The Revoke Active Licenses page
(/admin/revoke.tml) allows you to revoke individual licenses in use.

Changing Email Notifications

Thelicense server can generate email notifications when various events occur. The
Email page (/fadmin/email.tml) allows you to specify which users get email in
response to which kind of events.

Setting Date Formats

The Date Format page (/admin/datefor mat.tml) allows you to specify the date
format to use when Scriptics License Server generates reports.

Viewing Reports

Scriptics License Server generates a variety of reports about usage of TclPro tools.
Thereisadaily view and aweekly view. Both views list the TclPro applications
and the number of timesthey have been used each day (or week). The reports also
list system events such as Overdraft conditions and License Denied. Either of these
eventsindicate that your site may not be configured with enough Shared Network
Licenses.

All reports are available from the License Reports page (/reports/index.tml).

Scriptics License Server 119

120 Appendix A

Appendix B
TclPro Checker Messages

Table 14 lists the messages that TclPro Checker can produce.

Table 14 TclPro Checker Messages

Message ID
argAfterArgs
argsNotDefault
badBoolean
badByteNum
badColorFormat

badColormap

badCursor
badEvent
badFloat
badGeometry
badGridMaster
badGridRel
badindex
badint

badKey

badLevel

Message Type
Error

Error

Error

Error

Error

Error

Error
Error
Error

Error
Error
Error
Error
Error

Error

Error

Explanation
Argument specified after “args”
“args” cannot be defaulted

Invalid Boolean value

Invalid number, should be between 0 and 255

Invalid color name

Invalid colormagdiormap”: must be “new” or a window

name
Invalid cursor spec
Invalid event type or keysym
Invalid floating-point value
Invalid geometry specifier
Cannot determine master window
Must specify window before shortcut
Invalid index: should be integer or “end”
Invalid integer

Invalid keywordKey” must be:words

Invalid level

121

Table 14 TclPro Checker Messagé&Sontinued)

Message ID Message Type Explanation

badL Index Error Invalid infants: should be integer, “len” or “end”

badList Error Invalid listerror-info

badMemberName Error Missing class specifier for body declaration

badMode Error Access mode must include either RDONLY, WRONLY, or
RDWR

badOption Error Invalid optiondption” must be:options

badPalette Error Invalid palette spec

badPixel Error Invalid pixel value

badPriority Error Invalid priority keyword or value

badProfileOpt Error Optiondption” not valid when turning off profiling

badResource Error Invalid resource name

badScreen Error Invalid screen value

badSticky Error Invalid stickiness value: should be one or more of nswe

badSwitch Error Invalid switch:svitch”

badTab Error Invalid tab list

badTabJust Error Invalid tab justificatioral®-item”: must be left right center
or numeric

badTlibFile Error The filename must have a “.tlib” suffix

badTraceOp Error Bad operatioperation should be one or more of rwu

badVersion Error Invalid version number

badVirtual Error Virtual event is badly formed

badVisual Error Invalid visual

badVisualDepth Error Invalid visual depth

badWholeNum Error Bad valuedue’: must be a non-negative integer

classNumArgs Error Wrong # args for class constructassName

classOnly Error Command:dmmand” only defined in class body

122 Appendix B

Table 14 TclPro Checker Messagé&Sontinued)

Message ID
mismatchOptions
noEvent

noExpr

noScript
noSwitchArg

noVirtual

nonDefAfterDef
nonPortBitmap
nonPortChannel
nonPortCmd
nonPortColor
nonPortCursor
nonPortFile
nonPortKeysym
nonPortOption
nonPortVar
nsOnly
nsOrClassOnly

numaArgs
optionRequired
parse
procNumArgs
procOutScope

procProtected

Message Type Explanation

Error The specified options cannot be used in tandem

Error No events specified in binding

Error Missing an expression

Error Missing a script aftercontrol”

Error Missing argument fewitch switch

Error Virtual event not allowed in definition of another virtual
event

Error Non-default arg specified after default

Non-Portable Warning Use of non-portable bitmap

Non-Portable Warning Use of a non-portable file descriptor, use “file” instead
Non-Portable Warning Non-portable command

Non-Portable Warning Non-portable color name

Non-Portable Warning Non-portable cursor usage

Non-Portable Warning Use of non-portable file name, use “file join”
Non-Portable Warning Use of non-portable keysym

Non-Portable Warning Use of non-portable option

Non-Portable Warning Use of non-portable variable

Error Commandcommand” only defined in namespace body
Error Commanddmmand” only defined in class or namespace
body

Error Wrong # args

Error Expectexgbtionl, got “option2”

Error Parse errarror-info

Error Wrong # args for the user-defined ppomcName.

Error Proc only defined in clalsssName

Error CallingrotectionLevel proc: procName

TclPro Checker Messages 123

124

Table 14 TclPro Checker Messagé&Sontinued)

Message ID Message Type
serverAndPort Error
socketAsync Error
socketServer Error
tooManyFieldArg Error
warnAmbiguous Usage Warning

warnDeprecated Upgrade Warning
warnExportPat Warning
warnEexpr

warnExtraClose Usage Warning

warnlfKeyword Warning
warnNamespacePat Warning
warnPattern Warning

warnRedefine Usage Warning

warnReserved Upgrade Warning
warnUnsupported Error

warnVarRef Warning

winAlpha Error

winBeginDot Error

winNotNull Error

Explanation

Option -myport is not valid for server sockets
Cannot use -server option and -async option
Cannot use -async option for server sockets

Too many fieldsin argument specifier

Ambiguous switch, use delimiter to avoid conflicts
Deprecated usage, ussmfnmand” instead

Export patterns should not be qualified

Performance Warning Use curly braces to avoid double substitution

Unmatched closing character
Deprecated usage, use else or elseif

glob chars in wrong portion of pattern
Possible unexpected substitution in pattern

user Procl redefinesuser Proc? in file fileName on line
lineNum

Keyword is reserved for ugssion
Unsupported command, option or variableooseand
Variable reference used where variable name expected
Window name cannot begin with a capital letter
Window name must begin with “.”

Window name cannot be an empty string

TclPro Checker Message Descriptions
This section provides detailed descriptions of the TclPro Checker messages.

Appendix B

argAfterArgs
Message String:

Argument specified after “args”
Category: Error

Explanation:
An argument has been specified afteraigs keyword in a procedure
argument list. Thargs argument is treated like a normal parameter
and does not collect the remaining parameters into a single list.

argsNotDefault

Message String:
“args” cannot be defaulted

Category: Error

Explanation:
Theargs keyword cannot be initialized to contain a default value.
Although the Tcl interpreter does not complain about this usage, the
default value is ignored.

badBoolean

Message String:
Invalid Boolean value

Category: Error

Explanation:
The command expects the string to specify a Boolean value. The string
can be “17, “0”, “true”, “false”, “yes”, “no”, “on”, or “off” in any
unique abbreviation and case.

badByteNum

Message String:
Invalid number, should be between 0 and 255

Category: Error

Explanation:
The type should be a integer between 0 and 255.

