

Cuneiform - Implementing
Document Layout with Clay

Presented at:
The 26th Annual Annual Tcl Developer’s Conference

(Tcl‘2019)

Houston, TX

November 4-8, 2019  

Sean Deely Woods
Senior Developer

Test and Evaluation Solutions, LLC
400 Holiday Court

Suite 204
Warrenton, VA 20185

Email: yoda@etoyoc.com
Website: http://www.etoyoc.com

Abstract
When composing massive machine generated manuscripts, one is often tempted to

fall back on PDF as a format of choice for digital documents. At least until one has to
develop content for an international client who uses a Logographic language system.
This paper describes an object oriented XML/HTML layout system called Cu-
neiform. Cuneiform acts as an Tcl-Savvy object model for formats that demand a
document object model. At the same time, it can leverage the similarities between
XML and HTML to integrate SVG files with text.

mailto:yoda@etoyoc.com
http://www.etoyoc.com
mailto:yoda@etoyoc.com
http://www.etoyoc.com

Introduction
Cuneiform is a package written in TclOO to allow the interaction of several complex rule sets to gener-

ate professional quality documentation in a variety of formats. It is by no means simple. It provides no
training wheels. There is very little in the way of sugar coating. You must understand the fundamentals
Tcl, TclOO, XML, HTML5, and CSS for this system to be of any use.

A Brief History
Content development is the most expensive part of any project, be it artwork for a game or an expert

system model for a ship. This project, oddly enough, started with the former, and ended up supporting the
later.

I had just finished a Tk display engine for a text-based game, and was eager to start developing content.
It was the fall of 2018. Time for the leaves to start to changing color, and Apple to release its latest OS.
And just before our conference, I discovered that Apple manage to wreck Tk on the Mac. Again. And it
got me to thinking about ways to future-proof the content.

As I was pencilling ways to have one set of story elements target a captive browser in either Tk or em-
bedded http server, when I was presented a problem at work. We had a documentation tool that generated
volumes of cards used by our US Navy customers, in PDF form.

We had just signed a contract with the Republic of Korea Navy to produce similar documentation for
their ships. On the surface, things should have been easy. Unfortunately PDF's ability to render logo-
graphic languages (like Hangul) is somewhat limited. I needed to find a new format, and quickly.

The answer was, oddly enough, HTML. With the right structure, HTML is very printable. As a format it
is completely UTF-8 savvy. Essentially if a text can be produced on a keyboard, HTML can display it and
print it. The format even supports embedding SVG data into documents to integrate text and vector graph-
ics. Which, as it turns out, was fantastic for including little maps inside of the documents without having
to create a brittle file system to store images.

But the flexibility has a cost. The layout for a printed document is VERY different from an interactive
application. I needed a system that could allow one content engine to support both.

Rules and Exceptions and Exceptional Rules
Producing and interpreting the XML and HTML formats requires reading quite a bit into the content

writer's intent. It also requires and understanding of the display engine's implementation. On the XML
side, this is resolved by pointing to namespace specifications. Though mostly this involves pointing fin-
gers, as nobody can honestly READ those specifications. For HTML, this is resolved by tomes of com-
mentary on every incarnation of the standard, and how every incarnation is actually interpreted by the
myriad browsers in the market.

Tools like TDOM are brilliant at ensuring one's document is grammatically correct. But, TDOM can't
tell you if the structure of that document is correct. Essentially your document needs to have a structure
ahead of time, then TDOM can enforce it.

Having a structure ahead of time sounds like a straightforward requirement for IT. One has require-
ments. Those requirements beget rules. Rules infer structure. The problem with my card generator project
in particular, and many projects in general, is that rules don't come from one and only one source. Rules
can (and often do) come from many sources. Those sources of rules are under no obligation to play well
with one another. In the card generator case, the product is governed by 3 different rules sources: Expert
System Rules, Visual Language Rules, and finally Naval Culture Rules.

I could spend a paper describing each. So let's summarize the impact as thus: the display engine needed
to easily support a lot of custom reports in several formats. So now let us get down to the display engine
itself.

Cuneiform
Cuneiform was written as a way to give all of the rules a place to interact before we start cutting a final

document. It is network of object model on top of the standard HTML/XML Document Object Model.
My personal style is to leverage the power of Tcl whenever possible. Even if that makes code look a little
lumpy in spots. There's no language to learn for Cuneiform, but there are a lot of design patterns. The
principle design pattern is that all objects in our Document Object Model are, in fact, TclOO Objects. And
each of those TclOO objects wants to reduce itself to a string in the final rendering.

Documents

Document objects are the objects that are exposed directly to the outside. They represent the completed

state of the output. Most of their methods either spawn subordinate objects or assemble the final deliver-
able.

Containers

Containers are objects which are envelopes for other objects. If we think of our document as a file sys-

tem, containers are the folders. If we are using metaphors from Tk, they are like a frame or a canvas. They
can container other containers.

Nodes

Nodes are the otherwise indivisible "producers of output" for our document. Nodes can be a block of

text, an image, a function call, or a database query. While the output they produce can be static or dynam-
ic, we know that we can't drill any deeper than a node.

Structural Symmetry

Every abstraction can still perform the same interactions as a lower level component. Every document

is a container. Every container is a node. They may have to tailor out certain interactions because they no
longer make sense, but they do so in a polite and consistent way. This allows a script to use a one-size-
fits-all approach to interaction with nodes, containers, and documents. Likewise, lower level nodes have
the same methods as the higher level abstractions. A node can answer a query to "list of children" with a
simple empty list. The structure of every component is Cuneiform is identical, we distinguish types by
altering their behavior.

Example - Basic HTML
Let us say we want to generate an HTML document that emits "Hello World!"

package	require	cuneiform	

cuneiform::document.html	create	HTML	html		 	;	#	Create	an	object	HTML	
HTML	cuneiform_structure		 	 	 	;	#	Build	the	"skeleton"	of	our	document	
HTML	eval	{	
		set	title	{Hello	World!}	
		title	$title																																				;	#	Replace	the	title	in	HTML	headers	
		my	tag	h1	content	$title	 																	;	#	Add	an	H1	block	with	the	title	string	
			 	 	 	 	 	 	;	#	Generate	a	paragraph	of	text	
		para	{	
This	is	a	demonstration	of	the	[emph	power]	of	
[link	http://www.etoyoc.com/fossil/clay	Cuneiform]	
}	
}	;	#	End	eval	
puts	[HTML	html_output]	

 We get back:
<!DOCTYPE	HTML>	
<HTML>	
<HEAD>	
<title>Hello	World!</title>	
	<META	charset="UTF-8">	
	<style	media="screen"	type="text/css"></style>	
	<style	media="print"	type="text/css"></style>	
	</HEAD>	
<BODY>	
<header	id="header"></header>	
	<DIV	id="top"></DIV>	
	<DIV	id="output"><h1>Hello	World!</h1>	
	<P>This	is	a	demonstration	of	the	<I>power</I>	of	
Cuneiform</P>	
	</DIV>	
	<DIV	id="sideimg"></DIV>	
	<DIV	id="bottom"></DIV>	
	<footer	id="footer"></footer>	
	</BODY>	
</HTML>	

We can clearly see that Cuneiform leverages the power of Tcl as a control language. The "eval" method,
for instance, allows us to execute a block of code inside of the namespace of the HTML object's content.
This environment provides us full access to the HTML object's methods, it's children, and commands em-
bedded in its namespace to simplify common interactions. title, for instance, replaces the content of the
<TITLE> tag inside of the <HEADER>. para formats a <P> block, and passes the incoming string through a subst.
emph wraps the text in <I>. link formats a hyperlink.

HTML Tables
Developers who are familiar with HTML document may suddenly cry shenanigans. Normally the

HEADER tag is laid down before the BODY. And, indeed, with Cuneiform this is also the case. But that
process doesn't happen until we invoke html_output. Right up until that point, any element of our HTML
document can be appended, replaced, or deleted. Thus, despite the <HEADER> and <TITLE> being laid down
during our call to cuneiform_structure we can modify their contents.