TclPro Checker Messages 125

126

Appendix B

badColorFormat
Message String:

Invalid color name

Category: Error
Explanation:

The command expects the string to specify a color vaue. The string
can be any of the following forms:

colorname

#RGB

#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB

colorname can be any of the valid textual namesfor a color definedin

the server's color database file, such as “red” or “PeachPuff”. If the
color name is not a Tcl defined color, a warning is flagged stating that
the color may not be portable across all platforms; see nonPortColor.
The RGB characters represent hexadecimal digits that specify the red,
green, and blue intensities of the color.

badColormap
Message String:

Invalid colormap tolormap”: must be “new” or a window hame

Category: Error
Explanation:

The command expects the string to specify a colormap to use. If the
string is “new”, a new colormap is created. Otherwise, the string
should be a valid window path name.

badCursor
Message String:

Invalid cursor spec

Category: Error
Explanation:

The command expects the string to specify a cursor to use. The string
can take any of the following forms:

name

name fgColor

@sourceFile fgColor

name fgColor bgColor

@sourceFile maskFile fgColor bgColor

If the name form is used, and the name of the cursor is not defined on
all platforms, a warning is flagged stating that the cursor is not
portable; see nonPortCursor. None of the forms that specify a color or
multiple files are portable across all systems; they are flagged as being
non-portable; see nonPortCmd.

badEvent

Message String:
Invalid event type or keysym

Category: Error

Explanation:
The command expects the string to specify an event type. If the string
is not composed of a valid event and one or more related modifiers, an
error is reported.

badFloat

Message String:
Invalid floating-point value

Category: Error

Explanation:
The command expects the string to consist of a floating-point number,
which is: white space; a sign; a sequence of digits; a decimal point; a
sequence of digits; the letter “e”; and a signed decimal exponent. Any
of the fields may be omitted, except that the digits either before or after
the decimal point must be present and if the “e” is present then it must
be followed by the exponent number.

TclPro Checker Messages 127

128

Appendix B

badGeometry
Message String:

Invalid geometry specifier
Category: Error

Explanation:
The command expects the string to specify a geometry value. The
string must have one of the following forms:

WxH
EXX+Y
WXHEXX+Y

where the width\{) and heightld) values are positive integers, and
the X X) and Y (¥) coordinates are positive or negative integers.

badGridMaster

Message String:
Cannot determine master window

Category: Error

Explanation:
Thegrid command flags an error if a valid window name was never
specified in the command.

badGridRel

Message String:
Must specify window before shortcut

Category: Error

Explanation:
When using the relative placement shortcuts irgtiié command
(thatis, “-", “X", or “") an error is reported if the span column shortcut

(“-") is used immediately after one of the other shortcuts.

badIndex

Message String:
Invalid index: should be integer end

Category: Error

Explanation:
The command expects the string to specify an index value. The string
can be an integer or “end”.

badint

Message String:
Invalid integer

Category: Error

Explanation:
The command expects the string to specify an integer value. The string
can be optionally signed and optionally preceded by white space. If the
first two characters of the string are “0Ox” then string is expected to be
in hexadecimal form; if the first character of string is “0” then the
string is expected to be in octal form; otherwise, the string is expected
to be in decimal form.

badKey

Message String:
Invalid keyword: ‘key” must be:options

Category: Error

Explanation:
The command expects they string to be a key that matches one of
the strings in theptions list.

badLevel

Message String:
Invalid level

Category: Error

Explanation:
The command expects the string to be an integer or a “#” character
followed by an integer.

badLIndex

Message String:
Invalid index: should be integer, “len” or “end”

TclPro Checker Messages 129

130

Appendix B

Category: Error

Explanation:
The command expects the string to specify an index value. The string
can be an integer, “len”, or “end”.

badList

Message String:
Invalid list; error-info

Category: Error

Explanation:
The command expects the string to be a valid Tcl list. The reason the
string is not a valid Tcl list is displayed in the message associated with
the error.

badMemberName

Message String:
Missing class specifier for body declaration

Category: Error

Explanation:
An [incr Tcl] member name was not correctly qualified. When
defining the body for a class procedure, class method, or class
variable, it is necessary to reference the procedure or variable with the
fully qualified name.

badMode

Message String:
Access mode must include either RDONLY, WRONLY, or RDWR

Category: Error

Explanation:
When specifying access modes for a Tcl channel, at least one of the
three read-write access modes (RDONLY, WRONLY, or RDWR)
must be specified with optional modifiers (APPEND, CREAT, EXCL,
NOCTTY, NONBLOCK or TRUNC).

badOption
Message String:
Invalid option ‘option” must be:options
Category: Error
Explanation:

The command expects thption string to be an option that matches
one of the strings inptions.

badPalette

Message String:
Invalid palette spec

Category: Error

Explanation:
The command expects the string to be a valid palette specification. The
palette string may be either a single decimal number, specifying the
number of shades of gray to use, or three decimal numbers separated
by slashes (“/"), specifying the number of shades of red, green and
blue to use, respectively.

badPixel

Message String:
Invalid pixel value

Category: Error

Explanation:
The command expects the string to specify a pixel value. The string
must be an integer pixel or floating-point millimeter, optionally

followed by one of the following characters: “c”, “i", “m”, or “p".

badPriority

Message String:
Invalid priority keyword or value

Category: Error

TclPro Checker Messages 131

Explanation:
The command expects the string to specify apriority value. The string
must contain one of the following values: “widgetDefault”,
“startupFile”, “userDefault”, “interactive”, or an integer between 0
and 100.

badProfileOpt

Message String:
Optionoption not valid when turning off profiling

Category: Error

Explanation:
Using the TclX profiling toolspption is not valid. Most likely the
option is valid only when turning on profiling.

badResource

Message String:
Invalid resource name

Category: Error

Explanation:
The command expects the string to specify a resource value. If the
string length is not four characters, an error is flagged.

badScreen

Message String:
Invalid screen value

Category: Error

Explanation:
The command expects the string to specify a screen value. The string
must have the following form:

name?:display? screen?
wherename is any string andisplay andscreen are integers.

badSticky

Message String:
Invalid stickiness value: should be one or more of nswe

132 Appendix B

Category: Error

Explanation:
The grid command expects the string to specify valid sticky
coordinates. The string can contain any combination of the following
characters: “n”, “s”, “e”. or “w".

badSwitch

Message String:
Invalid switch: ‘switch”

Category: Error

Explanation:
The command expects the string to be a switch that matches one of the
strings in list of switch options.

badTab

Message String:
Invalid tab list

Category: Error

Explanation:
The command expects a list of strings that define tab stops. If the Tcl
interpreter cannot parse the list, an error is flagged. The tab list must
consist of a list of screen distances giving the positions of the tab stops.
Each position can optionally be followed in the next list element by
one of the keywords “left”, “right”, “center”, or “numeric”, which
specifies how to justify text relative to the tab stop.

badTabJust

Message String:
Invalid tab justification tab-item”. must be left right center or
numeric

Category: Error

Explanation:
The command expects the justification string to be one of the

following: “left”, “right”, “center”, or “numeric”.