This seems quite trivial so far, but let us consider the case of a complex table:
Toplevel System Type Unit

Firemain
SWS

VALVE FM123 (1-122-1)

VALVE FM331 (1-124-4)

AFF VALVE AFF33 (1-140-3)

Power 60HZ POWERPANEL Power Panel (1-124-3)

In HTML we can achieve this effect with the ROWSPAN field. But, if we are retrieving our content from a
database query returning a stream of records, we may not know the number of rows we are merging until
the very end.
set	TABLE	[my	tag	table	width	100%]	 	 	 ;	#	Create	object	for	<TABLE>	tag	
set	toplevel	NULL	
set	toplevelColumn	::noop	
set	system	NULL	
set	systekColumn	::noop	
set	tsystem	0	
db	eval	{	
select	*	from	devices	where	isolated_compartment=:compartmentid	order	by	toplevel,system,	name	
}	record	{	
		set	row	[$TABLE	row]	
		if	{$record(toplevel)	ne	$toplevel}	{	
				set	toplevelColumn	[$row	column	class	header	content	$record(toplevel)]	
				set	toplevel	$record(toplevel)	
				set	tcount	0	
		}	
		$toplevelColumn	configure	rowspan	[incr	tcount]	
		if	{$record(system)	ne	$system}	{	
				set	systemColumn	[$row	column	class	header	content	$record(system)]	
				set	system	$record(system)	
				set	tsystem	0	
		}	
		$systemColumn	configure	rowspan	[incr	tcount]	
		$row	column	content	$record(type)	
		#	Newly	created	tags	are	themselves	objects	capable	of	spawning	new	tags	
		[$row	column]	tag	a	href	/equipment/$record(eqptid)	content	"$record(name)	($record(location))"	
}	

We have taken a complex HTML layout, and fit it into the flow of a database reading a stream of
records. The ::noop command is a handy fake procedure that accepts any input and has no body:
proc	::noop	args	{}	

The rest of the loop is detecting if the "toplevel" or "system" fields have changed, and perform the
HTML wizardry to inject a column in the right place. If you've ever implemented a similar structure while
also streaming out the HTML you know that there are some, shall we say, complexity to it all. Very often
this requires splaying one's query into an intermediary form, such as a dict or array, and then counting the
elements before generating the HTML. Or simply living with layouts that look like a spreadsheet.

HTML Forms
Forms are another area where the quoting rules for Tcl and HTML/XML gets… nasty. But in Cu-

neiform, the code looks quite appetizing. Here is an example taken straight from some production code:

clay::define		::paphmis::content	{	
		method	SearchForm	object	{		
				set	result	{}	
				set	form	[$object	tag	form	action	/search	method	post]	
				set	sel	[$form	tag	select	name	type]	
				set	formdata	[my	FormData]	
				$sel	tag	option	value	any	content	Any	
				dict	for	{type	info}	[::paphmis::content.search	clay	get	search]	{	
						$sel	tag	option	value	$type	content	[dict	get	$info	desc]	\	
	 selected	[expr	{$type	eq	[dict	getnull	formdata	type]}]	
				}	
				$form	tag	input	type	text	name	searchstring	value	[dict	getnull	$formdata	searchstring]	
				$form	tag	input	type	submit	name	go	value	"🔍\;"	
		}	
}	

The code is run inside of a dynamic content generator implemented in the httpd module from Tcllib.
Some things to note:

• The place in the document to insert the form is given as the argument object
• The method does not return a value

• The only HTML specific code is the Unicode escape for the string representation for the "go" button.
• Values are coming in from the http request via the httpd::reply method FormData
• We don't have to worry about closing tags!