TclPro Checker Messages 133

134

Appendix B

badTlibFile
Message String:

The filename must have a “.tlib” suffix
Category: Error

Explanation:
The command expected a filename wittli suffix. The word should
be changed to match the pattétaname.tlib.

badTraceOp

Message String:
Invalid operation tp”: should be one or more of rwu

Category: Error

Explanation:
The command expects the trace operation string to be one or more of
the following characters: “r”, “w”, or “u”.

badVersion

Message String:
Invalid version number

Category: Error

Explanation:
The command expects a list of strings that specifies a package version.
A valid package version string is any number of integers separated by
periods (“."), for example, “1.2.3".

badVirtual

Message String:
Virtual event is badly formed

Category: Error

Explanation
The command expects the string to specify a virtual event. The string
must have the following form:

<<word>>

whereword is any non-empty string.

badVisual
Message String:

Invalid visua
Category: Error

Explanation:
The command expects the string to specify avisual. The string can
have the following form:

class depth

default

windowName

number

best ?depth?

The class string must be one of “directcolor”, “grayscale”,

“pseudocolor”, “staticcolor”, “staticgray”, or “truecolor”, or any
unique abbreviation. Thdepth value must be a valid integer.

badVisualDepth

Message String:
Invalid visual depth

Category: Error

Explanation:
If the depth specified by a visual string is not a valid integer, then this
error is flagged.

badWholeNum

Message String:
Invalid value Yalue’: must be a non-negative integer

Category: Error

Explanation:
The command expects the string to specify a whole value. The string
can be any non-negative integer.

TclPro Checker Messages 135

136

Appendix B

classNumArgs

Message String:
Wrong # args for class constructor: className.

Category: Error

Explanation:
The wrong number of arguments are being used to instantiate the
[incr Tcl] class className. Compare the number of arguments used to
instantiate the class to the number of arguments in the constructor
defined by className.

classOnly
Message String:

Command tommand” only defined in class body
Category: Error

Explanation:
The specified command is only valid in the context of an [incr Tcl]
class body

mismatchOptions

Message String:
The specified options cannot be used in tandem

Category: Error

Explanation:
Two or more options were specified that cannot be used at the same
time. The command should be re-written to use only one of the
switches. This commonly occurs when an overloaded command
performs completely different operations based on the switches.

noEvent

Message String:
No events specified in binding

Category: Error

Explanation:
The command expects an event but could not find one while parsing
the command line.

noExpr
Message String:

Missing an expression
Category: Error

Explanation:
Similar to the numArgs message. TclPro Checker flags this error
message when an expression is missing in an if statement.

noScript
Message String:

Missing a script after control
Category: Error

Explanation:
Similar to the numArgs message. TclPro Checker flags this error
message when a script ismissing in an if statement.

noSwitchArg
Message String:

Missing argument for switch switch
Category: Error

Explanation:
The command was called with a switch that expected an argument. If
no argument was given for the switch, this error is flagged.

noVirtual

Message String:
Virtual event not allowed in definition of another virtual event

Category: Error

Explanation:
Virtual events are not allowed in event sequences. If avirtual event
(any event that begins with “<<” and ends with “>>") is found, then
this message is flagged.

TclPro Checker Messages 137

nonDefAfterDef
Message String:

Non-default arg specified after default
Category: Error

Explanation:
A non-defaulted argument has been specified after a defaulted
argument in a procedure argument list. Although the Tcl interpreter
does not complain about this usage, the default values are ignored.

nonPortBitmap
Message String:

Use of non-portable bitmap
Category: Non-Portable Warning

Explanation:
A bitmap was specified that is not supported on all platforms.

nonPortChannel
Message String:

Use of non-portable file descriptor, use “file” instead
Category: Non-Portable Warning

Explanation:
A channel was specified that is not supported on all platforms. In most
cases, this is when “file0”, “filel”, or “file2” is used instead of “stdin”,
“stdout”, or “stderr”.

nonPortCmd

Message String:
Use of non-portable command

Category: Non-Portable Warning

Explanation:
A command was specified that is not supported on all platforms.

138 Appendix B

nonPortColor
Message String:

Non-portable color name
Category: Non-Portable Warning

Explanation:
A color was specified that is not supported on al platforms.

nonPortCursor
Message String:

Non-portable cursor usage
Category: Non-Portable Warning

Explanation:
A cursor was specified that is not supported on al platforms.

nonPortFile

Message String:
Use of non-portable file name, usefilejoin

Category: Non-Portable Warning

Explanation:
A file name was specified that is not supported on al platforms. This
warning is flagged, then the string is a combination of words,
variables, or commands separated by system-specific file separators
(for example, “$dir\$file”). Use th&lejoin command to add the
system-specific file separators (for example, “[file join $dir $file]").

nonPortKeysym

Message String:
Use of non-portable keysym

Category: Non-Portable Warning

Explanation:
A keysym was specified that is not supported on all platforms.

TclPro Checker Messages 139

nonPortOption
Message String:

Use of non-portable option
Category: Non-Portable Warning

Explanation:
An option was specified that is not supported on al platforms.
Generally, the option has no effect on the systems that do not support
this option.

nonPortVar
Message String:

Use of non-portable variable
Category: Non-Portable Warning

Explanation:
A variable was used that is not supported on all platforms. In most
cases, thisiswhen the tcl_precision variable is used.

nsOnly
Message String:

Command tommand” only defined in namespace body
Category: Error

Explanation:
The specified command is only valid in the context of an [incr Tcl]
namespace body.

nsOrClassOnly

Message String:
Commandcommand only defined in class or namespace body

Category: Error

Explanation:
The specified command is only valid in the context of an [incr Tcl]
class or namespace body.

140 Appendix B

numArgs
Message String:

Wrong # args
Category: Error

Explanation:
Anincorrect number of argumentswere specified for acommand. Due
to the dynamic nature of Tcl, thiserror might be flagged unnecessarily.
For example, if the command is called within an eval body with
variables that will expand to be multiple arguments. TclPro Checker
sees only the one argument, but this may expand to match the required
number of arguments when the command is evaluated.

optionRequired
Message String:

Expected optionl, got “option2”
Category: Error

Explanation:
A specific option was expected, but the following option was found.

parse

Message String:
Parse errorerror-info

Category: Error

Explanation:
TclPro Checker could not parse the script completely due to a parsing
error. The reason for the parsing error is displayed in the message
associated with the error.

procNumaArgs

Message String:
Wrong # args for user-defined prgrocName

Category: Error

TclPro Checker Messages 141

142

Appendix B

Explanation:
You are using the wrong number of argumentsto call the Tcl
procedure procName. Compare the number of arguments used to call
the procedure to the number of arguments in the definition of
procName.

procOutScope

Message String:
Proc only defined in class className

Category: Error

Explanation:
An{Jincr Tcl] class procedureis being called from the wrong scope, or
isimproperly qualified. Thiscommonly occurs when calling inherited
procedures.

procProtected

Message String:
Calling protectionLevel proc: procName

Category: Error

Explanation:
You are calling an inaccessible procedure with a protection level of
protectionLevel. Thiserror isflagged when the procedure being called
does not have permission to call this procedure.

serverAndPort

Message String:
Option -myport is not valid for server sockets

Category: Error

Explanation:
The socket command specified the -server option and the -myport
option on the same command line. These are conflicting options and
cannot be used together.

socketAsync

Message String:
Cannot use -server option and -async option

Category: Error

Explanation:
The socket command specified the -server option and the -async
option on the same command line. These are conflicting options and
cannot be used together.

socketServer

Message String:
Cannot use -async option for server sockets

Category: Error

Explanation:
The socket command specified the -async option and the -server
option on the same command line. These are conflicting options and
cannot be used together.

tooManyFieldArg
Message String:
Too many fields in argument specifier
Category: Error
Explanation:
A defaulted procedure argument has been specified with multiple

values. An argument can have only one default value. If thevalueisto
bealist, quotes or curly braces must be used.

warnAmbiguous

Message String:
Ambiguous switch, use delimiter to avoid conflicts

Category: Usage Warning

Explanation:
The word being checked starts with a “-” but does not match any of the
known switches. Uséelimiter to explicitly declare the end of the
switch pattern.

TclPro Checker Messages 143

144

Note

Appendix B

warnDeprecated

Message String:
Deprecated usage, usmtnmand” instead

Category: Upgrade Warning

Explanation:
The specified command, option or variable does not exist and is no
longer supported in the version of the system you are checking. Use
the suggested alternative command, option or variable to upgrade the
script.

warnExportPat

Message String:
Export patterns should not be qualified

Category: Warning
Explanation:
Each export pattern can contgiiob-style special characters, but it

must not include any namespace qualifiers. That is, the pattern can
only specify commands in the current (exporting) namespace.

warnExpr

Message String:
Use curly braces to avoid double substitution

Category: Performance Warning

Explanation:
Theexpr command performs two levels of substitution on all
expressions that are not inside curly braces. To avoid the second
substitution, and to improve the performance of the command, place
the expression inside curly braces.

There are cases where the second level of substitution is required and
this warning will not apply. TclPro Checker does not discern between
these cases.

warnExtraClose

Message String:
Unmatched closing character

Category: Usage Warning

Explanation:
A close bracket or close brace without a matching open bracket or
open brace was detected. Thisfrequently indicates an error introduced
when a subcommand or script is deleted without deleting the final
close brace or bracket.

warnlfKeyword

Message String:
Deprecated usage, use else or elseif

Category: Warning

Explanation
When using the if command, it islegal to omit the else and el seif
keywords. However, omission of these keywords tends to produce
error-prone code; thus, awarning is flagged.

warnNamespacePat

Message String:
glob charsin wrong portion of pattern

Category: Warning

Explanation
Each namespace pattern is qualified with the name of an exporting
namespace and may have glob-style specia charactersin the
command name at the end of the qualified name. Thewarning is
flagged if glob characters appears in a namespace name.

warnPattern

Message String:
Possible unexpected substitution in pattern

Category: Warning

Explanation
Glob patterns use brackets to specify alist of charactersto match. If
brackets are used and the word is not properly quoted, Tcl will
interpret this as a subcommand to be evaluated, rather than a pattern.
Thiswarning is flagged to avoid possible usage errors of this nature.

TclPro Checker Messages

145

146

Appendix B

warnRedefine

Message String:
userProcl redefines userProc2 in file fileName on line lineNum
Category: Usage Warning
Explanation
A procedure or classisbeing defined, imported, inherited, or renamed
into a scope where a procedure or class of the same name already
exists.

warnReserved

Message String:
Keyword isreserved for use in version

Category: Upgrade Warning

Explanation
When checking scripts using older versions of Tcl, Tk or [incr Tcl],
thiswarning isflagged if acommand is used that does not exist in the
systemsthat you are checking against, but does exist in later versions.
Thiswarning helps to prevent scripts from defining commands that
will eventually collide with later versions.

warnUnsupported
Message String:

Unsupported command, option or variable: use command
Category: Error

Explanation
The specified command, option or variable still exists but isno longer
supported. Usethe suggested alternative command, option, or variable
to upgrade the script.

warnVarRef

Message String:
Variable reference used where variable name expected

Category: Warning

Explanation
Some commands expect a variable name for an argument, for
example, incr. If the argument is avariable reference, thiswarning is
flagged to report possible usage errors.

winAlpha
Message String:

Window name cannot begin with a capital letter
Category: Error

Explanation
The window name for any Tcl widget cannot begin with a capital
letter.

winBeginDot
Message String:

Window name must begin with “.”
Category: Error

Explanation
The path name for any Tcl widget must begin with a period (*.”)

winNotNull

Message String:
Window name cannot be an empty string

Category: Error

Explanation
A window name or path cannot be an empty string.

TclPro Checker Messages 147

148 Appendix B

Index

Symbols

tbc files 69, 70

package index files, warning 75
tcl files

Windows, running on 8
tlibfiles 134
tpj files17
.usesfiles 92

contents 93

lib/prowrapuses directory 92
[incr Tcl]

libraries 104, 105, 107
[incr TK]

libraries 103, 104, 106, 107
[incr Tcl] 8

A

accessing unwrapped files 95

accessing wrapped filesrelative to a
script’s directoryo6

additional Tcl/Tk resources

administration, Scriptics License Server
118

Adobe Acrobat Reader, installirg

all warnings and errors, TclPro Checker
displaying67

Appearance Preference tab, TclPro
Debuggen5s

Appearance preferencas

application settings, TclPro Debugger
projects20

applications, TclPro Debugger

controlling 28
debugging remots0
interrupting32
killing 32
launching remot&3
restarting32
applications, wrappin@9
arguments, passing to startup Tcl scriptin
wrapped applicationg82
arguments, passing to TclPro Wrapper
using standard inpu4

B

Base applicationo7
creating for Wrappet07
base applicationg9, 107
base applications (TclPro Wrapper)
default main files, modifyind.10
template filesL09
base applicationss (TclPro Wrapper)
creating107
linking Unix 110
linking Windows109
binary shared libraries in wrapped
applications3s
Breakpoints33
disabling33, 34
enable34
enabling33
line-based3
setting33
variable33
Breakpoints windovs4

149

150

Index

show code 35
Breakpoints window, TclPro Debugger
34
breakpoints, TclPro Debugger
line-based 33
manipulating 33
using 33
variable 33
Browser Preferencetab, TclPro Debugger
48
Browser preferences 48
Building a base application for TclPro
Wrapper 107
Building a UNIX base application 110
Building a Windows base application 109
bundled extensions, TclPro 8
Bytecode files 71
distribution 75
bytecode files, distrbuting 75
bytecode files, TclPro Compiler 70
distributing 75

C

CD, installing TclPro from 2
Checker
Parsing errors 61
performance warnings 62
platform-portability warnings 61
syntax errors 61
upgrading suggestions 61
usage warnings 62
Checker flags 62
Checker Messagel Ds 60
Checker Messages 59
checking Tcl scripts
one-pass 58
previous Tcl/Tk versions, using 65
TclPro Checker error and warning
checking 66
TclPro Checker error checking 66
two-pass script 58
Choosing a Tcl interpreter 19, 22
classes, [incr Tcl] 8
closing projects, TclPro Debugger 20
Code display, TclPro Debugger 16