Embedded SVG
The power of Cuneiform extends beyond straight HTML. Children for tags can be from a different

XML namespace.

set	SVG	[my	tag	svg	xmlns	http://www.w3.org/2000/svg	viewBox	{0	0	100	100}]	
set	A	[$SVG	tag	a	href	http://www.ilovecircles.com]		
set	G	[$A	tag	g	id	mygroup	css:fill	red]	
$G	tag	add	circle	cx	50	cy	50	r	40	stroke	black	stroke-width	3	

Basically, we create the <SVG> tag, and
add and configure elements under it just like
we would any other tag in HTML. This de-
spite the fact that SVG is actually straight
XML with slightly different rules than
HTML. And, just like the rest of Cuneiform,
we don't have to deal with quoting hell, and
the tags close themselves.

I realize this example is trivial. Now imag-
ine instead we had to produce an document
on the right.

For the hyperlinks to work properly in all
browsers, the SVG data needs to be embed-
ded in the html. An tag inclusion won't
do. And we don't just have one SVG image.
We have one image for each of several decks of the ship. The lines for the walls are pulled from one table
in a ship description file. The shapes for the clickable polygons are pulled from another table. The overlay
of equipment is pulled from yet a third.

Foundations of Cuneiform
The overall theme of Cuneiform is a prototyping system. Everything starts of life as a generic "object',

and decisions made during that object's lifespan mix in specialized behaviors. But before we get to the
dessert, we have to eat our vegetables first.
Clay Framework

The implementation builds on the Clay framework, which has been discussed in earlier papers and for 1

which a manual is now available online . Clay is my personal shorthand for a concepts and design pat2 -
terns that I find myself re-implementing with every library I write. I'll try to keep the specifics of clay to a
minimum, but if you see a language in Camel Case, odds are it's a clay framework keyword.
Class ::clay::yggdrasil

clay::yggdrasil is a design pattern for tree structures, built on top of clay. It consists of a handful of
methods for managing links between objects. The most common link being between parent and child.
Yggdrasil also allows objects to understand the difference between attributes of the object itself, attributes
expressed as XML values, and attributes managed by cascading style sheets (CSS). The main methods
provided are child, config, css, eval, link, source, and uuid. Several of those public methods have a herd of
private methods (Child_*, Config_*, CSS_*, Link_*) to support them. For specifics, see the manual . 3

http://www.ilovecircles.com

Optimizing in C
Producing SVG images from external sources requires quite a bit of mathematical manipulation. To

support this project, I had to add several C accelerated routines to transform generic vectors into the myri-
ad of forms that SVG expects. These functions also allow the objects to perform bounding box checks as
if they were cast onto a virtual canvas. May utilize a bounding box Tcl_Obj type that is created by
Odielib . 4

The canvas coordinate transformations are to allow a shape library inside of the Integrated Recoverabil-
ity Model to be rendered in SVG. Note: These conversion routines are used inside of my test application, 5

but are not invoked by the Cuneiform library itself. Cuneiform just cares about the XML attributes.
In my example image you see a lot icon overlays. This is accomplished with the following proc:  

Command Arguments Description

::sprite::svg::bbox_overlap bbox bbox Evaluate if two bounding boxes values
overlap

::sprite::svg::coords_to_bbox x1 y1 x2 y2 Produce a bounding box value from can-
vas style notation.

::sprite::svg::rect_to_bbox minx miny sizex sizey Generate a bounding box value from in-
formation known about an SVG Rect tag.

::sprite::svg::arc_to_path start end x1 y1 x2 y2 Convert information about a canvas arc
into an SVG path

::sprite::svg::ellipse_to_bbox cx cy sizex sizey Convert information from an SVG el-
lipse tag into a bounding box value.

::sprite::svg::coords_to_ellipse x1 y1 x2 y2 Convert canvas style coordinates into an
SVG ellipse argument string

::sprite::svg::coords_to_ellipse_dict x1 y1 x2 y2 Convert canvas style coordinates into a
dictionary suitable for feeding to Cu-
neiform

::sprite::svg::bbox_to_ellipse bbox Convert a bounding box value into an
SVG ellipse argument string

::sprite::svg::bbox_to_ellipse_dict bbox Convert a bounding box value into a dic-
tionary suitable for feeding to Cuneiform

::sprite::svg::coords_to_rect x1 y1 x2 y2 Convert canvas style coordinates into an
SVG rect argument string