Code window 16
Compilation errors 76
compilation errors, TclPro Compiler 76
Compiler 74
Compiling procedures 72
compiling Tcl scripts, TclPro Compiler
70
Connection Status window, TclPro
Debugger 53
Convention 4
Creating a base application for Wrapper
107
Creating Package Indexes 75
custom Tcl interpreters
creating 99
dynamically-linked, creating 105
statically-linked, creating 101
TclPro Debugger, using with 54
TclPro Wrapper, modifying for 94
TclPro Wrapper, using with 91
wrapped applications, using with 91
custom Tcl_Main 110
custom Tk_Main 110

D

Data Display window 40
Inspect button 40
Data Display window, TclPro Debugger
41
date formats, Scriptics License Server
setting 119
debug and non-debug Windows libraries
100
Debugger 32
breakpoints 33
command-line arguments 18, 22
interrupt 32
killing a session 32
quitting 32
starting 12
tool bar 14
Debugger error delivery 44
Debugger errors
runtime 43
Debugger preferences 44

Debugger projects 17
Debugger tool bar 14
Debugger window
appearance 14
Code 16
Stack display 14
Variable 15
Debugger windows
Data Display 40
Eval console 41
Procedure 37
Watch Variable 38
default base application main files,
modifying 110
Default Project Settings window, TclPro
Debugger 27
Delivering errors 44
Demonstration application 101
detecting wrapped application status 94
Disabling breakpoints 33, 34
displaying all warningsand errors, TclPro
Checker 67
displaying code, TclPro Debugger 38
displaying data, TclPro Debugger 40
Distributing bytecode files 75
distributing bytecode files 75
distributing bytecode files, TclPro
Compiler 75
DLLs 87
[incr Tcl] 105
[incr TK] 106
tbcload 75, 105
Tcl 105
TclPro 105
TclX 106
Tk 105
TkX 106
documentation
Tcl 5
TclPro, about 4
Dynamic Link Libraries
SeeDLLs 105
dynamic linking
Unix librariesfor 107
Unix Tcl interpreters 106

Windows libraries for 105
Windows Tcl interpreters 105
Dynamically created procedures 74
Dynamically linked application
Unix 106
dynamically-linked custom Tcl
interpreters, creating 105
dynamically-linked wrapped applications
88
statically-linked, vs. 87

E
Editing a project in the Debugger 20
email notifications, Scriptics License
Server 119
Enabling breakpoints 33, 34
error checking, TclPro Checker 66
Error delivery 44
error flags, TclPro Checker 62
error handling, TclPro Debugger 42
parsing 42
runtime 43
Error messages from TclPro Checker 121
error settings, TclPro Debugger project
25
Error suppression 44
Errors
compilation 76
parsing 43
errors, parsing 61
errors, TclPro Checker displaying all
warnings and 67
errors, TclPro Compiler 76
Eval Console, TclPro Debugger 42
Exit preferences 47
exit preferences, TclPro Debugger 47
Expect 9
libraries 104, 107
Export libraries 105
export libraries, Windows 105
export vs. static, Windows libraries 103
Extended Tcl (TclX) 9
extensions
bundled with TclPro 8
TclPro interpreters and 7

Index

151

152

Index

F

fall-through 79

Feedback from Checker 121

file shadowing 79

Find command 36

Find utility, TclPro Debugger 36
Fixed-width fonts 45

Fonts 45

G

Goto command 36

H

Handling errorsin the Debugger
Debugger error handling 42
History buffer size 46

incr Tcl 74
incr Tcl instrumentation 25
info body 72
Initialize the Wrapper library 111
Inspect variables 40
installing
Adobe Acrobat Reader 2
Scriptics License Server 115
TclPro 2
TclPro from CD 2
TclPro from the Web 2
Installing Adobe Acrobat Reader 2
Installing on UNIX from the TclPro CD
UNIX installation from the CD 2
Installing on UNIX from the Web 2
Installing on Windows from the TclPro
CD
Windows installation from the CD 2
Installing on Windows from the web
Web installation on Windows 2
Installing TclPro 2
Instrument [incr Tcl] 25
Instrument auto-loaded scripts 25
Instrument Tcl test command 25
Instrumentation in the Debugger 49
Instrumentation preferences 23

instrumentation settings, TclPro
Debugger projects 23
instrumentation, TclPro Debugger 49
Instrumenting files 24
Instrumenting procedures 24
Intelluctual property 69
Interpreter
protclsh 99
interrupting applications, TclPro
Debugger 32
Interrupting the Debugger 32

K

killing applications, TclPro Debugger 32
Killing the Debugger session 32

L

launching remote applications, TclPro
Debugger 53
libtcl30.lib 105
LIBCMT.LIB 103, 110
LIBCMTD.LIB 103, 110
libitcl30.9 107
Libraries
debug 100
export 105
nodebug 100
precompiled TclPro 99
libraries
[incr Tcl] 104, 105, 107
[incr TK] 103, 104, 106, 107
auto-loading wrapped Tcl script
libraries 96
debug and non-debug, Windows 100
dynamic linking, Unix 107
dynamic linking, Windows 105
Expect 104, 107
locations 100
static linking, Unix 104
static linking, Windows 103
tbcload 75, 103, 104, 105, 107
Tcl 103, 104, 105, 107
TclPro Wrapper 110
TclX 103, 104, 106, 107
Tk 103, 104, 105, 107

TkX 103, 104, 106, 107
Unix 75
WindowsDLLs 75, 105
Windows export 105
Windows static vs. export 103
Windows TclPro Wrapper 109
wrapped applications and binary
shared libraries 85, 86
wrapped applications Tcl script
libraries 85
License Manager 3
licenses
entering 3
overdraft policy 114
policy 113
revoking 118
TclPro applications 113
licenses,
managing 118
Line-based breakpoints 33
line-based breakpoints, TclPro Debugger
33
linking
Unix base applications 110
Unix Tcl interpreters, dynamic 106
Unix Tcl interpreters, static 104
Windows base applications 109
Windows Tcl interpreters, dynamic
105
Windows Tcl interpreters, static 102
Loader for bytecode files 75

M

Main window, TclPro Debugger 12
Managing Debugger projects 17
Manipulating breakpoints 33
Manipulating data in the Debugger 41
messagel Ds 60

Messagel Ds from TclPro Checker 121
MSVCRT.LIB 106, 110
MSVCRTD.LIB 106, 110

N

Named User Licenses 3, 113
namespace eval 74

O

objects, [incr Tcl] 8
one-pass script checking 58
Opening 28
Opening afile 28
overdraft, Scriptics License Server and
licenses 114
overview
TclPro 1
TclPro development environment 99

P

Package Indexes 75
package indexes, bytecode files and 75
parsing error 42
Parsing errors 43, 61
parsing errors

TclPro Checker 61

TclPro Debugger 42
Path environment variable 7
Performance warnings 62
pkg_mkindex 75
pkglndex.tcl files

TclPro Wrapper 86
Platform-portability warnings 61
Preferences

appearance 45

instrumentation 23

window 46

windows 46
Prefix flags 71
preparing Tcl scripts for wrapped

applications 94
Prepending prefix text 71
previous Tcl/Tk versions, TclPro Checker
checking Tcl scripts with 65

Procedure window 37
Procedures

compiling 72
Procedures window, TclPro Debugger 37
procomp.1 71
prodebug.exe 12
prodebug.tcl file 50, 51, 52
Programming guides 5

Index

153

154

Index

Project Application Settings tab, TclPro
Debugger
local debugging 21
remote debugging 23
project settings, TclPro Debugger 20
application 20
error 25
instrumentation 23
setting default 26
Project window, TclPro Debugger 18
Projects
managing 17
projects
tpj files17
projects, TclPro Debugger
closing 20
creating new 17
managing 17
opening 19
remote debugging, creating projects
52
saving 20
Proprietary information 69
protclsh interpreter 75, 99
proTclUnixMain.c 109
proTclWinMain.c 109
Protecting your intellectual property 69
proTkUnixMain.c 109
proTkWinMain.c 109
prowish 8
prowish interpreter 75
proWrap.h 108
prowrapout 79, 82
prowrapout.exe 79, 82
prowrapTclMain.c 110
prowrapTkMain.c 110
prowrapuses directory 92

Q
Quitting the Debugger 32
quitting, TclPro Debugger 32

R

Reading the manual electronically 2
Related documentation 5

remote debugging 50
creating remote projects 52
launching applications 53
modifying Tcl scriptsfor 50, 51, 52
overview 50
Tcl procedures 50
TclPro Debugger Project Application
Settings tab 23
Restarting the application in TclPro
Debugger 32
Result display, TclPro Debugger 17
revoking licenses, Scriptics License
Server 118
Run to Cursor, TclPro Debugger 29
Running a project in the Debugger 28
Running the Debugger 28
Running to the Cursor 29
runtime error 43
runtime error handling, TclPro Debugger
43
Runtime errors 43
Runtime loader 75

S

Sample application 101
Sample demonstration application 101
Screen buffer size 46
Scriptics License Server 113
administration 118
changing email notifications 119
installed files 116
installing 115
license overdraft 114
licensing policy 113
managing licenses 118
revoking licenses 118
setting date formats 119
setting initial configuration 115
Shared Network Licenses
management 114
viewing reports 119
see TclPro Checker messages entries
Selecting multiple Breakpoints 33, 34
Set up code 71
Setting breakpoints 33

setting date formats, Scriptics License
Server 119
Setting Debugger preferences 44
Setting font color 45
Setting font size 45
shared libraries 87
Shared Network Licenses 3, 113
Shared Network Licenses management,
Scriptics License Server 114
Stack display 14
Stack display, TclPro Debugger 14
Starting the Debugger 12
Starting the Debugger running UNIX 12
Starting the Debugger running Windows
12
Startup & Exit Preferencetab, TclPro
Debugger 47
-startup flag 111
static linking
Unix libraries 104
Unix Tcl interpreters 104
Windows libraries 103
Windows Tcl interpreters 102
static vs. export, Windows libraries 103
Statically linked applications 101
UNIX 104
Windows 102
statically-linked and dynamically-linked
wrapped applications, TclPro Wrapper
87, 88
Step buttons 29
Step in button 29
Step out button 30
Step over button 31
stepping, TclPro Debugger 29
Step In 29
Step Out 30
Step Over 31
Step to Result 31
Suggestion for upgrading 61
Support for TclPro 5
supported Tcl versions
TclPro Checker 57
TclPro Compiler 69
TclPro Debugger 11

Suppressing errors 44

Suppressing Messagel Ds 63

suppressing specific messages, TclPro
Checker 63

Syntax errors 61, 76

syntax errors, checking for 61

T

Tab size 46
thcload 75
libraries 75, 103, 104, 105, 107
Tcl
libraries 103, 104, 105, 107
Tcl bytecodes 69
Tcl documentation 5
Tcl Error dialog, TclPro Debugger 44
Tcl interpreter 19, 22
Tcl interpreters
creating custom 99, 101
creating custom statically-linked 101
creating custom, dynamically-linked
105
custom with TclPro Debugger 54
custom with TclPro Wrapper 91, 94
dynamically linking, Unix 106
dynamically linking, Windows 105
example code 101
statically linking, Unix 104
statically linking, Windows 102
TclPro 7
wrapped applications, specifying for
80
wrapped applications, using custom
91
Tcl Resource Center 5
Tcl/Tk Consortium 5
Tcl/Tk newsgroups 5
Tcl/Tk programming guides 5
Tcl/Tk resources on the web 5
Tcl/Tk resources, additiona 4
Tcl/Tk training 5
Tcl/Tk versions, TclPro Checker
checking Tcl scripts with previous 65
Tcl_Main 101
custom 110

Index

155

156

Index

tcl_platform(iswrapped) variable 94
tclIndex files

TclPro Wrapper 85

TclPro

bundled extensions 8
installing 2

TclPro Checker 57

controlling feedback 60

displaying all warnings and errors 67

error and warning checking 66

error checking 66

example output 63

message structure 60

messages 121

one-pass vs. two-pass checking 58

packages and version numbers 57

performance warnings 62

platform portability warnings 61

previous Tcl/Tk versions, checking
with 65

quiet feedback 65

supported Tcl versions 57

suppressing specific messages 63

syntax errors 61

upgrade suggestions for Tcl scripts
61

usage warnings 62

verbose feedback 64

warning and error flags 62

TclPro Checker Messagel Ds 121
TclPro Checker messages 59, 121

argAfterArgs 125
argsNotDefault 125
badBoolean 125
badByteNum 125
badColorFormat 126
badColormap 126
badCursor 126
badEvent 127
badFloat 127
badGeometry 128
badGridMaster 128
badGridRel 128
badindex 128
badint 129

badKey 129
badLevel 129

badL Index 129
badList 130
badMemberName 130
badMode 130
badOption 131
badPalette 131
badPixel 131
badPriority 131
badProfileOpt 132
badResource 132
badScreen 132
badSticky 132
badSwitch 133
badTab 133
badTabJust 133
badTlibFile 134
badTraceOp 134
badVersion 134
badVirtual 134
badVisual 135
badVisualDepth 135
badwholeNum 135
classNumArgs 136
classOnly 136
mismatchOptions 136
noEvent 136
noExpr 137
nonDefAfterDef 138
nonPortBitmap 138
nonPortChannel 138
nonPortCmd 138
nonPortColor 139
nonPortCursor 139
nonPortFile 139
nonPortK eysym 139
nonPortOption 140
nonPortVar 140
noScript 137
noSwitchArg 137
noVirtual 137
nsOnly 140
nsOrClassOnly 140
numArgs 141

optionRequired 141
parse 141
procNumArgs 141
procOutScope 142
procProtected 142
serverAndPort 142
socketAsync 143
socketServer 143
tooManyFieldArg 143
warnAmbiguous 143
warnDeprecated 144
warnExportPat 144
warnExpr 144
warnExtraClose 144
warnlfKeyword 145
warnNamespacePat 145
warnPattern 145
warnRedefine 146
warnReserved 146
warnUnsupported 146
warnVarRef 146
winAlpha 147
winBeginDot 147
winNotNull 147
TclPro Compiler 69
bytecode files 70

changesin Tcl script behavior 72

compilation errors 76
compilation overview 73
compiling Tcl scripts 70
components 74
creating package indexes 75
distributing bytecode files 75
overview 69
-prefix options 71
prepending prefix text 71
supported Tcl versions 69
TclPro components 1
TclPro Debugger 11
tpj files 17
Appearance Preference tab 45
Breakpoints window 34
Browser Preference tab 48
closing projects 20
Code display 16

controlling applications 28

creating new projects 17

creating remote debugging projects
52

custom Tcl interpreters, using with
54

Data Display window 41

debugging remote applications 50

Default Project Settings window 27

displaying code and data 38

displaying data 40

error handling 42

Eval Console 42

Find utility 36

finding procedures 37

going to lines 36

instrumentation 49

interrupting applications 32

killing applications 32

launching remote applications 53

line-based breakpoints 33

Main window 12

managing projects 17

mani pulating breakpoints 33

manipulating data 41

modifying existing Tcl scripts for
remote debugging 52

modifying Tcl scriptsfor remote
debugging 50

navigating code 36

opening existing projects 19

opening files 28

overview 11

parsing error handling 42

Procedures window 37

prodebug.tcl file 50, 51, 52

project application settings 20

Project Application Settingstab local
debugging 21

Project Application Settings tab
remote debugging 23

Project Errors Settingstab 26

Project Instrumentation Settings tab
24

project settings 20

Index

157

158

Index

Project window 18
quitting 32
remote debugging procedures 50
restarting applications 32
Result display 17
Run to Cursor 29
running code 28
runtime error handling 43
saving projects 20
setting default project settings 26
setting preferences 44
Stack display 14
starting 12
Startup & Exit Preferencetab 47
Step In 29
Step Out 30
Step Over 31
Step to Result 31
stepping 29
supported Tcl versions 11
Tcl Error dialog 44
tool bar 14
using breakpoints 33
variable breakpoints 33
Variable display 15
Watch Variables window 39
watching variables 38
Window menu 38
Window preferences 46
Windows Preference tab 46
wrapper script for remote debugging
51
TclPro Debugger Connection Status
window 53
TclPro documentation 4
TclPro interpreters 7
extensions, and 7
Unix, running on 7
Windows, running on 8
TclPro libraries, locations of 100
TclPro License Manager 3
TclPro overview 1
TclPro precompiled libraries 99
TclPro Technical Support 5
TclPro Wrapper 77

accessing unwrapped files 95

accessing wrapped filesrelative to a
script’s directory96

auto-loading wrapped Tcl script
libraries96

base application07

base applications, creating7

binary shared libraries in wrapped
applications3s

building a base applicatiatd7

changing Tcl script file referenceg

changing wrapped applications
Windows icon$6

command line arguments using
standard inpug4

default application nam&2

detailed feedback7

dynamically-linked wrapped
applications38

executing code at startup of wrapped
applications34

file archive in wrapped applications
78

files in wrapped applicatiorzo

libraries110

libraries, WindowsL09

modifying custom Tcl interpretegst

naming wrapped applicatiosg

packages with binary shared libraries
in wrapped applicationgs

passing arguments to startup Tcl
script in wrapped applicatiors2

pkglndex.tcl filess6

predefined -uses optiosl

preparing Tcl scripts for wrapped
applications4

prowrapuses directorg2

resolving file pathnames in wrapped
applications33

startup Tcl script for wrapped
applications31

statically-linked and dynamically-
linked wrapped applicatiorg¥, 88

Tcl interpreter wrapped applications
80

Tcl script libraries in wrapped
applications 85
Tcl script packages in wrapped
applications 86
tclIndex files 85
temporary directory 87
-uses options, creating 92
using custom Tcl interpreters 91
wrapping applications 79
wrapping shared directories 95
tclshinterpreter 8, 19, 22, 71
TclX 9
libraries 103, 104, 106, 107
technical support 5
terminating 32
Terminating the Debugger 32
Tk
libraries 103, 104, 105, 107
Tk _Main 101
custom 110
TkX
libraries 103, 104, 106, 107
To 106
Tool bar 14
training 5
two-pass script checking 58
Typographical conventions 4

U

UNIX dynamically linked applications
106
UNIX installation from the web 2
Unix libraries
dynamic linking 107
static linking 104
UNIX statically linked applications 104
Unix Tcl interpreters
dynamically linking 106
statically linking 104
Unix, running TclPro interpreterson 7
unwrapped files, TclPro Wrapper
accessing 95
upgrade suggestions, TclPro Checker Tcl
script 61
Upgrading suggestions 61

Usage warnings 62
usage warnings 62
-uses flag 80
-uses options
creating 92
predefined 81
Using the Breakpoints window 34

Vv

Variable breakpoints 33

variable breakpoints, TclPro Debugger 33
Variable display, TclPro Debugger 15
Variable window 15

wW

Warning messages from TclPro Checker
121
Watch Variables window, TclPro
Debugger 39
Watching Variable window 38
win32-ix86 103, 105, 109
Window menu, TclPro Debugger 38
Window preferences 46
Window preferences, TclPro Debugger
46
Windows dynamically linked
applications 105
Windows icons, changing for wrapped
applications 96
Windows libraries
debug and non-debug 100
dynamic linking 105
static linking 103
Windows Preference tab, TclPro
Debugger 46
Windows statically linked applications
102
Windows Tcl interpreters
dynamically linking 105
statically linking 102
wish interpreter 19, 22
wrapped applications 77
auto-loading Tcl script libraries 96
binary shared librariesin 85
detecting status 94

Index

159

160

Index

dynamically-linked 88

executing code at startup of 84

filearchivein 78

filesin 79

files relative to a script’s directory,
accessing6

naming82

packages with binary shared libraries
in 86

passing arguments to startup Tcl
script in82

path references to files in archige

preparing Tcl scripts fog4

resolving file pathnames 83

startup Tcl script foB1

statically-linked and dynamically-
linked 87, 88

Tcl interpreter80

Tcl script libraries i85

Tcl script packages 86

using custom Tcl interpreters wigi

Windows icons, changingg

wrapped applicaton

default names2

wrapping applications

shared directoriess

	Introduction to TclPro
	Installing TclPro
	Installing TclPro from CD
	Installing TclPro from the Web
	Installing Adobe Acrobat Reader
	Entering TclPro License Information

	About the TclPro Documentation
	For More Information
	TclPro Technical Support
	Finding Information about Tcl/Tk on the Web
	Tcl/Tk Training
	Related Documentation

	TclPro Interpreters and Extensions
	TclPro Interpreters
	Running the TclPro Interpreters on Unix
	Running the TclPro Interpreters on Windows

	Extensions Bundled with TclPro
	[incr�Tcl]
	Expect
	Extended Tcl (TclX)

	TclPro Debugger
	Overview of TclPro Debugger
	Supported Tcl Versions
	Starting TclPro Debugger
	The TclPro Debugger Main Window
	The Tool Bar
	The Stack Display
	The Variable Display
	The Code Display
	The Result Display

	Managing Projects
	Creating a New Project
	Opening an Existing Project
	Saving a Project
	Closing a Project
	Changing Project Settings
	Changing Project Application Settings
	Changing Project Instrumentation Settings
	Changing Project Error Settings

	Setting Default Project Settings

	Opening a File
	Controlling your Application
	Running Code with TclPro Debugger
	Run to Cursor
	Stepping through Code
	Stepping In
	Stepping Out
	Stepping Over
	Stepping to Result

	Interrupting the Application
	Killing the Application
	Restarting the Application
	Quitting TclPro Debugger

	Using Breakpoints
	Line-based breakpoints
	Variable Breakpoints
	Manipulating Breakpoints
	Viewing Breakpoints in the Breakpoints Window

	Navigating Code
	Going to a Specified Line
	Using the Find Utility
	Finding Procedures
	Using the Window Menu

	Displaying Code and Data
	Watching Variables
	Displaying Data

	Manipulating Data
	Error handling
	Parsing Error Handling
	Runtime Error Handling

	Setting Preferences
	Appearance Preferences
	Window Preferences
	Startup and Exit Preferences
	Browser Preferences

	About TclPro Instrumentation
	Debugging Remote, Embedded, and CGI Applications
	Modifying a Tcl Script for Remote Debugging
	Remote Debugging Procedures
	Creating a “Wrapper” Script for Remote Debugging
	Modifying an Existing Script for Remote Debugging

	Creating a Remote Debugging Project
	Launching your Remote Application
	Viewing Connection Status

	Using Custom Tcl Interpreters with TclPro Debugger

	TclPro Checker
	Supported Tcl Versions
	Using TclPro Checker
	One-Pass and Two-Pass Checking
	TclPro Checker Messages
	Controlling Feedback on Errors and Warnings
	Parsing Errors
	Syntax Errors
	Platform Portability Warnings
	Suggestion for Upgrading
	Performance Warnings
	Usage Warnings

	Warning and Error Flags
	Suppressing Specific Messages

	Examples of Output from TclPro Checker
	Specifying Verbose Feedback
	Specifying Quiet Feedback
	Specifying Use of Older Versions
	Error Checking
	Error and Warning Checking
	Checking for All Warnings and Errors

	TclPro Compiler
	Supported Tcl Versions
	Overview
	Compiling your code
	Bytecode Files
	Prepending Prefix Text

	Changes in Behavior
	Example 1: Cloning Procedures

	What is and isn’t Compiled
	Example 2: Procedures used with Namespace

	Compiler Components
	Creating Package Indexes
	Distributing Bytecode Files

	Compilation Errors

	TclPro Wrapper
	How the Internal File Archive Works in a Wrapped Application
	Wrapping an Application
	Wrapping Tcl Scripts and Data Files
	Specifying the Tcl Interpreter
	Specifying the Startup Tcl Script
	Passing Arguments to the Startup Tcl Script
	Specifying the Name of a Wrapped Application
	Determining Path References in Wrapped Applications
	Specifying TclPro Wrapper Command Line Arguments Using Standard Input
	Specifying Code to Execute at Application Startup
	Wrapping Libraries and Packages
	Wrapping Libraries of Tcl Scripts
	Wrapping Binary Shared Libraries
	Wrapping Tcl Script Packages
	Wrapping Packages Containing Binary Shared Libraries

	Specifying a Temporary Directory
	Getting Detailed Wrapping Feedback

	Static and Dynamic Linking with Wrapped Applications
	Deciding Whether Static or Dynamic Linking is More Appropriate
	Creating and Distributing Dynamically-Linked Wrapped Applications

	Wrapping Applications with a Custom Interpreter
	Specifying a Custom Interpreter
	Defining New �uses Options

	Preparing an Application for Wrapping
	Detecting When an Application Is Wrapped
	Modifying Custom Shells
	Changing File References
	Accessing Unwrapped Files
	Accessing Files from a Shared Directory
	Accessing Wrapped Files Relative to a Script’s Directory
	Auto-Loading Wrapped Tcl Script Libraries

	Changing the Windows Icon for a Wrapped Application

	Creating Custom Interpreters with TclPro
	Overview of the TclPro Development Environment
	Locations of the Libraries
	Debug and Non-Debug Libraries for Windows
	The Sample Application

	Creating Regular Tcl Interpreters
	Creating Statically-Linked Interpreters
	Statically Linking Windows Interpreters
	Statically Linking Unix Interpreters

	Creating Dynamically-Linked Interpreters
	Dynamically Linking Windows Interpreters
	Dynamically Linking Unix Interpreters

	Creating Base Applications for TclPro Wrapper
	Linking Windows Base Applications
	Linking Unix Base Applications
	Modifying the Base Application Default Main Files

	Scriptics License Server
	How Licensing Works
	How TclPro Applications Obtain Licenses
	How Scriptics License Server Manages Shared Network Licenses
	License Overdraft

	Scriptics License Server Installation
	Installing the Scriptics License Server Software
	Setting the Initial Configuration
	Scriptics License Server Installed Files

	Scriptics License Server Administration
	Managing Licenses
	Revoking Licenses
	Changing Email Notifications
	Setting Date Formats
	Viewing Reports

	TclPro Checker Messages
	TclPro Checker Message Descriptions
	argAfterArgs
	argsNotDefault
	badBoolean
	badByteNum
	badColorFormat
	badColormap
	badCursor
	badEvent
	badFloat
	badGeometry
	badGridMaster
	badGridRel
	badIndex
	badInt
	badKey
	badLevel
	badLIndex
	badList
	badMemberName
	badMode
	badOption
	badPalette
	badPixel
	badPriority
	badProfileOpt
	badResource
	badScreen
	badSticky
	badSwitch
	badTab
	badTabJust
	badTlibFile
	badTraceOp
	badVersion
	badVirtual
	badVisual
	badVisualDepth
	badWholeNum
	classNumArgs
	classOnly
	mismatchOptions
	noEvent
	noExpr
	noScript
	noSwitchArg
	noVirtual
	nonDefAfterDef
	nonPortBitmap
	nonPortChannel
	nonPortCmd
	nonPortColor
	nonPortCursor
	nonPortFile
	nonPortKeysym
	nonPortOption
	nonPortVar
	nsOnly
	nsOrClassOnly
	numArgs
	optionRequired
	parse
	procNumArgs
	procOutScope
	procProtected
	serverAndPort
	socketAsync
	socketServer
	tooManyFieldArg
	warnAmbiguous
	warnDeprecated
	warnExportPat
	warnExpr
	warnExtraClose
	warnIfKeyword
	warnNamespacePat
	warnPattern
	warnRedefine
	warnReserved
	warnUnsupported
	warnVarRef
	winAlpha
	winBeginDot
	winNotNull

	 Index