::sprite::svg::coords_to_rect_dict x1 y1 x2 y2 Convert canvas style coordinates into a
dictionary suitable for feeding to Cu-
neiform

::sprite::svg::bbox_to_rect bbox Convert a bounding box value into an
SVG rect argument string

::sprite::svg::bbox_to_rect_dict bbox Convert a bounding box value into a dic-
tionary suitable for feeding to Cuneiform

proc	::paphmis::ComptOverlay	{SVG	deckid	unit	xscale	yscale	iconsize	obj	flags}	{	
		if	{![llength	$flags]}	return	 	 	 ;	#	Nothing	to	display?	End	early	
		set	fontsize	[expr	{$iconsize*0.75}]	
		set	bbox	[$obj	clay	get	bbox]	 	 	 ;	#	The	polygon	shape	stored	the	bounding	box	extents	
		set	center	[::odie::bbox::center	$bbox]															;	#	Calculate	the	center	of	the	bounding	box	
		set	iconrad	[expr	{$iconsize*.6}]	
		foreach	item	$flags	{	
				set	info	[dict	create	fill	violet	opacity	1.0]	
				switch	$item	{	
						C	{	
								dict	set	info	fill	tomato	
						}	
						M	{	
								dict	set	info	fill	lightgreen	
						}	
						F	{	
								dict	set	info	fill	paleturquoise	
						}	
						E	{	
								dict	set	info	fill	khaki	
						}	
						V	{	
								dict	set	info	fill	skyblue	
						}	
						default	{	
								dict	set	info	fill	white	
								dict	set	info	stroke	black	
								dict	set	info	stroke-width	0.5	
						}	
				}	
				#	Calculate	the	size	of	our	icon	
				set	ry	[set	rx	[expr	{$iconsize*0.5}]]	
				if	{[string	index	$item	0]	eq	"&"}	{	
						set	i	[string	first	"\;"	$item]	
						set	len	[expr	{[string	length	$item]-$i}]	
				}	else	{	
						set	len	[string	length	$item]	
				}	
				if	{$len==1}	{	
						set	sizex	$iconsize	
				}	else	{	
						set	sizex	[expr	{$fontsize*$len}]	
				}	
				set	sizey	$iconsize	
				#	Starting	from	the	center,	fan	out	in	progressively	larger	hexagons	to	find	an	empty	space	large	enough	
				#	for	this	icon	
				while	1	{	
						incr	idx	
						set	point	[::vectorxy::hex_tile_center	$idx	$iconrad	$center]	
						::vectorxy::assign	$point	thisx	thisy	
						set	thisbbox	[::sprite::svg::ellipse_to_bbox	$thisx	$thisy	$sizex	$sizey]	
						set	overlap	0	
						foreach	itembbox	$items	{	
								if	{[::sprite::svg::bbox_overlap	$itembbox	$thisbbox]}	{	
										set	overlap	1	
										break	
								}	
						}	
						if	{!$overlap}	break	
				}	
				lappend	items	$thisbbox	
				$SVG	tag	rect	{*}[::sprite::svg::bbox_to_rect_dict	$thisbbox]	\	
						rx	$rx	ry	$ry	\	
						css	$info	
				$SVG	tag	text	x	$thisx	y	$thisy	\	
						content	$item	\	
						css	[list	stroke	black	font-size	$fontsize	\	
	 font-family	courier	dominant-baseline	middle	\	
	 text-anchor	middle	opacity	1.0]	\	
	}	
}	

Content Management System
Another application I've found for Cuneiform is as a system to maintain by blog. Blogging software

needs to combine both the content for the page, maintain a file system (for complex entries), and also
provide annotations for the content index.

I'm a lazy programmer, so I also have a requirement that synchronizing my local copy (which I invari-
ably end up running so I can make sure what I coded is what I get) is as simple as invoking Rsync. The
system is a little quirky, but it works for my purposes.

The format it is a half-baked MIME using a dictionary instead of a sane notation. (The advantage being
the parser in Tcl is simpler.) A delineation marker separates the headers from the content. You can also see
that the format includes several commands in the object's namespace to make common patterns simple.
The [link] command is simply a macro for my	tag	link	href	$link	content	$string.	

What draws me to the format is that, if I steer clear of raw HTML, I can run that set of expressions to
render onto a Tk text widget, a canvas, a plain text file, or a man page. The DOM can also do styling in
the background. At least where the notation doesn't provide specific guidance.

Conclusions
Cuneiform uses a stylized form of TclOO to represent a document object model in a form that is com-

fortable for a Tcl programmer. It is designed to allow an investment in content development to survive
technology changes. Using Tcl as an expression engine allows content writers to represent complex ideas
without resorting to wonky syntax. (Well, at least no wonkier than Tcl.)

Title:	{Story	Crafting}	
Class:	{blog}	
Date:	{Sat	Jul	27	09:31:30	EDT	2019}	
Content-Type:	{html}	
Format:	{clay}	
date:	{Sat	Jul	27	09:31:30	EDT	2019}	
owner:	619eb03b-0f7d-490f-a2ac-9eb72e4c789d	
---	BEGIN	CONTENT	---	
para	{	
I've	spent	the	last	few	weeks	learning	the	finer	arts	of	
[link	{https://www.youtube.com/user/lindybeige}	Psychology],	
[link	{https://www.youtube.com/channel/UCFQMO-YL87u-6Rt8hIVsRjA}	{Story	Telling}],,	
and	[link	{https://www.youtube.com/user/Drachinifel}	{Naval	History}]	
from	YouTube.	Feel	free	to	judge	me.}	

para	{On	one	hand,	time	I	could	have	spent	on	story	lines	was	spent	listening	to	
talking	heads	talk	about	craft.	On	the	other,	those	hours	learning	the	craft	have	saved	me	
man	years	of	effort	re-learning	what	they	learned	the	hard	way.	
}	

para	{	
The	point	here	is	that	activity	is	not	progress.	I	know	I	can	write.	I	know	I	can	
write	a	lot	in	a	short	amount	of	time.	(At	least	if	this	blog	is	any	evidence.)	
If	I	could	monetize	writing	the	first	three	chapters	
of	a	book,	I'd	be	rich.	I	have	had	many	a	brilliant	idea	devolve	into	a	degenerate	mess.	
This	time	around,	I	knew	I	had	to	do	something	different.	I	had	to	actually	learn,	not	
just	do.	
}	

References and Citations:
 "Clay - A Minimalist Framework for TclOO Libraries", Sean Woods
1

https://tcl.tk/community/tcl2018/assets/talk132/Paper.pdf

 "Clay Framework Reference Manual", Sean Woods
2

http://fossil.etoyoc.com/fossil/clay/doc/trunk/htdocs/clay.html

 "Clay Yggdrasil Reference Manual", Sean Woods
3

http://fossil.etoyoc.com/fossil/clay/doc/trunk/htdocs/clay-yggdrasil.html

 See Odielibc:
4

http://fossil.etoyoc.com/fossil/odielib

 For information about the Integrated Recoverability Model, see:
5

http://www.tnesolutions.com

http://fossil.etoyoc.com/fossil/odielib
http://www.tnesolutions.com
https://tcl.tk/community/tcl2018/assets/talk132/Paper.pdf
http://fossil.etoyoc.com/fossil/clay/doc/trunk/htdocs/clay-yggdrasil.html
http://fossil.etoyoc.com/fossil/clay/doc/trunk/htdocs/clay.html

	Cuneiform - Implementing Document Layout with Clay
	Presented at:
	Abstract
	Introduction
	A Brief History
	Rules and Exceptions and Exceptional Rules
	Cuneiform
	Documents
	Containers
	Nodes
	Structural Symmetry
	Example - Basic HTML
	HTML Tables
	HTML Forms
	Embedded SVG
	Foundations of Cuneiform
	Clay Framework
	Class ::clay::yggdrasil
	Optimizing in C
	Content Management System
	Conclusions
	References and Citations:

