Relation Oriented Software Execution Architecture

Relation Oriented Software Execution Architecture

A Tcl Package for Translating XUML Models

Relation Oriented Software Execution Architecture

Copyright © 2014-2015 G. Andrew Mangogna

Legal Notices and Information

This software is copyrighted 2014-2015 by G. Andrew Mangogna. The following terms apply to all files associated with the
software unless explicitly disclaimed in individual files.

The author hereby grants permission to use, copy, modify, distribute, and license this software and its documentation for any
purpose, provided that existing copyright notices are retained in all copies and that this notice is included verbatim in any
distributions. No written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this
software may be copyrighted by their authors and need not follow the licensing terms described here, provided that the new terms
are clearly indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS
DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIB-
UTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government, the Government shall have only
"Restricted Rights" in the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause
52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be classified as
"Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined in Clause 252.227-7013 (c)
(1) of DFARSs. Notwithstanding the foregoing, the authors grant the U.S. Government and others acting in its behalf permission
to use and distribute the software in accordance with the terms specified in this license.

Relation Oriented Software Execution Architecture

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME
0.1 August 3, 2014 Initial coding. GAM
1.0a1 October 5, 2014 First alpha release. GAM
1.0a2 October 14, 2014 Second alpha release. GAM
1.0a3 January 4, 2015 Third alpha release. GAM
1.0a4 January 11, 2015 Fourth alpha release. GAM
1.0a6 February 17, 2015 Sixth alpha release. GAM
1.0b1 March 5, 2015 First beta release. GAM
1.0b2 March 16, 2015 Second beta release. GAM
1.0b3 March 25, 2015 Third beta release. GAM
1.0b4 March 26, 2015 Fourth beta release. GAM
1.0b5 March 31, 2015 Fifth beta release. GAM
1.0b6 July 22, 2015 Sixth beta release. GAM
1.0b7 September 10, 2015 | Seventh beta release. GAM
1.0 October 3, 2015 Release of 1.0. End of beta releases. GAM

Relation Oriented Software Execution Architecture iv
Contents

1 Introduction 1

What’s Next o o 1

How To Read This Document e e 2

A Few Words About Tcl e e 2

2 Design Strategy 3

Comparing Approaches L e e 3

Namespace Ensemble Design Approach o e 4

Domain Organization v v i it e 6

Package Organization e 10

3 Realizing Model Concepts in rosea 13

Relation Values, Relvars and Instance References—Oh My! oo 13

Creating References e 14

Dereferencing an Instancel e 15

Nil Instance Reference L 16

Counting References e 17

Instance Reference Equality o . e e 18

Instance Reference Set Operations o e e 18

Iterating on References L L e e e 19

Forming and Breaking Relationships e 20

Navigating the Model o L e e e 22

Simple ASSOCIAtIONS v v v v v o e 22

Generalization e e e 23

Associative CIasses o oL e e e e e 24

4 Package Procedures 25

A Diversion for Testing e 25

ClassCommands e e e 26

Find AllInstances 0 o o e e 26

Find an Instance by its Identifier e 27

Relation Oriented Software Execution Architecture v

Find Instances Meeting a Criteria i i i i i e e e e e 27
More Testing Infrastructure L e e e e e e e e e e 28
Create anInstance L e 30
Create an Instance ina Given State L 30
Asynchronous Instance Creation o o i e e e e e e e e e e 32
Updating Class Values e 33
Relationship Commands e 34
Linking Simple ASSOCIAtIONS o v it e e e e e e e e e e e e e e e e e e 35
Linking Class Based ASsOCIations i i i i it e 38
Unlinking Simple ASSOCIAtIONS v v v v o e 41
Unlinking Class Based Associations o it e 42
Migrating Subclasss In Generalizations L. e 43
Signaling an ASSIZNET i it e 45
Signaling a Multi-ASSIZNer oL e e e e e e 46
Creating a Multi-ASSIZNer o o o it e e e 47
Instance Commands L. e e 48
Finding Related Instances 48
Updating Attributes o o e e e e e e e e e e e e e e e 57
Modifying Attributes L. e 60
Reading Attributes L e 62
Deleting InStances o o e e e e e e e e e e e 65
Signaling Events L e e 66
Signaling Delayed Events L L e e e e e e e e 68
Canceling Delayed Events e 68
Remaining Time fora Delayed Event 69
Invoking Instance Operations o v v i i e e e e e e e e e e e e e 70
Dispatch Commands e 70
Dispatching Events e 72
SignalEvent L e e e e e e 73
DispatchEvent e 75
Dispatching Delayed Events e e e e e e 79
SignalDelayedEvent L. e 80
DispatchDelayedEvent e 81
CancelDelayedEvent L e e e e e e 81
SignalTimeRemaining L e e e e 83
Dispatching Polymorphic Events e 83
MapPolymorphicEvent e e e e e 84
Helper Commands o e e e e e e 87
DeclError o e e 87

SplitRelvarName 0. 88

Relation Oriented Software Execution Architecture vi
5 Configuration Language 89
Config Namespace Layout e e e e e e 90
Evaluating Configuration SCripts L e e e e 90
Configure e 91
ConfigureFromChan e e e 92
ConfigureFromFile 92
DefiningaDomain L e 93
Domain e 95
Defining Domain Componentsottt e e e 97
Defining CIasses o o i e e e e e e e e e e 98
Class o o 101
Defining Classes COMPONENLS v v vt v ittt e e et e e e e e e e e e e e 102
Attribute L e e 102
Reference 106
Defining Operations e e e e e 109
ClasSop . . v v o e e e 110
INStop . . . o e e 112
Defining Relationships e e 115
ASSOCIAtION L L e e e e e 119
Generalization e e 131
Defining Class State Models e e e e e 132
Statemodel L 133

State e e e e e e 137
Transition e e e 143
Initialstate e e 145
Defaulttrans L e e e e e 145
Terminal L L e 146
Polymorphic e e 147
Defining ASSIZNers e e e e e e e e e e e e 156
ASSIZNET . . o o vt e e e e 157

State e e e e e 158
Transition L e e e e 158
Initialstate e e 159
Defaulttrans L e e e e e 159
Identifyby o L e 160
Defining Domain Operationst e e e e e 162
Handling Configuration Errors e 162
6 Generating Domains 170

Relation Oriented Software Execution Architecture Vii

7 Initial Instance Population 217
Populating Domains L e e e 219
Domain e 219

Class . . . o e e e e 220
ASSIZNCT . . o . v v i e e e 224

8 Serializing a Domain 227
9 Bridging to Instance Operations 231
10 State Machine Trace 233
Trace Data L L e 234
Trace Procedure L 236
Trace Control L e 239

Trace Population L e e e e e 240

Trace Operations i e e e e e 244

Trace Dictionary Structure L. e e e 245

Decode AIITraces o o v i i e e 246

Decode Class Traces i i i it e e e e e e 247

Decode Target Traces L 249

Format Traces o o e 250

Format Trace Record e 251

Format Time Stamp e 252

Format Time As Seconds e 252
Sequence Diagrams e e e e 252
Diagram Traces e e e e e e e e e 253

Diagram AIl Traces e e 253

Diagram Class Traces o i i e 253

Diagram Target Traces o o i i e e e e e e e e e e e e e 254

11 An Example 255
Domain Data e 256
Washing Machine Class e 256

Washing Cycle Class o e e 257

Clothes Tub Class L . e e e e 258

Water Valve Class o e e e 258

Motor Class o o e e e e e e e e 259

Water Level Sensor L e e 259

Domain Dynamics e e e e e e e e e e e e e 259

Washing Machine State Model e 260

Relation Oriented Software Execution Architecture

viii

12

Clothes Tub State Model
Domain Processing e
Washing Machine State Activities
Clothes Tub State Activities v
Class Instance Operationso v v v v it i i
Domain Operations it e
Initial Instance Population L L
Stubbing the External Operations
Running the Example

Example RunResults

Code Organization

Source Code L
PackageIndex L
Unit Tests o oo e
Example Domain
Example Program L

Reference Documentation i e

Bibliography

A

Literate Programming

Index

263
266
266
269
272
273
275
276
277
278

283
284
284
284
285
286
286

289
289
289

290

291

Relation Oriented Software Execution Architecture ix

List of Figures

2.1
22
23
24

3.1
3.2
33

4.1
4.2
4.3
4.4
4.5

5.1
52
53
54
5.5
5.6

10.1

11.2
11.3
11.4
11.5

Mapping of XUML Concepts to Tcl Entities o . o 5
Namespace Organization foraDomain o 7
Relvars Containing Architecture Information L 9
Namespace Organization for arosea Package L., 11
Simple Associative Relationships e e e 23
Generalization Relationship L e 23
Associative Class Relationship e 24
Data Required for Linking Simple Associationso e 35
Data Required for Linking Class Based Associations 39
Data Required for Migrating Generalization Relationship 44
Link Information Class Diagram e e e e 49
Class State Model Architecture Data e e 71
Domain Configuration Class Diagram e 94
Classes Configuration Class Diagram o i 99
Relationship Configuration Class Diagram o 116
State Model Configuration Class Diagram e e 135
Event Configuration Class Diagram e 139
Transitions Configuration Class Diagram e 142
Trace Data Class Model L e 234
Simplified Translation Workflow L 255
Washing Machine Class Diagram 0 0 e e 256
Washing Machine State Model Diagram e 261
Clothes Tub State Model Diagram e e e e 264

Example Sequence Diagram e 281

Relation Oriented Software Execution Architecture

X
4.1 Heading of Polymorphic Event Mapping Query Result 0oL, 85
6.1 Heading of Identifier Query L e e e e e 178
11.1 Washing Machine Transition Table 262

11.2 Clothes Tub Transition Table

Relation Oriented Software Execution Architecture

Xi

Abstract

This document describes a Tcl package named, rosea. Rosea is an execution architecture intended as the target for translating
XUML models using Tcl as the implementation language. The package consists of a run time execution library that implements
the XUML semantics and a domain specific configuration language that is used to specify the XUML domain model and generate
the required data for the run time execution. Rosea uses TcIRAL as the basis of its data architecture and that enables referential
integrity constraint checking based on the XUML class diagram relationships and supports set-at-a-time operations on domain
class instances. Processing is transactional and constraint violations result in rolling back the changes to a known good state.

Relation Oriented Software Execution Architecture 1/295

Chapter 1

Introduction

This document is about a Tcl package named, rosea. Rosea is a data and execution domain that is intended as the target for
translating Executable UML (XUML) models using Tcl as the implementation language.

Rosea takes a distinctly different approach to translating models into running programs. Using rosea to translate an XUML
model is a manual process. The artifacts that capture the model, the class diagram, state model diagrams and action language
definitions are transcribed into a domain specific language. This is quite different from the large tool approach where the
artifacts of the model are directly captured and translated into an implementation with minimal further input. What rosea lacks
in automation it makes up for in simplicity and the ability to intervene in the details of the implementation that are simply not
under your control when the translation is completely automated.

What’s Next

Chapter 2 discusses the design of the rosea package. Several alternatives are considered and the mapping of XUML model
concepts onto Tcl is shown.

Chapter 3 discusses several XUML model concepts and describes how those concepts are realized in rosea.

Chapter 4 gives the details of the rosea package procedures. These are the Tcl procedures that are invoked from state activities
and operations to translate XUML model concepts onto the Tcl implementation.

Chapter 5 explains the domain specific language that is used to define the domain characteristics which provide structure to the
translation.

Chapter 6 gives the detailed code and explanation of how the data gathered by the domain configuration language is transformed
into the run time data and Tcl constructs that form the execution structure of the domain. This is the process of generating the
code for the domain, although in the Tcl environment we don’t actually generate source text rather we generate commands that
are simply executed in place.

Chapter 7 describes more domain specific language constructs that are used to define the initial instance population for a domain.
The initial instance population set the values of objects that are exist when the program starts running.

Chapter 8 discusses a bridging technique directly supported by rosea. This technique allows the domain encapsulation to be
broken in a controlled manner allowing external actions to be realized as an instance operation.

Chapter 9 discusses how the state of a domain may be serialized to a file.

Chapter 10 describes the very important feature of tracing state machine event dispatch. This is an essential debugging and
testing capability that rosea supports.

Chapter 11 gives a worked out example of a simple automatic clothes washer. This shows how all the pieces of rosea come
together to produce a running program.

Chapter 12 shows exactly how the code files are organized and how they can be extracted from the source file.

http://en.wikipedia.com/wiki/Executable_UML

Relation Oriented Software Execution Architecture 2/295

Finally, there is a bibliography of books and articles that provide some much needed background to understand the overall
techniques of XUML and where translation fits into the process.

This document is also a literate program. As such, it contains all the descriptions, source code and test cases for the rosea
package. An appendix on literate programming describes the conventions used to intersperse code and text that enables the
production of documents like this while retaining the ability to produce the source code files needed by the Tcl interpreter.

How To Read This Document

This document contains a lot of material. It contains the complete source code, test cases and a runnable example. Reading the
document from beginning to end in order would be an exceptional undertaking. Skipping around is encouraged. For example,
you may wish to skip over the test cases although they do provide interesting examples in the small of how rosea constructs
are used.

For those readers wishing a quick look at what rosea provides, the example in Chapter 10 is a good starting point. The example
shows a complete, albeit simple, model translated into rosea. The resulting translation is a runnable Tcl script and the output
of running the example is shown.

For those readers who will attempt a model translation using rosea, understanding the domain configuration language in
Chapter 5 is an essential starting point. Once the static aspects of the domain, i.e. the class definitions and the state model
definitions, have been translated, it is then time to understand the package procedures in Chapter 4 as they are used to translate
the state activities and operations into Tcl.

The document index also provides a convenient place to look up particular details. When reading an electronic version of the
document, the index and the table of contents are hyperlinked for easier navigation.

For those readers interested in an extended example of how relational algebra can be used to query a set of relation variables
to produce code structures, Chapter 6 which shows the code generation from data obtained from the configuration DSL to
produce the run time data used by the execution mechanisms. The chapter has many examples of advanced relational algebraic
expressions.

A Few Words About Tcl

Some readers may find it unusual that Tcl would be chosen as the implementation language for model translation. Tcl is a
distinctly different type of programming language. It is command oriented and has very minimal syntax. Tcl is also a relatively
old language having been around for at least 20 years. Tcl has many powerful capablities one of which is its ease of extensiblity.
That extensibilty enables language extensions such as TcIRAL which provides the fundamental relational algebraic operations
upon which XUML is based. Relational algebraic operations are not usually available outside of relational database management
systems, however, they provide an elegant means of supporting the XUML semantics. Also, Tcl conveniently supports event
driven programming which is fundamental to the state machine event dispatch semantics of XUML.

It is also the case that in a translation scheme, the characteristics of the implementation language are simply not as important
as when a program is directly coded. When directly coding a program, the implementation language is the primary interface
between the programmer and the computer. As such it tends to be very intrusive on the programmer’s working habits and
individual preferences govern, to a large extent, how convenient it is to code programming constructs. When translating a model,
the program logic is contained in the structure of the model. After all, most of the design effort has already been expended
in creating the model. Translation does not change the model logic and only brings to bear the appropriate implementation
technlogy to obtain a running program. Code segments for the state activities and operations tend to be small and during the
translation the goal is to precisely represent the logic already designed in the model as programming language statements. This
is a distinctly different mind set since so much of the structural aspects of the program are supplied by the data and execution
domain itself.

Tcl is a very misunderstood language. Many programmers simply don’t get Tcl, especially if their primary experience is with
expression-oriented languages that have more elaborate syntax. To those programmers, [would suggest that the primary focus of
this document is the concept of using a domain specific language to encode an XUML model and from that generating a running
program. The specifics of the implementation language are secondary. In other words, don’t get hung up on Tcl as there are a lot
deeper concepts in play here.

http://www.literateprogramming.com
http://antirez.com/articoli/tclmisunderstood.html

Relation Oriented Software Execution Architecture 3/295

Chapter 2

Design Strategy

One of main design choices for rosea was to base its data storage on TcIRAL. TcIRAL is a relational algebra library. It is
available as a “C” based extension under the package name ral.

The choice of TcIRAL allows the data architecture to implement referential integrity constraints. Indeed the constraints im-
plemented by TcIRAL were designed specifically to support the integrity requirements of XUML. Many XUML execution
architectures do not attempt to enforce the referential integrity inherent in the class model relationships in XUML. This is un-
derstandable for some platforms, such as embedded micro-controllers, where the cost of enforcement is relatively high and the
class of applications fielded on the platforms tend to have static instance and relationships populations. With static populations,
the referential integrity can be checked at initialization time and is usually not compromised when the system runs.

However, when running on a more capable compute platform, we want to take advantage of the referential integrity constraints
as a convenient, declarative way to better insure the correct operation of the software. By targeting Tcl as the implementation
language and using TcIRAL as the basis of the data architecture, we achieve an XUML execution architecture that is very robust
with respect to insuring that the resulting program runs by transitioning from one correct state to another.

Comparing Approaches

Organizing XUML execution semantics under Tcl can be accomplished in several ways. Tcl has a number of core concepts that
can be put to this task.

It is possible to translate directly onto TcIRAL and use another package such as the moore package to handle state machine
event dispatch. Indeed the author has written several such programs. The difficulty arises in relating the class instance data to the
state model behavior. Using two packages that are unaware of each other inevitably results in writing some glue code to tie the
packages together. In particular, some means of association class instances to state machines and vice versa is required so that
state activities can access class instance data.

Since Tcl version 8.6, the core has acquired object oriented commands that are useful to build object based systems. In TclOO,
one can define classes and create objects from the class. This was the approach taken in the raloo package. However, the
match between TclOO concepts and XUML concepts is not very close. Using TclOO brings in a lot of OO machinery that is
simply not used. Having commands represent instances runs up against managing the command lifetimes as instances are created
and deleted. Trying to store data in TcIRAL relvars contained with TclOO objects is complicated especially when referential
constraints are taken into account.

It is possible to build a useful XUML software architecture on top of TclOO. That is the approach taken by the STSATc1
package. However, this package does not attempt to use TcIRAL, stores its instance data in the TclOO objects and does not
attempt to enforce referential integrity constraints. It is an XUML architecture that is conceptually similar to STSA and its
companion pycca.

The core Tcl capability that best suits TcIRAL is the namespace ensemble. Namespace ensembles allow for creating object-
oriented-like commands. It does not support any traditional object oriented concepts of inheritance but then XUML does not use
those concepts. The namespace ensemble approach also requires that you manage the instance data directly but then we intend to
use TcIRAL for that purpose. In the next section we describe how we use the namespace ensemble capabilities of Tcl to support
XUML execution semantics.

http://repos.modelrealization.com/cgi-bin/fossil/tclral
http://repos.modelrealization.com/cgi-bin/fossil/tclral
http://repos.modelrealization.com/cgi-bin/fossil/mrtools
http://repos.modelrealization.com/cgi-bin/fossil/tcl-cm3
http://repos.modelrealization.com/cgi-bin/fossil/tcl-cm3

Relation Oriented Software Execution Architecture 4 /295

Namespace Ensemble Design Approach

The namespace command allows you to define an ensemble command which has subcommands that are mapped to Tcl com-
mand prefixes. Because the mapping is to a command prefix, arbitrary arguments may be added and one use of those arguments
is to include an object identifier. In this way the ensemble command can be associated to a particular data element.

Namepaces provide other useful functions for our purposes. In XUML, domains are the unit of encapsulation and mapping
domain entities into a namespace provides a convenient way to prevent naming conflicts between the several domains that
usually make up an application. Namespaces also have the ability to control the command resolution path and this is a feature we
will use extensively. By default, unqualified command names are resolved either in the local namespace or the global namespace.
By setting the command resolution path, we can include other namespaces into which we have placed common procedures and
be able to invoke those procedures using unqualified names.

The following diagram shows the mapping of XUML concepts to Tcl and TcIRAL features.

Relation Oriented Software Execution Architecture 5/295

Domain Namespace

XUML Class TcIRAL relvar

XUML Instance Tuple in a relvar

XUML Relationship TcIRAL constraint

Class Operation Ensemble Subcommand

Domain Operation Ensemble Subcommand

Ensemble Subcommand

Instance Operation

State Activity Tcl proc

Figure 2.1: Mapping of XUML Concepts to Tcl Entities

Relation Oriented Software Execution Architecture 6 /295

Domains will be located in a namespace. Domain operations are constructed as ensemble commands of the domain namespace.
Each class is realized as a TcIRAL relvar and class instances are then the individual tuples of the relation value held in the class
relvar. Relationships between classes are realized as TcIRAL relvar constraints. Each class will have an ensemble command
by the same name and any class operations as ensemble subcommands. State model activities are converted into ordinary Tcl
procedures. This has the distinct advantage of supporting Tcl execution traces and tracing can be used for a number of aspect
oriented uses when bridging together domains into a complete application.

Domain Organization

Each domain of an application will be placed in its own namespace. The diagram below show how the components of the domain
are organized in that namespace.

Relation Oriented Software Execution Architecture 7 /295

::<domain name> > <class relvars> I
__ <class>_ STATEINST II

<class ensemble
commands>

relationship

<
ensemble commands>
<arch relvars> II

| S tﬁ—'
[J
'M—' .
[]
[]
[]
[]
[

» ::<class N> I—b °
[J

Figure 2.2: Namespace Organization for a Domain

The domain is placed in a namespace that has the same name as the domain. Although the diagram shows the domain placed as
a child of the global namespace, in fact it may be located in an arbitrary namespace.

Class Relvars

The TcIRAL relvars are placed directly into the domain namespace. Relvars form a shadow variable system to ordinary Tcl
variables and use the same name qualification scheme as Tcl variables. Classes with state models also have an additional relvar
to hold the current state of the instances and this is also contained in the domain namespace.

Relation Oriented Software Execution Architecture 8/295

Class Ensemble Commands

The ensemble commands for each class also reside in the domain namespace. The class ensemble commands behave as object
oriented commands with subcommands to represent the operations on the class. The ensemble subcommands are mapped either
to rosea package procedures or to procedures in a child namespace that is the same name as the class.

Relationship Ensemble Commands

Each relationship in the domain is also given an ensemble command that resides in the domain namespace. The subcommands
of the relationship ensemble provide the operations supported by the relationship and these operations will depend upon the
specifics of the relationships.

Class Namespaces

In addition to the class ensemble command, a child namespace of the domain namespace is created to hold the class specific
information. This namespace will hold class and instance based operations particular to the class and these serve as the procedures
where class ensemble subcommands are mapped.

Class Activity Procedures

For classes that have a state model, the state activities are converted into Tcl procedures and placed in the __ Activity
namespace as a child of the class namespace.

Architecture Relvars

Associated with each domain is a set of data used by the rosea run time procedures to drive the model level operations. We
will have much more to say about both the data and the procedures. Here we show two things. First, the architecture relvars have
names that are prefixed with __Arch_. The diagram below shows the names of the relvars that make up this architectural data.
The rosea run time is strictly data driven and the same code provides the operations for all domains. The data values in the
architectural relvars provide the information required by the run time to tailor the operations to the domain specifics.

Relation Oriented Software Execution Architecture 9/295

-
[<arch relvars>]]\l » __Arch_State

> __Arch_Event

|

v

__Arch_Transition

|

—» _ Arch_InitialState

—] __Arch_Link

—®|_Arch_AssociationLin

N
—»| _ Arch_PartitionLink

N

N

v

__Arch_PartitionDst

|

N
J

v

__Arch_SuperLink

|

N
J

v

__Arch_SubLink

|

N
J

v

__Arch_RefLink

|

N
J

»| _ Arch_AssocRef

|

Figure 2.3: Relvars Containing Architecture Information

Relation Oriented Software Execution Architecture 10/295

Package Organization

Up to now we have been discussing the layout of a domain into its namespace. This layout essentially serves as a template for
how the elements of a domain are mapped into a Tcl namespace and onto other Tcl language concepts.

In this section, we discuss the layout of the rosea package itself. There are two major pieces of the package.

1. Procedures to handle common XUML semantics. These procedures form the interface invoked by domain activities to
implement XUML semantics.

2. A configuration language to compute the architectural data structures and layout the domain as we described above.

The package is placed in the : : rosea namespace and the diagram below show the child namespaces where the components of
the package are placed.

Relation Oriented Software Execution Architecture 11/295

> ::Helpers

::ClassCmds

::InstCmds

> ::RelCmds

::Dispatch

> ::Populate

Figure 2.4: Namespace Organization for a rosea Package

Relation Oriented Software Execution Architecture 12 /295

We will cover in detail below the commands that reside in each child namespace. Here we summarize the contents of the child
namespaces.

Helpers
Commonly used procedures.

ClassCmds
Common operations for all classes.

InstCmds
Common operations for all class instances.

RelCmds
Operations for relationships.

Dispatch
Procedures to dispatch state machine events.

Config
Procedures that implement a domain specific language for specifying the details of the domain.

Populate
Procedures that implement a domain specific language for specifying initial instance values.

Trace
Procedures to control, query and format state machine event dispatch traces.

[S -

Relation Oriented Software Execution Architecture 13/295

Chapter 3

Realizing Model Concepts in rosea

In this section we discuss some XUML concepts and the details of how these concepts are realized in rosea. Because the
underlying data architecture is based on relational algebra concepts, there are a few issues that need clarification in order to
understand the mapping of XUML model concepts into the translation implementation.

Relation Values, Relvars and Instance References — Oh My!

Although the ideas of variables and values are well known, it is worth clarifying the differences between variables and values
and how TcIRAL constructs are involved. Some of the confusion in this area arises from the conventional use of symbol names
in programming languages to refer both to the storage location of a variable and the value contained therein.

For example, consider the following “C” code.

int counter ;
counter = 27 ;

counter = counter + 3 ;

As line 1 shows, counter is clearly a variable of integer type. It is assigned the value 27 on line 3. Line 5 assigns the sum
of the value held by the counter variable and the value 3 back into the memory of the counter variable. In “C” and many
other languages, the interpretation of the symbol counter depends upon whether it stands for a value in an expression or as
the target of an assignment. In “C” parlance, the meaning is determined by whether counter is used as an [value or an rvalue.
Normally, we do not speak in such ultra-precise terms since context shows whether we are interested in the value contained by
the variable or whether we are talking about the memory allocated to the variable.

We can speak of relation values by analogy to scalar values. A relation value is defined as a heading and a body. The heading
consists of a set of named attributes and their corresponding data types. The body is a set of named values that correspond to the
heading. The tuples that are the body of the relation value form a set, i.e. there are no duplicated tuples. In TcIRAL, a relation
value has a string representation (like all well behaved Tcl values) that is a two element list representing the heading and the
body. Relation values in TcIRAL are first class Tcl values integrated into the internal Tcl type system and consequently may be
assigned to an ordinary Tcl variable and undergo the normal life cycle of Tcl values. This latter point is important as we shall see
later.

It is common to display relation values as tables. This is a convenient representation that helps show the two dimensional nature
of a relation values as a matrix of columns for the attributes and rows for the tuples. However, it is necessary to always remember
that relation values have no inherent order of columns or rows. Clearly the implementation will choose to store things in some
order but that order is not specified to the external operations of the algebra. Access to the contents of a relation value is always
determined by the values of attributes. There are no operations that act as an index or pointer and the implementation is allowed
to change the order of storing attributes and rows in whatever way it finds convenient. The only guarantees are those provided by
the relational algebraic operators.

http://en.wikipedia.org/wiki/Value_(computer_science)

Relation Oriented Software Execution Architecture 14 /295

A relation variable (or relvar) is a special type of variable that holds a relation value. The concept of a relvar is supplied by
TcIRAL and a relvar is not an ordinary Tcl variable. TcIRAL maintains a shadow variable system for relvars. The naming
conventions follow those of ordinary Tcl variables in that they can be qualified using namespace syntax. The reason that relation
variables are distinct from Tcl variables is that they are also subject to constraints for identity and referential integrity. This is
one of the major distinguishing aspects of relvars. TcIRAL has the subcommand, relvar, which operates directly on relvars
and a distinct subcommand, relation, that operates on relation values. The command distinction helps to maintain the value
/ variable distinction.

‘We must also consider how we will deal with class instances. We make the correspondence between an XUML class and a relvar
and between an XUML class instance and a tuple in the relation value stored in the class relvar. Consider that in XUML, events
are signaled to instances of classes. So, we will find it necessary to refer to particular instances when signaling events. We will
also find it necessary to refer to sets of instances when, for example, we search for instances that meet some criteria.

With these considerations, we define an instance reference concept. In the relational view, the only way that you can refer to
tuples in the relation values contained in relvars is by the values of identifying attributes. There is no notion of indexing and order
within the relation values is not specified. Each relvar must have at least one identifier. An identifier is a set of attributes (often
a single attribute but not always), the values of which must be distinct from those of the other tuples in the relvar. To refer to an
instance we need to know the relvar in question and the values of the attributes that constitute an identifier. We will represent an
instance reference as a two element list:

* A fully qualified relvar name.

* A relation value whose heading consists of the set attributes that correspond to an identifier of the relvar.
This representation has several useful characteristics.

* An empty relation value indicates the nil reference.
* The cardinality of the relation value can be greater than one and as such represents a reference to a set of instances.
* An instance reference is just an ordinary Tcl value that can be stored in an ordinary Tcl variable whose scope and lifetime is

properly managed by Tcl itself.

So we do not need to distinguish between an instance reference and an instance reference set as distinct entities (with potentially
different data types) as is often done in architectures that target statically typed languages. Our representation of an instance
reference can refer to zero, one or as many instances as needed.

Having defined an instance reference, we will need several operations on them.

Creating References

Internally, rosea commands have need to create instance references. The ToRe f command takes a fully qualified relvar name
and a relation value that is a subset of the value held in the relvar and returns an instance reference to the values. This command
is typically not used by application code.

Implementation

<<helper commands>>=
proc ToRef {relvar relvalue} {
tailcall list $relvar [relation project S$relvalue\
{*}[lindex [relvar identifiers S$relvar] 0]] ; % ©

o Let’s step through this one command at a time, starting at the inner nesting.

e relvar identifiers returns a list of the identifiers of the relvar. Since each relvar has at least one identifier, we
can always index off the first identifier.

Relation Oriented Software Execution Architecture 15/295

e relation project returns a new relation value that contains only the attributes requested. In this case we are
asking for those attributes that form one of the identifiers.

* We compose the two element list that defines an instance reference and we can use tailcall since this is the last
command in the procedure.

Tests

<<helper command tests>>=
test ToRef-1.0 {
Compute a reference to a relvar tuple
} —setup {
relvar create A {
Attrl int
Attr2 string
} Attrl
} —cleanup {
relvar unset A
} —body {
set value [relation create {Attrl int Attr2 string} {
Attrl 20 Attr2 foo

Attrl 40 Attr2 bar
H

::rosea: :Helpers::ToRef [namespace current]::A S$value
} —result {::rosea::test::A {{Attrl int} {{Attrl 20} {Attrl 40}}}} -match ref

Dereferencing an Instance

We will also need to obtain the tuples referenced by an instance reference. In other words we will need to dereference the
instance.

deRef instref 2attrl attr2 ...?

The deRef command takes an instance reference and returns a relation value that contains all the tuples from the associ-
ated relvar that match the identifying attribute values contained in the reference. Optionally, the deRe f command takes a
set of attribute names. In this case the returned instance will be a projection of the full instance relation, containing only
the attributes that form an identifier and the attributes given as arguments.

Implementation

<<instance commands>>=
proc deRef {instref args} {
lassign $instref relvar ref
set inst [relation semijoin Sref [relvar set S$relvar]] ; # (1
if {[llength Sargs] != 0} {
set inst [relation project $inst\
{x}[relation attributes S$ref] {*}Sargs] ; # (2
}

return $inst

] Dereferencing the instance is just a simple matter of semi joining the relation value in the instance reference to the
value contained in the relvar. Like the core : : set command, invoking the relvar set command without any relation
value simply returns the current value held in the relvar. The relation semijoin command returns a relation value
whose heading matches that of its final argument which in our case is that of the referenced relvar value.

Relation Oriented Software Execution Architecture 16 /295

2] If we are requesting specific attributes, then we project those out. Note also that we need to project out the attributes of
the instref sothat we will have an identifier of the relvar in the resulting relation value. This allows us to use the result

as an argument to the class update command.

Tests

<<helper command tests>>=
test deRef-1.0 {
Dereference to get a relation value
} —setup {
relvar create A {
Attrl int
Attr2 string
} Attrl
relvar insert A {
Attrl 20 Attr2 foo

Attrl 40 Attr2 bar
}
} —cleanup {
relvar unset A
} —body {
set ref [list [namespace current]::A {{Attrl int} {{Attrl 40}}}]
rosea: :InstCmds: :deRef Sref
} —result {{Attrl int Attr2 string} {{Attrl 40 Attr2 bar}}} -match relation

<<helper command tests>>=
test deRef-1.1 {
Dereference to get a projection of the instance
} —setup {
relvar create A {
Attrl int
Attr2 string
Attr3 string
} Attrl
relvar insert A {
Attrl 20 Attr2 foo Attr3 buzz

Attrl 40 Attr2 bar Attr3 zub
}
} —cleanup {
relvar unset A
} -body {
set ref [list [namespace current]::A {{Attrl int} {{Attrl 40}}}]

rosea: :InstCmds: :deRef S$Sref Attr3
} —result {{Attrl int Attr3 string} {{Attrl 40 Attr3 zub}}} -match relation

Nil Instance Reference

The nil instance reference is an instance reference that does not refer to anything. The nil reference value has an empty string as
the relvar name and DUM! as its referring relation value.

nilInstRef

The nilInstRef command returns an instance reference that does not refer to any instance.

! A relation value with an empty heading and an empty list of tuples. The relation value with an empty heading and a single empty tuple is sometimes called
DEE.

Relation Oriented Software Execution Architecture 17 /295

Implementation

<<helper commands>>=
proc nilInstRef {} {
return {{} {{} {}}}

Counting References

Since commands that search for instances return instance references we will need some commands that can determine if we are
indeed referring to anything.

isEmptyRef instref

The i sEmptyRef command returns a boolean indicating if instref does not refer to any instances.

Implementation

<<instance commands>>=
proc isEmptyRef {instref} {
tailcall relation isempty [lindex $instref 1]

Note that in relational algebra the empty relation, i.e. what we have called here the empty reference is perfectly valid. It is well
defined that dereferencing a empty reference simply returns a relation value that contains no tuples. It should not be mistaken
for the concept of the nil or NULL pointer available in many languages where it is usually implemented as a special address and
dereferencing the nil pointer is not allowed. Nor should the empty reference be confused with the idea of a NULL attribute
value as implemented by Relational Database Management Systems that support SQL as a query language.”

isNotEmptyRef instref

The i sNotEmptyRef command returns a boolean indicating if instref refers to any instances.

Implementation

<<instance commands>>=
proc isNotEmptyRef {instref} {
tailcall relation isnotempty [lindex S$instref 1]

refMultiplicity instref

The refMultiplicity command returns the number of instances referred to by instref.

2 Despite the similarity of the relational concepts between TcIRAL and many RDMS, we have no concept of a NULL value nor do we find any need for one.
The kindest thing that can be said about SQL NULL values is that is a serious misfeature, at worst it is a conceptual abomination.

Relation Oriented Software Execution Architecture 18 /295

Implementation

<<instance commands>>=
proc refMultiplicity {instref} {
tailcall relation cardinality [lindex S$instref 1]

isRefSingular instref

The isRefSingular command returns true if instref refers to only one instance.

Implementation

<<instance commands>>=
proc isRefSingular {instref} ({
expr {[refMultiplicity $instref] == 1}

Instance Reference Equality

The concept of reference equality is well defined. It is the same idea as set equality.

isRefEqual instrefl instref2

The i sRefEqual command returns true if instrefl and instref2 both refer to the same set of tuples.

Implementation

<<instance commands>>=
proc isRefEqual {instrefl instref2} {
lassign S$instrefl relvarl instl
lassign $instref2 relvar2 inst?2
return [expr {S$relvarl eq Srelvar2 && [relation is $instl equal $inst2]}]

Instance Reference Set Operations

It is also useful to be able to perform set like operations on instance references. We can factor out some common code as shown
below.

Implementation

<<instance commands>>=
proc RefSetCommand {op instrefl instref2} {
lassign $instrefl relvarl instl
lassign $instref2 relvar2 inst2
if {$Srelvarl ne Srelvar2} {
tailcall DeclError SAME_CLASS S$relvarl S$relvar?2
}

return [list S$relvarl [relation $op $instl $inst2]]

Relation Oriented Software Execution Architecture

19/295

<<error code formats>>=

SAME_CLASS {operation is only allowed for references to the same class, \

got "%s" and "%$s"}

We can now define operations on instance references by simply supplying the operation subcommand. The command below

support the most common set operations on instance references.

Implementation

<<instance commands>>=
proc refUnion {op instrefl instref2} {
tailcall RefSetCommand union S$instrefl S$instref2

Implementation

<<instance commands>>=
proc reflIntersect {op instrefl instref2} {
tailcall RefSetCommand intersect S$instrefl S$instref2

Implementation

<<instance commands>>=
proc refMinus {op instrefl instref2} {
tailcall RefSetCommand minus $instrefl $instref2

Iterating on References

We will find it convenient to iterate on the instances referred to by an instance reference. Recall, that an instance reference can
refer to many tuples and there are times when we want to visit each instance and run some code. As is typical in Tcl and following

the pattern of the foreach command, we implement a control structure procedure to perform the iteration.

forAllRefs varname instref body

The forAl1Refs command assigns an instance reference from a set to a variable and executes a script for each instance.
Each iteration insures that the instance reference assigned to the variable references only a single tuple.

Implementation

<<instance commands>>=
proc forAllRefs {varname instref body} {
lassign $instref relvar refs
upvar 1 $varname inst
relation foreach ref Srefs {
set inst [list Srelvar S$Sref]
uplevel 1 $body
} s+ ©

return

Relation Oriented Software Execution Architecture 20/295

o The key command here is relation foreach which performs an iteration across a relation value, one tuple at a time.
We need only construct a new instance reference for each singular relation value that relation foreach generates.

Forming and Breaking Relationships

In XUML, the real world associations between classes are modeled as relationships. Classes have their foundation in predicate
logic and relationships have their foundation in the referential integrity concepts of relational algebra. In this section, we discuss
how relationships are formed and broken and how XUML relationships correspond to TcIRAL relvar constraints.

When translating an XUML class model onto a data architecture that is based on relational algebra, we must consider the two
fundamental ways classes may be associated with each other.

* Defining a correlation between instances.

* Dividing a set of instances into a disjoint union.

Correlations

XUML models associate the instances of classes together to model the semantics of subject matter rules. From a relational
algebra point of view, class instances from two classes may be correlated by representing each class as a relvar and building a
third class to contain attributes that refer to the identifiers of the participating classes. We will call this a class based association
and we will call the class that performs the correlation by holding referential attributes an associator.

We need to be clear about the referential use of attributes. We will often refer to attributes as referential. By that we mean
that attributes in one class have the same value as attributes in another class. In relational algebraic terms, we can only refer to
particular tuples in a relation by specifying the values of the attributes. To realize a relationship using referential attributes, we
further insist that the referential attributes have the same values as identifying attributes of the referenced class. Since a class may
be identified by more that one attribute and may have more than one identifier, we must be clear about which referential attribute
refers to which identifying attribute. In the common and simple case, there is only a single identifier for a class and that identifier
consists of a single attribute. Consequently, to create a reference to an instance of such a class requires only a single referential
attribute. Although referential attributes may seem like a complicated formalism, in practice is usually amounts to specifying the
values involved in a binary relation. We will use the terms referring and referenced to distinguish classes that contain referential
attributes and referenced identifiers.

Each instance of the associator class represents an instance of the correlation that is formed between the instances of the partici-
pating classes. Forming an instance of a relationship between class instances amounts to creating instances of the associator class
with the referential attributes set to the proper values of the identifiers of the participating classes. Correspondingly, destroying
the correlation can be accomplished by deleting instances of the associator class.

It is important to say at this point, that whether or not adding or deleting instances of the associator class is a valid operation
depends upon the multiplicity and conditionality of the relationship. It may be the case that adding an instance of an associator
will be rejected on the basis that the multiplicity of the relationship (and therefore the relational algebraic referential constraint)
does not allow instances of a particular class to be referenced multiple times or demands that an instance be referenced at least
once.

Analyzing the properties of the associator classes will show that under the circumstances of one-to-one and one-to-many associ-
ations, we can simplify our schema by placing the required referential attributes into one of the participating classes and thereby
eliminate the need for a separate associator class. We will call such arrangements simple associations. They are quite common
and usually form the preponderance of relationships in any XUML model. In the case of many-to-many associations or when
the associator class itself has attributes other than the required referential ones, then simplifying the schema by eliminating the
associator and moving the referential attributes into one of the participant classes is not available.

For simple associations, instances of the relationship are manipulated by updating the values of the referential attributes that are
part of the referring class. Again, whether such updates are valid will depend upon the multiplicity and conditionality specified
for the relationship.

Under one particular circumstance we have a small problem in attempting to update a referential attribute. Consider the case of a
one-to-many relationship that is conditional on the many side. If we implement that by placing referential attributes in the class

Relation Oriented Software Execution Architecture 21/295

on the many side, then we must decide what value to use when updating the referential attributes for the case when we want
to delete the association. Traditionally, this is solved in data base management systems using a NULL value. We specifically
eschew NULL valued logic as an abomination. We must also account for the fact that Tcl has no null value and, consequently,
TclIRAL has no concept of a null value. In this situation, a null would represent a value that is not a valid value for the data type
of the referential attributes. In some languages you may define algebraic data types that can implement this concept. That is not
available to us in Tcl but, by special dispensation, TcIRAL does allow the empty string as a valid value of any data type. Now
as it turns out, the empty string is a perfectly valid value and under many circumstances cannot be used as some extraordinary
value to indicate the absence of an instance of a correlation. As tempting as it may be, the empty string really isn’t the same as a
null value or even the same as a pointer value of all zero bits (i.e. as is defined in many programming languages).

In this particular circumstance we must make some decision. The options are:

* Translate the XUML relationship to use a class-based association to implement it. In this case the instances of the associator
correspond to the instances of the correlation and there is no quandary.

» Use the empty string as a special value to indicate the lack of a correlation. This often works because the empty string can be
used as a value outside of the range of the data type of the referential attribute.

* Find some other extraordinary value that can represent a missing correlation (e.g. -999 for some positive valued integer type).

In practice, the empty string works very well and allows us to keep the simpler formulation of the correlation, but using an
associator class always works.

Operations on Correlations

XUML action languages support the operations of link and unlink as a means of creating and deleting associations between class
instances. For many XUML translation architectures, particularly those targeting a statically typed programming language, rela-
tionships are represented using pointer values. In those cases, the link and unlink operations are translated into updating pointer
values. For example, STSA uses this technique. When using relational algebra to implement a correlation type relationship, we
need only create or delete instances of the associator or update values of referential attributes to control the association of class
1nstances.

There are a few inferences we can draw from this.

* For class-based associations it is always necessary to unlink instances before re-linking them to other instances. This arises
because the instance of the associator class has a direct correspondence to an instance of the relationship.

* For simple associations it is never necessary to unlink an instance if it is to be relinked immediately. This arises because we are
only going to update a referential attribute value. It is not incorrect to unlink the instance, it is just superfluous in this particular
case.

In rosea, we provide 1ink and unlink commands for associative relationships as part of the namespace ensemble created
for the relationship.

Partitions

A partition is the other kind of relationship between classes and is the complement to correlation. This is signified in UML as a
generalization relationship. In the XUML usage of a generalization relationship, the instances of the superclass are partitioned
into a disjoint union of the subclasses. This partitioning insures that each subclass instance refers to exactly one superclass
instance and each superclass instance is referenced by exactly one subclass instance from among all the subclasses of the gener-
alization.

A close examination of partitioning shows that there is no real need for operations to link and unlink instances in a generalization
relationship. Since the characteristics of a partition insure that there is a one-to-one correspondence between class instances, the
partition is created when the superclass and subclass are created with the subclass having the proper values for its referential
attributes. Equally, an instance of the partition is deleted when the corresponding superclass and subclass instances are deleted.
The only operation that is useful for a generalization relationship is that of migrating the generalization from one subclass to a
different one and that is the only operation provided by rosea for generalization relationships.

http://repos.modelrealization.com/cgi-bin/fossil/tcl-cm3

Relation Oriented Software Execution Architecture 22 /295

Navigating the Model

In the relational model of data, one can specify a set of constraints and have those constraints enforced on the relvar values.
For TcIRAL, the form of these constraints was specifically designed to match those needed to support XUML model semantics.
From a relational algebra point of view, the constraints declare the multiplicity and conditionality of the association between
tuples in relvars.

From an XUML point of view, model relationships enforce both referential integrity and provide a way to navigate around the
class data. It is common for state activities to read and update data in the model and to use the relationship declarations of the
model to find related instances. It is in this way that the semantics of the real-world association represented by the relationship
are realized by the code execution. Ultimately for an architecture based on relational algebra, navigating the XUML class model
via relationships must be translated into a sequence of semi join operations. In this section we discuss the concepts and syntax
for accomplishing that.

Conventionally, XUML action languages specify the relationship navigation by giving the relationship name and the destination
class name, e.g.

self -> R23[MOTOR]

would be a statement to find the instances across that are related to those instances of self via the R2 3 relationship that targets
the MOTOR class. This technique has an ambiguity for reflexive relationships® as it gives no way to determine the direction of the
traversal since the starting and ending of the traversal is the same class. This usually has been resolved by using the relationship
annotation from the class model.

However, we specifically avoid using the model annotation to disambiguate the reflexive relationship case. We consider the
phrases associated with the relationship in a model as vital semantic annotation but that they should have no bearing on how
the model executes. Annotation is just that— annotation. Changing model annotation should not invalidate action language
statements. The approach we adopt in rosea is to give each relationship an explicit direction and to use the destination class
only in those cases where the relationship type allows for multiple paths and consequently multiple destination classes. We
will specify navigation in the forward direction using the relationship name, e.g. R1, and in the reverse direction using the
relationship name prefixed by a tilde character, e.g. ~R1. Note that the use of the tilde character introduces a syntax convention
for the relationship traversal direction.

We will consider each type of relationship and show how the use of a direction and sometimes a destination class allows for the
navigation of the class model. Note also that this choice of specifying the relationship navigation has no bearing on the XUML
view of relationships in general. We are not implying that the concept of a direction is a model level concept. It is a particular
technique that will be used as part of the syntax for specifying the navigation operations for the rosea architecture.

Simple Associations

The figure below shows the case of a simple associative relationship. We choose the direction of the relationship to be the same
as the direction of reference of the referential attributes. We deem the source of the navigation to be the class that contains
the referential attributes and the destination of the navigation to be the referenced class. For the case of singular relationships,
the choice of where to place the referential attributes is sometimes arbitrary, but wherever the analyst has placed the referential
attribute determines the direction of the relationship.

3 A reflexive relationship is one formed between a class and itself

Relation Oriented Software Execution Architecture 23 /295

X direction» Y
RefAttr {R1} R1

Figure 3.1: Simple Associative Relationships

So, starting with an instance of X we can find the related Y instance or instances by navigating across R1. The reverse navigation
from Y to X is across ~R1.

Generalization

The figure below shows the case of a generalization relationship. In a generalization, the subclasses always contain the referential
attributes and therefore always refer to the superclass and the direction of a generalization is always from the subclasses to the
superclass.

R1

X Y
RefAttr {R1} RefAttr {R1}

Figure 3.2: Generalization Relationship

So we can say that we navigate from a subclass, say X, to the superclass, S, by R1. In the case of navigating from the superclass
to a subclass, we will find it necessary to specify the destination class name. So navigation from S to Y is specified as ~R1 Y.
Because of the nature of a generalization, navigating from superclass to a specific subclass will result in at most one instance
(and possibly zero) being found and navigating from subclass to superclass results in exactly one found instance.

Relation Oriented Software Execution Architecture 24/ 295

Associative Classes

For class based associations, it is the associator class that holds the referential attributes and it will hold attributes that refer to
both participating classes. In this case, the direction of the relationship must be arbitrarily assigned. In the diagram below, we
have decided that the forward direction is traversing from X to Y.

A

RefX {R1}
RefY {R1}

X R1 Y
direction»

Figure 3.3: Associative Class Relationship

So given an instance of X, we can navigate to Y via R1 and, conversely, navigate from Y to X via ~R1.

Associator classes may also be the target of relationship navigation. So we may wish to go from X to A. In this case we represent
that as R1 A, i.e. we go forward along R1 but stop at A. Conversely, we can navigate from Y to A along ~R1 A.

Relation Oriented Software Execution Architecture 25/295

Chapter 4

Package Procedures

In this section we begin showing all the procedures associated with the rosea run time code. These will be divided into sections
that correspond to the figure above that showed how the namespace for the package would be organized.

We start with some preliminaries. Since we are using TcIRAL extensively, we need to pull in the package and its utility package.

<<required packages>>=
package require ral
package require ralutil

We will find it convenient to import some of the commands from TcIRAL since we will be using them repeatedly.

<<tclral imports>>=

namespace import ::ral::relation
namespace import ::ral::tuple

namespace import ::ral::relformat
namespace import ::ralutil::pipe

The : :ralutil: :pipe command is used extensively in the code for rosea. This command has nothing to do with relational
algebra but rather is a control structure. It allows a sequence of operations to be written as a linear “pipe” where the result of
one command is used as an argument to the next. It turns out that such sequencing is common in relational algebraic processing.
What the command does is rewrite the sequence into a set of nested procedure invocations. It is a classic Tcl control structure
type of procedure and makes it much easier to understand a sequence of operations without having to tease apart the procedure
nesting.

The namespace is organized as shown above.

<<rosea namespace layout>>=

<<helper commands namespace>>
<<class commands namespace>>
<<instance commands namespace>>
<<relationship commands namespace>>
<<dispatch commands namespace>>
<<configuration commands namespace>>
<<population commands namespace>>
<<trace commands namespace>>

A Diversion for Testing

We will be intermixing the code and test cases in this document and will be using the t c1test package to execute the tests. We
will attempt to keep test cases and the code they test lexically near each other. Since we are using TcIRAL, we will often in our
test cases want to compare the test result with a relation value. We define to tcltest a couple of custom matching functions
that we will be using in the test result matching.

Relation Oriented Software Execution Architecture 26 /295

<<test utility procs>>=
proc refMatch {expected actual} {
lassign Sexpected erelvar einst
lassign Sactual arelvar ainst
return [expr {S$Serelvar eq Sarelvar && [ral relation is $einst == $ainst]}]

}

customMatch ref [namespace current]::refMatch

proc relationMatch {expected actual} {
return [::ral::relation is S$expected == S$actual]

}

customMatch relation [namespace current]::relationMatch

Class Commands

In this section we show the class oriented commands of rosea. These commands are the architecture supplied class based
operations. They are the target of the ensemble mappings for each of the classes in a domain. Every class in the domain will
have an ensemble command that is the same name as the class. All classes will have the commands discussed in this section plus
any class based operations that are defined for the class. The invocation synopses below show how to invoke the class named
ensemble command. The procedure implementations have a slightly different interface since the command ensemble mechanism
of Tcl is used to supply an additional argument of the name of the relvar upon which the operation will apply.

Class oriented commands fall into these categories:

* Commands that search for instances.

* Commands that create and destroy instances.

* Commands that update the value of the underlying relvar.

First we create the namespace where the commands will reside.

<<class commands namespace>>=
namespace eval ClassCmds {
<<tclral imports>>
namespace import ::ral::relvar
namespace path [namespace parent]::Helpers ; # ©
<<class commands>>

] The helper commands are used everywhere so it is convenient to include them in the command resolution path.

Find All Instances

The simplest search for instances is just to return them all. The £indA11 command returns an instance reference that refers to
all the instances of a class.

class £indAll

The £indAl1 command returns an instance reference that refers to all the instances of class.

Implementation

<<class commands>>=
proc findAll {relvar} {
tailcall ToRef S$Srelvar [relvar set S$Srelvar]

Relation Oriented Software Execution Architecture

27 /295

Find an Instance by its Identifier

Sometimes the values of the identifying attributes are known and we can directly locate the instance.

class £indById idattrl idvaluel ...

idattN
The name of an identifying attribute.

idvalueN
The value of an identifying attribute.

could be found that matches the values of the identifying attributes.

The £indById subcommand returns a reference to at most one instance of class. The arguments are a set of name / value
pairs for the attributes that form an identifier for class. The returned reference will be the empty reference if no instance

Implementation

<<class commands>>=
proc findById {relvar args} {
tailcall ToRef $relvar [relvar restrictone S$relvar {*}$args]

Tests

<<class command tests>>=
test findById-1.0 {
Find tuple by value of the identifier
} —setup {
relvar create A {
Attrl int
Attr2 string
} Attrl
relvar insert A {
Attrl 20 Attr2 foo

Attrl 40 Attr2 bar
}
} —cleanup {
relvar unset A
} -body {
rosea::ClassCmds: :findById [namespace current]::A Attrl 20
} —result {::rosea::test::A {{Attrl int} {{Attrl 20}}}} -match ref

Find Instances Meeting a Criteria

The general case is to find instances based on the result of evaluating an expression.

Relation Oriented Software Execution Architecture 28 /295

class £indWhere expression

expression
A Tcl expression which selects which instances are returned in the reference.

The findWhere command takes an expression and returns an instance reference for those instances of class where the
expression evaluates to true. During execution, the values of the attributes will be placed in Tcl variable that have the
same name as the attribute. The expression argument may refer to the attribute-named variables so that the selection can
be based on the values in the instance.

Implementation

<<class commands>>=
proc findWhere {relvar expr} {
tailcall ToRef S$relvar [uplevel 1 [list ::ral relation restrictwith\
[relvar set S$relvar] Sexpr]]

Tests

<<class command tests>>=
test findWhere-1.0 {
Find tuples based on an expression
} —setup {
relvar create A {
Attrl int
Attr2 string
} Attrl
relvar insert A {
Attrl 20 Attr2 foo

Attrl 40 Attr2 bar

Attrl 60 Attr2 baz
}
} —cleanup {
relvar unset A
} —body {
Make sure the expression is evaluated in the proper context
and can access local variables
set lower 20
set upper 60
rosea::ClassCmds: : findWhere [namespace current]::A {
SAttrl > $lower && SAttrl < Supper
}
} —result {::rosea::test::A {{Attrl int} {{Attrl 40}}}} -match ref

More Testing Infrastructure
As we proceed, in order to perform some of the tests we will need to set up the data and namespace layout that the procedures
expect. Here we present some test support procedures that are used as part of the test case setup and take down.

<<test utility procs>>=
proc setupDomain {name} {

Relation Oriented Software Execution Architecture

29 /295

set domns [namespace current]::S$name

namespace eval ${domns} {
<<arch relvar definitions>>

proc cleanupDomain {name} {

set domns [namespace current]::S$name
relvar constraint delete {*}[relvar constrain names ${domns}::x*]
relvar unset {*}[relvar names S${domns}::x*]

namespace delete $domns

proc addClass {domain class heading id}

{

set domns [namespace current]::S$domain

set idheading [list]
foreach attr $id {

lappend idheading $attr [dict get S$heading Sattr]

}

relvar create ${domns}::__ ${class}__ STATEINST\
[concat $idheading [list __ State string]]\

$id

relvar create ${domns}::S$class S$Sheading $id
namespace eval ${domns}::S${class}::__ Activity {}

proc addState {domain args} {
relvar insert [namespace current]:

proc addEvent {domain args} {
relvar insert [namespace current]:

proc addTransition {domain args} {

relvar insert [namespace current]::

proc addInitialState {domain args} {
relvar insert [namespace current]:

:${domain}::

:${domain}:

${domain}:

:${domain}:

proc addAssoclLink {domain linkattrs assocattrs}

relvar eval {

__Arch_State $args

:__Arch_Event $args

:__Arch_Transition $args

:__Arch_TInitialState S$args

relvar insert [namespace current]::${domain}::__Arch_Link $linkattrs
relvar insert [namespace current]::${domain}::__Arch AssociationLink\
Sassocattrs

proc addParitionLink {domain linkattrs} {

relvar insert [namespace current]::${domain}::__Arch_Link $linkattrs
relvar insert [namespace current]::${domain}::__ Arch_PartitionLink\
Slinkattrs

proc addPartitionDst {domain dstattrs}

{

relvar insert [namespace current]::${domain}::__Arch_PartitionDst\

Sdstattrs

Relation Oriented Software Execution Architecture 30/295

Create an Instance

The create command creates instances. If the class has a state model, then the instance is placed in its default initial state.

class create attrl valuel attr2 value2 . ..

attrN
The name of an attribute of class.

valueN
The corresponding value to be given to the attribute.

When creating an instance, it is necessary to give each attribute a value, unless a default value was defined for the attribute.
The command returns an instance reference to the newly created instance.

Implementation

<<class commands>>=
proc create {relvar args} {
if {[llength $args] % 2 != 0} {
tailcall DeclError ARG_FORMAT $args
}
set ref [ToRef Srelvar [relvar insert $relvar $args]] ; # o
SplitRelvarName S$relvar domain class
CreateInInitialStateFromRef S$domain $class Sref
return S$ref

(1] Here we see the correspondence between an XUML class instance and a tuple in a relvar. The instance is create by
inserting a tuple into the relvar.

Tests

<<class command tests>>=
test create-1.0 {
Create an instance -- no state model
} —setup {
setupDomain foo
addClass foo cl {Al int A2 string} Al
} —cleanup {
cleanupDomain foo
} —body {
rosea::ClassCmds: :create [namespace current]::foo::cl Al 20 A2 bar
} —result {::rosea::test::foo::cl {{Al int} {{A1l 20}}}} -match ref

Create an Instance in a Given State

It is sometimes desirable to create an instance in a state other than its default initial state.

Relation Oriented Software Execution Architecture 31/295

class createin state attrl valuel attr2 value? ...

state
The name of the state in which the new instance is placed. The action of that state is not executed.

attrN
The name of an attribute of class.

valueN
The corresponding value to be given to the attribute.

When creating an instance, it is necessary to give each attribute a value, unless a default value was defined for the attribute.
The command returns an instance reference to the newly created instance.

Implementation

<<class commands>>=
proc createin {relvar state args} {
if {[llength S$args] % 2 != 0} {
tailcall DeclError ARG_FORMAT $args
}
SplitRelvarName S$relvar domain class
set initstate [relvar restrictone ${domain}::__Arch_State\
Class S$Sclass State S$state]
if {[relation isempty S$initstate]} { # ©
tailcall DeclError UNKNOWN_STATE $state S$relvar
}
set ref [ToRef S$relvar [relvar insert Srelvar S$args]]
CreateStateInstanceFromRef $domain $class $state Sref
return S$ref

(1] First, we must make sure that requested state is indeed a state of the class.

<<error code formats>>=
UNKNOWN__STATE {unknown state, "%s", for class, "%s"}

Tests

<<class command tests>>=
test createin-1.0 {
Create an instance in a given state
} —setup {
setupDomain foo
addClass foo cl {Al int A2 string} Al
relvar eval {
addState foo Class cl State Idle
addEvent foo Class cl Event el
addTransition foo Class cl State Idle Event el NewState Idle
addInitialState foo Class cl State Idle
}
} —cleanup {
cleanupDomain foo
} —body {

Relation Oriented Software Execution Architecture

32/295

set ref [::rosea::ClassCmds::createin [namespace current]::foo::cl\
Idle Al 40 A2 bar]

set statetest [pipe {
relvar restrictone ::rosea::test::foo::___cl_STATEINST Al 40 |
relation extract ~ __ State

}]

expr {S$statetest eqg "Idle" &&\
[refMatch {::rosea::test::foo::cl {{Al int} {{Al 40}}}} Sref]}

} —result {1}

We factor out the code to create the instance tuple that tracks the state of the instance.

<<helper commands>>=
proc CreateStateInstance {domns class state value} {
tailcall relvar insert ${domns}::__ S$S{class}__ STATEINST\
[concat $value [list __ State $state]]

<<helper commands>>=
proc CreateStateInstanceFromRef {domns class state ref} {
tailcall CreateStateInstance $domns $class S$state)
[tuple get [relation tuple [lindex S$ref 1]1]]

<<helper commands>>=
proc CreateInInitialState {domns class value} {
set initstate [relvar restrictone ${domns}::___Arch_InitialState\
Class S$Sclass]
if {[relation isnotempty $initstate]} {
CreateStateInstance S$domns S$Sclass [relation extract $initstate State]\
Svalue
}

return

<<helper commands>>=
proc CreateInInitialStateFromRef {domns class ref} {
set initstate [relvar restrictone ${domns}::___Arch_InitialState\
Class S$Sclass]
if {[relation isnotempty S$initstate]} {
CreateStateInstanceFromRef $domns S$class\
[relation extract $initstate State] S$ref
}

return

Asynchronous Instance Creation

The above creation commands are used to create class instances synchronously. For those cases, the instance is placed in an

initial state (if it has an associated state model), but no state activity is executed as part of the creation.

By contrast, asynchronous creation signals an event to a newly created instance to cause a transition and, necessarily, have a state

activity executed. These events are sometimes referred to as creation events.

Relation Oriented Software Execution Architecture 33/295

class createasync event eventparams attrl valuel attr2 value? ...

event
The name of the event to send to the newly created instance.

eventparams
A list of event parameters that are to be sent along with the event. If the event does not carry any parameters, then

this argument must be specified as the empty list.

attrN
The name of an attribute of class.

valueN
The corresponding value to be given to the attribute.

The command returns an instance reference to the newly created instance. Note however, that the event transition will not
have occurred. When creating an instance, it is necessary to give each attribute a value, unless a default value was defined

for the attribute.

Implementation

<<class commands>>=
proc createasync {relvar event eventparams args} {
SplitRelvarName S$relvar domain class
set knownevent [relvar restrictone ${domain}::__ Arch_Event)\
Class S$class Event S$event]
if {[relation isempty S$knownevent]} { # ©
tailcall DeclError UNKNOWN_EVENT S$Sevent S$class
}
set instref [createin S$relvar @ {x}S$args] ; # ©
::rosea: :Trace: :TraceCreation [SelfInstRef 1] S$event $instref
::rosea::InstCmds::signal $instref S$Sevent {x}S$eventparams

return $instref

] We must make sure that the event is one to which the instance responds.

(2] The “@” state is a special initial pseudo-state from which the creation event causes a transition.

<<error code formats>>=
UNKNOWN_EVENT {unknown event, "%s", for class, "%s"}

Updating Class Values

It is often more convenient to perform operations on a set of instances and then have the results of the operations updated. This
command will update an entire set of non-identifying attribute values.

class update relationvalue

Update the non-identifying attributes of class based on the values in the heading of relationvalue. The head of relationvalue
must include the attributes of at least one identifier. The tuples in class that match the identifying attribute values will have
the remaining non-identifying attributes changed to match the values found in relationvalue

Relation Oriented Software Execution Architecture 34 /295

Implementation

<<class commands>>=
proc update {relvar relvalue} {

tailcall ToRef S$relvar [relvar updateper S$relvar Srelvalue]

Tests

<<class command tests>>=
test update-1.0 {

}

}

}

}

Update a set of attribute values

-setup {

setupDomain foo
addClass foo cl {Al string Temp int Volume double} Al

rosea: :ClassCmds: :create [namespace current]::foo::cl\
Al tankl Temp 100 Volume 3.3

rosea: :ClassCmds: :create [namespace current]::foo::cl\
Al tank2 Temp 200 Volume 6.3

rosea: :ClassCmds: :create [namespace current]::foo::cl\

Al tank3 Temp 300 Volume 10.3

—cleanup {

cleanupDomain foo

~body {

set ref [rosea::ClassCmds::findAll [namespace current]::foo::cl]
This adds 10 to the Temp and multiplies the Volume by 2 for
all the instances. We do it by extending relation value with
new attributes and then eliminating the old attributes and renaming
the new attributes to have the old attribute names.
set newvalues [relation update [rosea::InstCmds::deRef Sref Temp Volume]\
newtuple {1} {
tuple update $newtuple\
Temp [expr {[tuple extract $newtuple Temp] + 10}]\
Volume [expr {[tuple extract S$Snewtuple Volume] * 2.0}]
}]
log::debug [relformat $newvalues newvalues]
set ref [rosea::ClassCmds::update [namespace current]::foo::cl $newvalues]
Extract one of the instances and make sure the attribute values
were properly updated.
pipe {
rosea: :InstCmds: :deRef Sref |
relation restrictwith ~ {$Temp < 200} |
relation extract ~ Temp Volume

}

-result {110 6.6}

Relationship Commands

In this section we show the relationship oriented commands of rosea. These commands are supplied by the architecture and
are the the commands to which the relationship ensemble subcommands are mapped.

We place the relationship commands into a separate namespace.

<<relationship commands namespace>>=
namespace eval RelCmds {

<<tclral imports>>
namespace import ::ral::relvar

Relation Oriented Software Execution Architecture 35/295

namespace path [list\
[namespace parent]::Helpers\
[namespace parent]::InstCmds\

]

<<relationship commands>>

Linking Simple Associations

We first consider linking across simple relationships. Later we discuss linking for class based associations. They are very similar,
but class based associations may require additional arguments and so the procedure interface is different.

relationship 1ink instrefl instref2

instrefl
An instance reference to a class that participates in relationship.

instref2
An instance reference to the other class that participates in relationship.

The 1ink command creates a relationship linkage between the class instances referenced by instref] and instref2 for the
simple association, relationship.

Implementation

The figure below shows the architectural relvars required to link instances.

RefLink

Relationship {lI}
ReferringClass
ReferencedClass ReferringAttribUte
ReferringAttrs [@—— ReferencedAttribute

Figure 4.1: Data Required for Linking Simple Associations

The RefLink relvar contains the information required to support linking instances at run time. The ReferringAttrs
attribute is a relation valued attribute and we use the UML composition notation to show the nested attributes of the Referri
ngAttrs attribute. For the case of a simple association, we have one class that plays the role of the ReferringClass that
contains attribute references to the ReferencedClass. Since referential attributes refer to an identifier and since identifiers
may consist of multiple attributes, the ReferringAttrs attribute is a relation value that gives the mapping with the Refer
ringAttribute /ReferencedAttribute tuples specifying the attribute names holding the referential correspondence.
This relvar is populated by the domain generation process. The relationship command that links instances in a simple association
then uses this data at run time to perform the required operations.

As we discussed above, linking across simple relationships is accomplished by updating referential attributes. We want to be able
to give instance references in any order so we will need to be able to determine which class is the referring class and which is the

Relation Oriented Software Execution Architecture 36/295

referenced class. The linking is accomplished by storing the values of the referenced attributes into the referential attributes That
correspondence is given in the appropriate tuple of the RefLink relvar which tells us which values to query and which values
will be updated. We can outline the 1inkSimple procedure as shown below.

<<relationship commands>>=

proc linkSimple {rname instrefl instref2} {
<<linkSimple: validate arguments>>
<<linkSimple: look up link info>>
<<linkSimple: determine reference direction>>
<<linkSimple: obtain referenced values>>
<<linkSimple: update referring values>>

return

We need to break apart the arguments into their component parts and insure that we aren’t attempting something absurd such as
linking across domains.

<<linkSimple: validate arguments>>=
lassign $instrefl relvarl instl
SplitRelvarName S$relvarl domainl classl

lassign $instref2 relvar2 inst2
SplitRelvarName S$relvar2 domain2 class2

if {$domainl ne $domain2} {
tailcall DeclError NO_CROSS_DOMAIN Sdomainl $domain?2

<<error code formats>>=
NO_CROSS_DOMAIN {cannot link instances across domains, \
got "%s" and "%s"}

We next find the instance of RefLink that matches the relation name. The graphical representation of the linkage data is
translated into TcIRAL relvars. This shows the structure of the relation values with which we will be dealing.

<<arch relvar definitions>>=
ral relvar create _ Arch_RefLink {

Relationship string

ReferringClass string

ReferencedClass string

ReferringAttrs {Relation

{ReferringAttribute string ReferencedAttribute string}}

} Relationship

Using the relationship name as the identifier, we can lookup the link information and assign the attributes into Tcl variables. This
will allow us to detect any unknown relationships. Note that even though ReferringAttrs is a relation valued attribute, its
value can be stored in an ordinary Tcl variable.

<<linkSimple: look up link info>>=
set reflink [relvar restrictone ${domainl}::__Arch_ReflLink Relationship $rname]
if {[relation isempty Sreflink]} {
tailcall DeclError UNKNOWN_RELATIONSHIP S$rname
}
relation assign $reflink\
{ReferringClass referringClass}\
{ReferencedClass referencedClass}\
{ReferringAttrs referringAttrs} ; # ©

(1] The relation assign command allows us to specify both the attributes to place into variables as well as the name
those variables should have.

Relation Oriented Software Execution Architecture 37 /295

<<error code formats>>=
UNKNOWN_RELATIONSHIP {unknown relationship, "%s"}

At this point we have the linkage information in a convenient form with which to work.

As we stated, we don’t want to impose an order on the instance references, i.e. we don’t want to have to specify the referring
class and the referenced class in any particular order of the arguments. The system already knows this information and can take
on the burden of determining the class roles in the association. The role determination is made by comparing the class names of
the instance references to those found in the Re fLink tuple. This also allows us to check that the classes actually participate in
the given relationship.

<<linkSimple: determine reference direction>>=
if {$classl eq S$referringClass && S$class2 eq S$referencedClass} {
set fromrelvar S$relvarl
set frominsts $instl
set torelvar Srelvar2
set toinst $inst2
} elseif {S$class2 eqg SreferringClass && Sclassl eq SreferencedClass} {
set fromrelvar Srelvar2
set frominsts $inst2
set torelvar Srelvarl
set toinst $instl
} else {
tailcall DeclError NON_PARTICIPANTS Srelvarl S$Srelvar2 Srname\
SreferringClass S$referencedClass

<<error code formats>>=
NON_PARTICIPANTS {"%s" and "%$s" don’t participate in %s,\
expected "%s" and "%s"}

You may link many referring instances to the same referenced instance, but there can only be one referenced instance.

<<linkSimple: determine reference direction>>=
if {[relation cardinality $toinst] != 1} {
tailcall MUST_BE_SINGULAR S$torelvar [relation cardinality S$toinst]

<<error code formats>>=
MUST_BE_SINGULAR {number of referred to instances for "%s" must be one, \
got %d}

Notice that this code does not consider the multiplicity of the underlying relationship. Even if the relationship is defined to be
singular, this code will link multiple referring instances. The error will be detected when the TcIRAL transaction ends since such
actions will violate referential integrity. This greatly simplifies this code since the TcIRAL enforces all the integrity constraints.

The update we want to perform is to modify the values of the referential attributes to match the values of the referenced attributes.
First, we obtain the class instance by following the instance reference. We perform the semi join in place since we have already
split apart the instance reference into its components.

<<linkSimple: obtain referenced values>>=
set refedvalue [relation semijoin $toinst [relvar set S$torelvar]]

Our strategy for updating the referential attributes is to create a dictionary whose keys are the referential attribute names and
whose values are those of the referenced attributes. It is important to maintain the correspondence between the referential and
referenced attributes. The RefLink relvar does this by having the ReferringAttrs attribute as a relation valued attribute.
By extending that relation to include the value of the referenced attribute, we can then convert the result into a dictionary
containing the referring attribute name along with the referenced value.

Relation Oriented Software Execution Architecture 38/295

<<linkSimple: update referring values>>=
set tovalues [pipe {
relation extend S$referringAttrs rfa RefValue string {
[relation extract Srefedvalue\
[tuple extract $rfa ReferencedAttribute]]} |
relation dict ~ ReferringAttribute RefValue
1]

Now we iterate across the referring instances updating the referential attributes to be the values of the dictionary we just computed.

<<linkSimple: update referring values>>=
relation foreach frominst $frominsts {
relvar updateone $fromrelvar fromtup\
[tuple get [relation tuple S$frominst]] { # ©
tuple update S$fromtup {*)}Stovalues ; # ©

(1] The relvar updateone command needs a list of attribute name/value pairs that constitute an identifier. The instance
reference accomplishes that and we need only get the attributes and values of the instance reference into the right form.
The relation tuple command takes a singleton relation value and turns it into a tuple value. The tuple get
command takes a tuple value and returns a list of alternating attribute names and values which is exactly the form we need
to supply to relvar updateone.

2] Here we treat the dictionary, which has attribute names as keys, as a list and obtain the attribute name/value pairs that the
tuple update command needs.

Linking Class Based Associations

When a class based association is linked, we must create an instance of the associator class. In general, the associator may have
additional attributes other than the referential attributes involved in making the association. If so, then values must be supplied
for those attributes and this requirement dictates a different interface for the 1ink command when it is applied to class based
associations. So for class based associations, the relationship ensemble 1ink command will be mapped to the 1inkAssoc
procedure given below.

relationship 1ink instrefl instref2 ?attrl valuel attr2 value?2 ...?

instrefl
An instance reference to a class that participates in relationship.

instrefl
An instance reference to the other class that participates in relationship.

attrN valueN
The values for attributes of the associator class, other than the referential attributes, are given as attribute name /
value argument pairs.

Implementation

The run time data required to create class based associations must describe both the classes participating in the association as
well as the associator class itself.

The diagram below shows the structure of the architectural relvars that support linking class based associations.

Relation Oriented Software Execution Architecture 39/295

AssocRef

Relationship {I}
AssocClass Participant

References B Role

ReferringAttrs | ReferringAttribute
ReferencedAttribute

Figure 4.2: Data Required for Linking Class Based Associations

The References attribute is relation valued (as shown by the UML composition construct). The relation gives the roles of the
participating classes and the attributes that make up the references. The ReferringAttrs attribute is also relation valued and
has the same heading as the ReferringAttrs attribute for simple associations.

As expected, the implementation of 1inkAssoc follows the outline as that for 1inkSimple.

<<relationship commands>>=

proc linkAssoc {rname instrefl instref2 args} {
<<linkAssoc: validate arguments>>
<<linkAssoc: look up link info>>
<<linkAssoc: determine reference direction>>
<<linkAssoc: obtain referenced values>>
<<linkAssoc: update referring values>>
<<linkAssoc: create assoc class instances>>

We need to access the components of the instance references and insure that there is no cross domain link attempt.

<<linkAssoc: validate arguments>>=
lassign $instrefl relvarl instl
SplitRelvarName S$relvarl domainl classl

lassign $instref2 relvar2 inst2
SplitRelvarName Srelvar2 domain2 class2

if {Sdomainl ne $domain2} {
tailcall DeclError NO_CROSS_DOMAIN $domainl S$domain?2

The graphic of the class based association link data is again a straight forward transliteration into TcIRAL. The fact that we have
a relation valued attribute that, in turn, has an attribute that is relation valued makes for some deeper nesting of type information.

<<arch relvar definitions>>=

ral relvar create _ Arch_AssocRef {
Relationship string
AssocClass string
References {Relation\

{Participant string Role string ReferringAttrs {Relation)\
{ReferringAttribute string ReferencedAttribute string}}}}
} Relationship

Now we look up the instance of AssocRef that corresponds to the relationship and assign the attributes into Tcl variables.

Relation Oriented Software Execution Architecture 40/ 295

<<linkAssoc: look up link info>>=
set assocref [relvar restrictone ${domainl}::__ Arch_AssocRef\
Relationship $rname]
if {[relation isempty S$assocref]} {
tailcall DeclError UNKNOWN_RELATIONSHIP Srname

relation assign $assocref\
{AssocClass assocClass}\
{References references}

The references variable contains a relation value so the code below will use relat ion commands to access the value. For
class based associations, we need to identify the participants and check that the instance references refer to relvars that indeed
participate in the relationship.

<<linkAssoc: determine reference direction>>=
set refl [relation restrictwith S$references {$Participant eq $classl}]
if {[relation isempty Srefl]} {

tailcall DeclError NOT_IN_ASSOCIATION Sclassl S$Srname

<<error code formats>>=
NOT_IN_ASSOCIATION {"%$s" Srelvarl not a participant in "%s"}

Reflexive associations have to be considered. If the association is reflexive then the above query will yield two tuples since the
values of the Participant attribute are the same name. In this case, we query for the "target" as a means of disambiguating
the reflexive relationship.

For the non-reflexive case, we can just find the other participant, checking that it is indeed there.

<<linkAssoc: determine reference direction>>=
if {[relation cardinality Srefl] > 1} {
set ref2 [relation restrictwith $refl {$Role eq "target"}]
set refl [relation minus Srefl $ref2] ; # ©
} else {
set ref2 [relation restrictwith S$references {$Participant eq $class2}]
if {[relation isempty S$ref2]} {
tailcall DeclError NOT_IN_ASSOCIATION $class2 S$Srname

set rattrl [relation extract Srefl ReferringAttrs]
set rattr2 [relation extract S$Sref2 ReferringAttrs]

o We are justified in this code sequence because we know that there are never more than two participants in the association
and that the generation of the architectural values will always create a target role for one of the participants.

At this point, rattrl and rattr2 contain the attribute reference information corresponding to instrefl and instref2.
Note that they are relation valued as we have a situation where one relation valued attribute contains an attribute that is itself
relation valued.

We use a similar updating strategy here as with 1inkSimple. First we de-reference the instance references against the relvar.
Then we want to create dictionaries with the referring attributes as keys and the referenced values as the dictionary values.

<<linkAssoc: obtain referenced values>>=
set valuesl [relation semijoin $instl [relvar set S$relvarl]]
set values2 [relation semijoin $inst2 [relvar set Srelvar2]]

Since linking a class based association amounts to inserting tuples in the associator relvar, we will accumulate the set of tuples
and perform a single relvar insert of all the tuples. Note that we use the same extend and convert to a dictionary as we did
in linkSimple.

Relation Oriented Software Execution Architecture 41 /295

<<linkAssoc: update referring values>>=
set assoctuples [list]
relation foreach vl $valuesl { # ©
set reftol [pipe {
relation extend Srattrl rfa RefValue string {
[relation extract $vl [tuple extract S$rfa ReferencedAttribute]]

b

relation dict ~ ReferringAttribute RefValue
}]
relation foreach v2 S$values2 {
set refto2 [pipe {
relation extend S$rattr2 rfa RefValue string {
[relation extract Sv2\
[tuple extract $rfa ReferencedAttribute]]

b
relation dict ~ ReferringAttribute RefValue

H

lappend assoctuples [dict merge $args S$reftol $refto2] ; # ©

o The instance references may refer to multiple instances so we need to compute the Cartesian product of the instance
references. The nested iteration will insure that we end up with an associator instance for each reference in each of the
instance references of the participating classes.

(2] It may be the case that the associator class has other attributes. Those are passed as attribute/value pairs in the args.
The merge order is important here just in case the caller tried to set one of the referential attributes in the invocation. By
merging the referential attributes last, they will take precedence over any caller arguments.

Finally, we insert the tuples that we have created into the association class relvar and return an instance reference to the new
created instances.

<<linkAssoc: create assoc class instances>>=
return [ToRef ${domainl}::$assocClass\
[relvar insert ${domainl}::SassocClass {x*}$assoctuples]]

Unlinking Simple Associations

The inverse of linking instances in a relationship is to unlink them. In this case, the interface is much simpler. Since the system
knows the details of the relationship, it is only necessary to specify an instance reference to one of the participants that is to be
unlinked.

relationship unlink instref

instref
An instance reference to a class that participates in relationship.

Implementation

The implementation of unlink must determine the role of the class instances in the relationship and if the relationship is simple
or class based. We perform that work here to ease the burden on the translation since we have all the information required to
make the necessary determination of role. For simple associations, we will set the referring attributes to the empty string. This
code follows the same pattern as for 1inkSimple and so we present it without any additional commentary.

Relation Oriented Software Execution Architecture 42 / 295

<<relationship commands>>=

proc unlinkSimple {rname instref} {
lassign $instref relvar inst
SplitRelvarName S$relvar domain class

set reflink [relvar restrictone ${domain}::__ Arch_RefLink\
Relationship $rname]
if {[relation isempty S$Sreflink]} {
tailcall DeclError UNKNOWN_RELATIONSHIP S$rname
}
relation assign S$reflink\
{ReferringClass referringClass}\
{ReferencedClass referencedClass}\
{ReferringAttrs referringAttrs}

if {S$class eq S$referringClass} {
set fromrelvar Srelvar
set frominsts $inst
} elseif {S$class eq S$referencedClass} {
lassign [::rosea::InstCmds::findRelated $instref ~S$Srname]\
fromrelvar frominsts
} else {
tailcall DeclError NOT_IN_ASSOCIATION S$relvar Srname

set tovalues [pipe {
relation extend SreferringAttrs rfa RefValue string {{}} |
relation dict ~ ReferringAttribute RefValue

}H]

relation foreach frominst S$frominsts {
relvar updateone $fromrelvar fromtup\
[tuple get [relation tuple $frominst]] {
tuple update S$fromtup {*}S$Stovalues

return

Unlinking Class Based Associations

For relationships that are classed based, the unlink command will be mapped to unlinkAssoc procedure as given below. We
maintain the same interface but the end result will be deleting instances of the associator class.

Implementation

The unlinkAssoc follows the same pattern as 1inkAssoc. The goal here is to delete instances of the associative class.

<<relationship commands>>=

proc unlinkAssoc {rname instref} {
lassign $instref relvar insts
SplitRelvarName S$relvar domain class

set assocref [relvar restrictone ${domain}::__Arch_AssocRef\
Relationship $rname]
if {[relation isempty S$Sassocref]} {
tailcall DeclError UNKNOWN_RELATIONSHIP S$rname

Relation Oriented Software Execution Architecture 43 /295

}

relation assign $assocref\
{Relationship relationship}\
{AssocClass associator}\
{References references}

If we are given instances to the associator class, then there is no
more work to do.
if {S$Sclass eqg S$associator} {
set associnsts [deRef S$Sinstref]
} else {
Otherwise, we have to find the associator class instances ourselves.
set part [relation restrictwith $references {$Participant eq $class}]
set partcard [relation cardinality S$part]
if {Spartcard == 0} {
tailcall DeclError NOT_IN_ASSOCIATION S$Sclass Srname
} elseif {$partcard > 1} {
tailcall DeclError AMBIGUOUS_UNLINK S$rname Srelvar ; # ©
} else {
find associative class instances
set navdir [expr {[relation extract S$part Role] eq "source" ?\
Srelationship : ~S$relationship}]
set associnsts [deRef [::rosea::InstCmds::findRelated $instref\
[list $navdir [namespace tail Sassociator]]]]

}

Just remove the associator tuples that are the relationship links.
relvar minus ${domain}::Sassociator S$Sassocinsts

return $associnsts

o Because reflexive relationships have an ambiguity, they can only be unlinked if the caller supplies a reference to associator
class instances. So, for associative classes, the caller must navigate to the associator class before invoking unlink.

<<error code formats>>=
AMBIGUOUS_UNLINK {"%s" is reflexive and linking via "%s" is ambiguous}

Migrating Subclasss In Generalizations

For the case of generalization relationships, the notion of linking and unlinking across the relationship doesn’t make much sense.
To understand why, recall that in the XUML usage a generalization relationship partitions the superclass instances into a disjoint
union of the subclasses. This means that each subclass instance is unconditionally related to exactly one superclass instance
and each superclass instance is related to exactly one subclass instance from among all the subclasses of the generalization. If
you were to unlink a subclass from its superclass the only operations that would not violate referential integrity is to link a new
subclass instance or delete both the superclass and subclass instances. So the only meaningful operation that does not violate
referential integrity is to migrate a subclass instance. Conceptually, migration consists of:

Unlink the superclass and subclass.
* Delete the subclass instance.
* Create a new instance of a subclass of the generalization.

 Link the new instance to the superclass.

One additional complication is that the newly created subclass instance may have attributes that need to be set. These are included
in the invocation of migrate as attribute name / value pairs.

Relation Oriented Software Execution Architecture 44 |/ 295

relationship migrate instref subclass ?attrl valuel attr2 value2 ...?

instref
An instance reference to a subclass that participates in relationship.

subclass
The name of a subclass in the generalization, relationship, to which the instances referred to by instref will be
migrated.

attrN valueN
Arguments that are taken as attribute name / value pairs representing attribute values that will be given to the newly
created instance of subclass. Any attributes of subclass other than those of the identifying referential ones that
realize the generalization must be specified here or have declared default values.

This command returns an instance reference to the newly migrated instance.

Implementation

The diagram below shows the structure of the architectural relvars required to support subtype migration.

SuperLink SubLink
Relationship {I} R5 Relationship {1}
SuperClass 1 «is a subclass link for 1..n |SubClass {I} ReferringAttribute
has subclass links of» ReferringAttrs | q@——{ ReferencedAttribute

Figure 4.3: Data Required for Migrating Generalization Relationship

The graphic becomes the TcIRAL commands as shown below.

<<arch relvar definitions>>=

ral relvar create __ Arch_SuperLink {
Relationship string
SuperClass string

} Relationship

ral relvar create __ Arch_SubLink {
Relationship string
SubClass string
ReferringAttrs {Relation\
{ReferringAttribute string ReferencedAttribute string}}
} {Relationship SubClass}

ral relvar association __Arch_ R5\
__Arch_SubLink Relationship +\
__Arch_SuperLink Relationship 1

<<relationship commands>>=
proc migrate {rname instref subclass args} {
if {![isRefSingular $instref]} {
tailcall DeclError SINGLE_REF_REQUIRED [refMultiplicity $instref]

Relation Oriented Software Execution Architecture 45 /295

lassign $instref relvar inst
SplitRelvarName S$relvar domns class

set link [relvar restrictone ${domns}::__ Arch_AssociationLink Name S$rname\
SrcClass $class]
if {[relation isempty $link]} {

tailcall DeclError NO_SUBCLASS S$rname Srelvar

Traverse the relationship to the superclass. We need to get the values of
the referenced attributes to use in creating the new subclass instance.
set superinst [pipe ({

relvar set ${domns}::[relation extract $link DstClass] |

relation semijoin $inst ~ —-using [relation extract $link Attrs]

H]

set sublink [relvar restrictone ${domns}::__ Arch_SubLink\
Relationship $rname SubClass S$subclass]
if {[relation isempty $sublink]} {
tailcall DeclError NO_SUBCLASS S$rname S$subclass

Using the same relation extend strategy, we compute a dictionary of the
attribute names / values as they must appear in the subclass we are about
to create.
set refedvalues [pipe {

relation extract $sublink ReferringAttrs |

relation extend ~ rval Value string {

[relation extract $superinst)\
[tuple extract S$rval ReferencedAttribute]]
b
relation dict ~ ReferringAttribute Value

H]

We use the class commands to delete the old subclass instance and create
the new one. This will make sure that if the subclass has a state model
that the initial state is set correctly.
relvar eval {

::rosea::InstCmds: :delete $instref

set ref [::rosea::ClassCmds::create $S{domns}::S$Ssubclass\

{*x}[dict merge $args Srefedvalues]]

}

return S$ref

<<error code formats>>=
NO_SUBCLASS {relationship "%s" does not have a "%s"}

Signaling an Assigner

An association that is competitive in nature may have an assigner defined for it. This procedure is used to signal events to an
assigner. More specifically, associations with defined assigners that are singular will have the signalAssigner proc mapped
to the ensemble signal subcommand.

Relation Oriented Software Execution Architecture 46/ 295

relationship signal event ?paraml param?2 ...?

event
The name of an event to be signaled to the assigner associated with relationship.

paramN
Optional event parameters are passed as additional arguments.

Implementation

<<relationship commands>>=
proc signalAssigner {rname event args} {
SplitRelvarName S$rname domain relationship
set assignrelvar ${domain}::_ ${relationship}__ STATEINST
if {![relvar exists $assignrelvar]} {
tailcall DeclError NO_ASSIGNER Srname

set dstref [pipe {
relvar set S$Sassignrelvar |
relation project ~ {*}[lindex [relvar identifiers S$assignrelvar] 0] |
list S$rname ~

}]
::rosea::Dispatch::SignalEvent [SelfInstRef] S$dstref S$Sevent $args

return

<<error code formats>>=
NO_ASSIGNER {relationship, "%s", does not have an assigner}

Signaling a Multi-Assigner

For associations that have a multi-assigner defined on them, the signal command interface must include the set of attributes
names and values that identify the instance of the multi-assigner that is to be signaled. So for multi-assigners, the signal
subcommand is mapped to the signalMultiAssigner procedure described here.

relationship signal idvalues event ?paraml param?2 ... ?

event
The name of an event to be signaled to the assigner associated with relationship.

idvalues
A dictionary keyed by attribute names whose values identify an instance of the multiple assigner associated with
relationship. The attribute names must be the same as those given when the multiple assigner was defined.

paramN
Optional event parameters are passed as additional arguments.

Implementation

We will find it convenient deal with attribute names as sets and will rely on the st ruct : : set package from tc11ib to operate
on attribute name sets.

Relation Oriented Software Execution Architecture

47 /295

<<required packages>>=
package require struct::set

<<relationship commands>>=
proc signalMultiAssigner {rname idvalues event args} {
SplitRelvarName S$rname domain relationship
set assignrelvar ${domain}::_ ${relationship}__ STATEINST
if {![relvar exists $assignrelvar]} {
tailcall DeclError NO_ASSIGNER S$rname
}
set idattrs [lindex [relvar identifiers S$assignrelvar] 0]
We will insist that the idvalues contain the necessary identifying
attributes.
if {![struct::set equal [dict keys S$idvalues] $idattrs]} {
tailcall DeclError NO_IDENTIFIER [dict keys $idvalues] S$idattrs
}
set assigninsts [relvar set Sassignrelvar]
set assignrefs [relation project $assigninsts {*}$idattrs]

We need to find the tuple in "assignrefs" that matches the attributes and
values in "idvalues". We will do this by creating a relation value from
the idvalues list and semijoining that to "assignrefs". If we come up

non-empty, then we have found our multi-assigner instance.
set heading [relation heading $assignrefs]
set dstinst [pipe {
tuple create S$heading $idvalues |
tuple relation ~ |
relation semijoin ~ $assignrefs
}]
if {[relation isempty $dstinst]} {
tailcall DeclError UNKNOWN_ASSIGNER S$idvalues S$Srname

set dstref [list $rname S$dstinst]
::rosea::Dispatch::SignalEvent [SelfInstRef] S$dstref S$Sevent $args ;

return

o We use the same event dispatch mechanisms as for class instances.

<<error code formats>>=

NO_IDENTIFIER {bad identifying attributes, expected "%s", got "%s"}
UNKNOWN_ASSIGNER {unknown assigner instance, "%s", for relationship,

Creating a Multi-Assigner

Since associations can have multi-assigners, we must provide a means to create instances of the assigners.

relationship create ?attrl valuel attr2 value?2 ...?

attrN valueN

Attribute name / value pairs that form the identifier for an instance of the multi-assigner associated with relationship.

Relation Oriented Software Execution Architecture 48 /295

Implementation

<<relationship commands>>=
proc createMultiAssigner {rname args} {
if {[llength S$args] % 2 != 0} {
tailcall DeclError ARG_FORMAT $args
}
SplitRelvarName $rname domain relationship
set assignrelvar ${domain}::__S${relationship}__ STATEINST
if {![relvar exists $assignrelvar]} {
tailcall DeclError NO_ASSIGNER S$Srname
}
set idattrs [lindex [relvar identifiers $assignrelvar] 0]
if {![struct::set equal [dict keys Sargs] S$idattrs]} {
tailcall DeclError NO_IDENTIFIER [dict keys S$Sargs] $idattrs
}

CreateInInitialState $domain $relationship $args

Instance Commands

In this section we discuss the rosea commands that operate on instance references. These commands form the foundation of
operations that state activities use to access the underlying execution architecture.

As shown above, the instance commands are placed in their own namespace. This make it easier to provide unqualified access to
these commands via the namespace path settings.

<<instance commands namespace>>=
namespace eval InstCmds {
<<tclral imports>>
namespace path [namespace parent]::Helpers
<<instance data>>
<<instance commands>>

Finding Related Instances

Navigating the class diagram to find related instances is a fundamental operation in most state activities. Relationship navigation
is mapped to a series of relational semi join operations. To support the run-time processing, we require a set of data structures
that facilitate invoking a series of relational semi join operations. The class diagram for these data structures is shown below.

Relation Oriented Software Execution Architecture

49 /295

R2

PartitionDst

Link
Name {I}
SrcClass {I}
3
AssociationLink PartitionLink
Name {I,R3,R4} Name {I,R3} 1
SrcClass {I,R3} SrcClass {I,R3}
0..1 |DstClass
Attrs

PrevSrcClass {R4}

Rl4 0/.1
succeeds»
«precedes

«is a destination for
is destined forp»

Figure 4.4: Link Information Class Diagram

1..n

Name {I,R2}
SrcClass {I,R2}
DstClass {I,R2}
Attrs

A Link can be of two types (R3). An AssociationLink corresponds to the linkage of an association type relationship and a
Partition link corresponds to a generalization relationship. For class based associations, it is necessary to traverse to both the
associator class and then to the other participating class (R4) To traverse from a superclass to a subclass we must know what are
the possible destination subclasses and the attributes needed to locate a subclass instance (R2).

The transliteration of the graphic into TcIRAL relvars and constraints follows the usual pattern.

<<arch relvar definitions>>=
ral relvar create _ Arch_Link {
Name string
SrcClass string
} {Name SrcClass}
ral relvar create _ Arch_AssociationLink ({

Name string
SrcClass string
DstClass string
Attrs list
PrevSrcClass string

} {Name SrcClass}

ral relvar association __ Arch_R4\

__Arch_AssociationlLink {Name PrevSrcClass} 2\
_ Arch_AssociationLink {Name SrcClass} ?

ral relvar create _ Arch_PartitionLink {
Name string
SrcClass string

} {Name SrcClass}

ral relvar partition _ Arch_R3 _ Arch_Link {Name SrcClass}\
__ Arch_AssociationLink {Name SrcClass}\
__Arch_PartitionLink {Name SrcClass}

ral relvar create _ Arch_PartitionDst {

Name string
SrcClass string
DstClass string
Attrs list

} {Name SrcClass DstClass}

Relation Oriented Software Execution Architecture 50/ 295

ral relvar association __ Arch_R2\
__Arch_PartitionDst {Name SrcClass} +\
_ Arch_PartitionLink {Name SrcClass} 1

There are two features of navigating that we provide to make translation easier.

* Often several relationships are traversed to get to the desired destination. We provide the ability to specify a relationship chain
to traverse multiple relationships in a single invocation. This interface saves the nesting that would be otherwise required if
only a single relationship could be traversed in one invocation.

* Although much less common, it is sometimes useful to find the set of unrelated instances. We provide that functionality since
obtaining the unrelated instance set is otherwise tedious and TcIRAL provides the necessary mechanism in the semiminus
command.

We factor all the common processing for relationship navigation into a procedure below and then provide specific procedures
intended to be invoked by the model processing code.

The strategy for navigating relationships is to iterate across the relationship navigation chain querying the linkage relvars to
determine the type of linkage and formulating TcIRAL relation semijoin(orrelation semiminus if we are seeking
unrelated instances).

<<instance commands>>=
proc FindRelatedInsts {instref op args} {
<<FindRelatedInst: set up data access>>
We start by dereferencing the instance reference.
set related [deRef $instref]
foreach linkage $args {
<<FindRelatedInst: traverse linkage>>
}
N.B. that we are not returning an instance reference but rather the
complete relation value of the related instances. This allows us
to further filter the result in the "findRelatedWhere" command.
return [list Ssrcrelvar Srelated]

<<FindRelatedInst: set up data access>>=
set srcrelvar [lindex S$instref 0]
SplitRelvarName S$srcrelvar domain class

This procedure queries the architectural data about relationship linkage,
so we bring the relvar variables into scope.
namespace upvar ${domain}\
__Arch_Link Link\
__ Arch_AssociationLink AssociationLink\
_ Arch_PartitionLink PartitionLink\
_ Arch_PartitionDst PartitionDst
variable relatedQuery ; # (1

o The query to obtain the related instances is used many places and so worth factoring out.

The query below shows the relational algebraic equivalent to traversing a relationship. The key here is that we want to specify
the attributes across which the semi join (or semiminus) operation occurs. In TcIRAL, you may specify the attribute names
for the join directly rather than having to go through an additional renaming operation. Since the referential attributes and the
corresponding identifying attributes may not be named the same, the run-time linkage information stores them in a directly usable
form.

<<instance data>>=

pipe {
relvar set ${domain}::$DstClass |
relation $op S$related ~ —-using SAttrs

} relatedQuery

Relation Oriented Software Execution Architecture 51/295

By placing the result of the pipe command into a namespace variable (relatedQuery in this case), we save the work of
rewriting the pipe syntax into a Tcl nested command each time it is invoked. We will use this technique in many places. Also
note that it is in this query where the op argument is substituted and this allows us to select semi join to query for the related
instances or semiminus to query for the unrelated ones.

The linkage specification may contain a destination class for those types of linkages where there may be multiple paths along the
relationship (i.e. navigating to associative classes or subclasses in a generalization).

<<FindRelatedInst: traverse linkage>>=
lassign $linkage lname dst ; # split out the linkage spec

set link [relvar restrictone ${domain}::__ Arch_Link\
Name $1lname SrcClass $class]

if {[ral relation isempty $1link]} {

tailcall DeclError UNKNOWN_LINKAGE $lname S$class
}
First we determine if we are dealing with an associative link or a
partition link.
set assoc [relation join $link $AssociationLink]
if {[relation isnotempty $assoc]} {

<<FindRelatedInst: traverse association>>
} else {

<<FindRelatedInst: traverse to subclass>>
}
Continue the iteration by setting the next source to the current
destination class.
set class $DstClass
set srcrelvar ${domain}::S$Sclass

If this is a navigation across an associative relationship, then the following cases arise.

* A simple association where we need only join across one set of referential attributes.
* A class based association where we will need to perform two joins, first to the associator class and then to the other participant.

* A class based association where we want to stop the traversal at the associator class.

The first two cases are distinguished by whether the instances of AssociationLink are related across R4 . The third case is
determined if the linkages spec included a path to a destination class.

<<FindRelatedInst: traverse association>>=

relation assign $assoc DstClass Attrs

Check if additional path information was provided.

if {S$dst eq {}} {
Find the set of instances related to the current set.
set related [eval $relatedQuery]

We must see if this is a class—-based association. If so, then the first
traversal was to the associator and we must traverse again to the other
class.

set assoc [relation semijoin $assoc $AssociationLink\
—-using {Name Name SrcClass PrevSrcClass}]
if {[relation isnotempty $assoc]} {
relation assign $assoc DstClass Attrs
set related [eval S$relatedQuery]
}
} else {
If a destination was specified in the linkage, then we need to verify
that it is actually part of the relationship.
if {$dst ne $DstClass} {
tailcall DeclError PATH_ERROR $lname $class $DstClass\
Sdst

Relation Oriented Software Execution Architecture 52 /295

set related [eval S$relatedQuery]

If the linkage is not associative, then it must be a superclass to subclass traversal. In this case, we simply find the partition linkage
information. A subclass to superclass traversal is treated as just an ordinary associative linkage and would be handled by the
associative traversal code.

<<FindRelatedInst: traverse to subclass>>=

set partdst [relvar restrictone ${domain}::__Arch_ PartitionDst\
Name $lname SrcClass S$class DstClass $dst]

if {[relation isempty S$partdst]} {
tailcall DeclError PATH _ERROR S$lname S$class $DstClass S$dst

}

relation assign $partdst DstClass Attrs

set related [eval $relatedQuery]

<<error code formats>>=
UNKNOWN_LINKAGE {unknown relationship, "%s", for class, "%s"}
PATH_ERROR {relationship, "%s", from "%s" to "%$s", does not end at "%s"}

The set of commands intended for state activities are just variations on the invocation of FindRelatedInsts.

findRelated instref relationshipl relationship2 ...

instref
An instance reference that is the start of the relationship chain navigation.

relationshipN
A specifier indicating the relationship path to traverse. Each relationship specifier is a one or two element list. If a
single element, then it is the name of a relationship (e.g. R27) that is to be traversed in the forward direction or the
name of a relationship prefixed by a tilde (e.g. ~R27) giving the name of a relationship to be traversed in its reverse
direction. If the relationship specifier is a two element list, then the traversal has alternate paths and the second
element names the class that is to be the destination of the traversal. For class based associations this would be the
name of the associator class and for generalizations this would be the name of one of the subclasses.

The findRelated command returns an instance reference to the set of instances that are found along the relationship
navigation chain.

Implementation

<<instance commands>>=
proc findRelated {instref args} {
tailcall ToRef {*}[FindRelatedInsts $instref semijoin {x}S$args] ; # (1

(1] All the heavy lifting is done by FindRelatedInsts. Here we need only specify that we want to use semijoin
which finds the related instances and then create an instance reference from the returned result.

The procedure for finding the unrelated instances has the same interface.

Relation Oriented Software Execution Architecture 53 /295

findUnrelated instref relationshipl relationship2 ...

instref
An instance reference that is the start of the relationship chain navigation.

relationshipN
A specifier indicating the relationship path to traverse. Each relationship specifier is a one or two element list. If a
single element, then it is the name of a relationship (e.g. R27) that is to be traversed in the forward direction or the
name of a relationship prefixed by a tilde (e.g. ~R27) giving the name of a relationship to be traversed in its reverse
direction. If the relationship specifier is a two element list, then the traversal has alternate paths and the second
element names the class that is to be the destination of the traversal. For class based associations this would be the
name of the associator class and for generalizations this would be the name of one of the subclasses.

The findUnrelated command returns an instance reference to the set of instances that are not related to those instances
referenced by instref along the relationship navigation chain.

Implementation

<<instance commands>>=
proc findUnrelated {instref args} {
tailcall ToRef {*}[FindRelatedInsts $instref semiminus {*}$args] ; # (1

o This is just like findRelated except that we now use the semiminus operation to find those instances that are not

related.

It is also useful to filter further the set of related instances by selecting those that satisfy some expression. These variations are

described below.

findRelatedWhere instref rchain expression

instref
An instance reference that is the start of the relationship chain navigation.

rchain
A list of relationship specifiers that form a navigation chain. Each element of the list is specified as for the findRe
lated command.

expression
A expression suitable for the : : expr command. Each instance found at the end of the navigation chain is evaluated
against expression and if the expression evaluates to true, then the instance is included in the result. During the
evaluation of the expression the values of each attribute are assigned to Tcl variables that are the same name
as the attribute. These values may be referenced in the expression and provide a means of selecting instances
based on their attribute values.

The findRelatedWhere command returns an instance reference to the set of instances that are found along the rela-
tionship navigation chain and for which expression evaluates to true.

Implementation

Relation Oriented Software Execution Architecture 54 / 295

<<instance commands>>=
proc findRelatedWhere {instref rchain expr} {
lassign [FindRelatedInsts S$instref semijoin {x}$rchain] relvar insts
tailcall ToRef S$relvar [uplevel 1\
[list ::ral relation restrictwith $insts S$expr]] ; # ©

o The only new wrinkle here is that we want to further restrict the returned relation value by evaluating expr. Note that we
perform the relation restrictwith in the stack frame of the caller to insure proper resolution of any variables in
expr.

findUnrelatedWhere instref rchain expression

instref
An instance reference that is the start of the relationship chain navigation.

rchain
A list of relationship specifiers that form a navigation chain. Each element of the list is specified as for the findRe
lated command.

expression
A expression suitable for the : : expr command. Each instance found at the end of the navigation chain is evaluated
against expression and if the expression evaluates to true, then the instance is included in the result. During the
evaluation of the expression the values of each attribute are assigned to Tcl variables that are the same name
as the attribute. These values may be referenced in the expression and provide a means of selecting instances
based on their attribute values.

The findUnrelatedWhere command returns an instance reference to the set of instances that are not related to those
referenced by instref along the relationship navigation chain and for which expression evaluates to true.

Implementation

<<instance commands>>=
proc findUnrelatedWhere {instref rchain expr} {
lassign [FindRelatedInsts $instref semiminus {x}S$rchain] relvar insts
tailcall ToRef $relvar [uplevel 1\
[list ::ral relation restrictwith $insts S$expr]]

Tests

<<instance command tests>>=
test findRelated-1.0 {
Navigate a relationship —-- simple association
} —setup {
setupDomain foo
addClass foo cl {Al int A2 string} Al
addClass foo c2 {Bl int B2 string} Bl
addAssocLink foo {Name Rl SrcClass cl}\

{Name R1l SrcClass cl DstClass c2 Attrs {Al Bl} PrevSrcClass {}}
set ref [rosea::ClassCmds::create [namespace current]::foo::cl Al 5 A2 baz]
rosea::ClassCmds: :create [namespace current]::foo::c2 Bl 5 B2 bar

} —cleanup {

Relation Oriented Software Execution Architecture 55 /295

cleanupDomain foo
} -body {
::rosea::InstCmds::findRelated $ref R1
} —result {::rosea::test::foo::c2 {{Bl int} {{Bl 5}}}} —-match ref

<<instance command tests>>=
test findRelated-1.1 {

Navigate a relationship —-- multiple simple association
} —setup {

setupDomain foo

addClass foo cl {Al int A2 string} Al

addClass foo c2 {Bl int B2 string} Bl

addClass foo ¢3 {Cl int C2 string} Cl

addAssocLink foo {Name Rl SrcClass cl}\

{Name R1 SrcClass cl DstClass c2 Attrs {Al Bl} PrevSrcClass {}}
addAssocLink foo {Name R2 SrcClass c2}\

{Name R2 SrcClass c2 DstClass c3 Attrs {Bl Cl} PrevSrcClass {}}

set ref [rosea::ClassCmds::create [namespace current]::foo::cl Al 5 A2 baz]
rosea: :ClassCmds: :create [namespace current]::foo::c2 Bl 5 B2 bar
rosea::ClassCmds: :create [namespace current]::foo::c3 Cl 5 C2 bar

} —cleanup {
cleanupDomain foo

} -body {
::rosea::InstCmds::findRelated $ref R1 R2

} —result {::rosea::test::foo::c3 {{Cl int} {{Cl 5}}}} —-match ref

<<instance command tests>>=
test findRelated-1.2 {

Navigate a relationship —-- unknown link
} —setup {

setupDomain foo

addClass foo cl {Al int A2 string} Al

set ref [rosea::ClassCmds::create [namespace current]::foo::cl Al 5 A2 baz]
} —cleanup {
cleanupDomain foo
} -body {
::rosea::InstCmds::findRelated $ref R1
} —result {unknown relationship, "R1", for class, "cl"}\
—-returnCodes error

<<instance command tests>>=

test findRelated-1.3 {
Navigate a relationship —-- bad path

} —setup {
setupDomain foo
addClass foo X {Al int A2 string} Al
addClass foo Y {Bl int B2 string} Bl
addClass foo A {Al int B1 int} {Al B1}
addClass foo cl {Al int A2 string} Al

Forward direction is from X —-> Y via A
addAssocLink foo {Name Rl SrcClass X}\

{Name R1 SrcClass X DstClass A Attrs {Al Al} PrevSrcClass {}}
addAssocLink foo {Name Rl SrcClass A}\

{Name R1l SrcClass A DstClass Y Attrs {Bl Bl} PrevSrcClass X}
addAssoclLink foo {Name ~R1l SrcClass Y}\

{Name ~R1l SrcClass Y DstClass A Attrs {Bl Bl} PrevSrcClass {}}
addAssocLink foo {Name ~R1 SrcClass A}\

Relation Oriented Software Execution Architecture 56 / 295

{Name ~R1l SrcClass A DstClass X Attrs {Al Al} PrevSrcClass Y}

set ref [rosea::ClassCmds::create [namespace current]::foo::cl Al 5 A2 baz]
} —cleanup {

cleanupDomain foo
} —body {

::rosea::InstCmds::findRelated $ref {R1 A}
} —result {unknown relationship, "R1", for class, "cl"}\

-returnCodes error

<<instance command tests>>=
test findRelated-2.0 {
Navigate a relationship -- associative class
} —setup {
setupDomain foo
addClass foo X {Al int A2 string} Al
addClass foo Y {Bl int B2 string} Bl
addClass foo A {Al int Bl int} {Al B1}
Forward direction is from X -> Y via A
addAssocLink foo {Name Rl SrcClass X}\
{Name R1l SrcClass X DstClass A Attrs {Al Al} PrevSrcClass {}}
addAssoclLink foo {Name Rl SrcClass A}\
{Name R1 SrcClass A DstClass Y Attrs {Bl Bl} PrevSrcClass X}
addAssocLink foo {Name ~R1l SrcClass Y}\
{Name ~R1l SrcClass Y DstClass A Attrs {Bl Bl} PrevSrcClass {}}
addAssocLink foo {Name ~R1 SrcClass A}\
{Name ~R1l SrcClass A DstClass X Attrs {Al Al} PrevSrcClass Y}

set ref [rosea::ClassCmds::create [namespace current]::foo::X Al 5 A2 baz]
rosea: :ClassCmds: :create [namespace current]::foo::Y Bl 10 B2 bar
rosea::ClassCmds: :create [namespace current]::foo::A Al 5 Bl 10

} —cleanup {
cleanupDomain foo

} —body {
::rosea::InstCmds::findRelated $ref R1

} —result {::rosea::test::foo::Y {{Bl int} {{B1 10}}}} -match ref

<<instance command tests>>=
test findRelated-2.1 {
Navigate a relationship —-- path to associative class
} —setup {
setupDomain foo
addClass foo X {Al int A2 string} Al
addClass foo Y {B1l int B2 string} Bl
addClass foo A {Al int Bl int} {Al B1l}
Forward direction is from X -> Y via A
addAssocLink foo {Name Rl SrcClass X}\
{Name R1 SrcClass X DstClass A Attrs {Al Al} PrevSrcClass {}}
addAssocLink foo {Name Rl SrcClass A}\
{Name R1l SrcClass A DstClass Y Attrs {Bl Bl} PrevSrcClass X}
addAssocLink foo {Name ~R1l SrcClass Y}\
{Name ~R1l SrcClass Y DstClass A Attrs {Bl Bl} PrevSrcClass {}}
addAssocLink foo {Name ~R1l SrcClass A}\
{Name ~R1l SrcClass A DstClass X Attrs {Al Al} PrevSrcClass Y}

set ref [rosea::ClassCmds::create [namespace current]::foo::X Al 5 A2 baz]
rosea::ClassCmds: :create [namespace current]::foo::Y Bl 10 B2 bar
rosea::ClassCmds: :create [namespace current]::foo::A A1 5 B1 10

} —cleanup {
cleanupDomain foo

} —body {
::rosea::InstCmds::findRelated $ref {R1 A}

Relation Oriented Software Execution Architecture 57 /295

}

—-result {::rosea::test::foo::A {{Al int Bl int} {{A1l 5 Bl 10}}}} -match ref

<<instance command tests>>=
test findRelated-3.0 {

Navigate a generalization

-setup {
setupDomain foo
addClass foo S {S1 int S2 string} S1
addClass foo X {X1 int X2 string} X1
addClass foo Y {Y1l int Y2 string} Y1

addAssocLink foo {Name Rl SrcClass X}\

{Name R1 SrcClass X DstClass S Attrs {X1 S1} PrevSrcClass {}}
addAssoclLink foo {Name Rl SrcClass Y}\

{Name R1l SrcClass Y DstClass S Attrs {Y1l S1} PrevSrcClass {}}
relvar eval {

addParitionLink foo {Name ~R1 SrcClass S}

addPartitionDst foo {Name ~R1 SrcClass S DstClass X Attrs {S1 X1}}

addPartitionDst foo {Name ~R1 SrcClass S DstClass Y Attrs {S1 Y1}}

set ref [rosea::ClassCmds::create [namespace current]::foo::S S1 5 S2 baz]
rosea::ClassCmds: :create [namespace current]::foo::X X1 5 X2 bar
—cleanup {
cleanupDomain foo
-body {
::rosea::InstCmds::findRelated S$ref {~R1 X}
—-result {::rosea::test::foo::X {{X1 int} {{X1 5}}}} —-match ref

Updating Attributes

Another fundamental data operation is to update the values of attributes. The updateAttribute command is used to modify
the value of one or more attributes.

updateAttribute instref ?attrl valuel attr2 value2?

instref
An instance reference to those instances that are to be updated.

attrN valueN
The attrN valueN arguments are a set of attribute name / value pairs. The attributes given will be updated to the
corresponding value. If instref refers to multiple instances, then the attributes of all referenced instances are
updated.

Implementation

<<instance commands>>=
proc updateAttribute {instref args} {

<<updateAttribute: parse arguments>>
<<updateAttribute: check for identifiers>>
<<updateAttribute: extend instance reference>>
<<updateAttribute: update class relvar>>
return

We insist that the arguments be given as attribute name / value pairs and the instance reference be singular.

Relation Oriented Software Execution Architecture 58 /295

<<updateAttribute: parse arguments>>=
if {[llength $args] % 2 != 0} {
tailcall DeclError ARG_ERROR $args

lassign $instref relvar insts
if {[relation cardinality $insts] != 1} {
tailcall MUST_BE_SINGULAR S$relvar [relation cardinality $insts]

One complication of updateAttribute is to disallow updates to identifying attributes. Changes to identifiers must be ac-
complished by creating and deleting instances. So we want to make sure that none of the attributes listed in the arguments are
actually identifying attributes.

We obtain the set of identifying attributes by performing the union of the attributes of all the identifiers of the relvar. Then if
the intersection of the identifying attributes with the attributes to be update is non-empty, we disallow the update. In theory, one
could continue on and simply exclude the identifying attributes from the update set, but this is deemed an error especially since
there is no convenient way to return to the caller that all the attributes might not have been updated. Analysis models should not
be trying to update identifying attributes.

<<updateAttribute: check for identifiers>>=

set d1dattrs [list]

foreach identifier [relvar identifiers Srelvar] {
::struct::set add idattrs $identifier

}

set idupdates [::struct::set intersect $idattrs S$Sargs]

if {![::struct::set empty S$idupdates]} {
tailcall DeclError ID_UPDATE [Jjoin $idupdates {, }]

The update strategy is to use the relvar updateper command. This command was tailored for this particular purpose. It
takes a relation value, uses the identifiers in that value and will update the corresponding non-identifying attributes. So we can
create a relation value to contain the updated attribute values by extending the instance reference value with the attributes to be
updated. Conveniently, the instance reference already contains the identifying attributes. To perform the extend operation we
will need the type of the attribute which we can get from the heading of the relvar. Since we can have an arbitrary number of
attributes to update and since the relation extend command will add an arbitrary number of attributes, we iterate over the
attributes to build up a relation extend command.

<<updateAttribute: extend instance reference>>=
set extcmd [list relation extend $insts exttuple]
set heading [relation heading [relvar set $relvar]]
foreach {attr value} S$args {

if {![dict exists S$heading S$attr]} {

tailcall DeclError UNKNOWN_ATTRIBUTE Sattr
}
lappend extcmd $attr [dict get S$heading S$Sattr] \"Svalue\"

With the relvar extend command synthesized, it is just a matter of evaluating it and then using relvar updateper to
do the work of modifying the relvar in place.

<<updateAttribute: update class relvar>>=
relvar updateper S$relvar [eval S$Sextcmd]

<<error code formats>>=

ARG_FERROR {attribute updates must be name / value pairs, got "%s"}
ID_UPDATE {cannot update identifying attributes, "%s"}
UNKNOWN_ATTRIBUTE {unknown attribute, "%s"}

Relation Oriented Software Execution Architecture 59 /295

Tests

<<instance command tests>>=
test updateAttribute-1.0 {

}

}

}

}

Update single attribute wvalue
-setup {

setupDomain bar

addClass bar cl {Al int A2 string} Al

set ref [rosea::ClassCmds::create [namespace current]::bar::cl Al 5 A2 baz]
—cleanup {

cleanupDomain bar
-body {

::rosea::InstCmds: :updateAttribute S$Sref A2 foo

relation extract [::rosea::InstCmds::deRef S$ref] A2
-result {foo}

<<instance command tests>>=
test updateAttribute-1.1 {

}

}

}

}

Update multiple attribute wvalues
-setup {
setupDomain bar
addClass bar cl {Al int A2 string A3 int} Al
set ref [rosea::ClassCmds::create [namespace current]::bar::cl\
Al 5 A2 baz A3 27]
—cleanup {
cleanupDomain bar
-body {
::rosea::InstCmds: :updateAttribute $ref A3 42 A2 foo
relation extract [::rosea::InstCmds::deRef S$Sref] A2 A3
-result {foo 42}

<<instance command tests>>=
test updateAttribute-1.2 {

}

}

}

}

Update identifying attributes
—-setup {
setupDomain bar
addClass bar cl {Al int A2 string} Al
set ref [rosea::ClassCmds::create [namespace current]::bar::cl Al 5 A2 baz]
—cleanup {
cleanupDomain bar
-body {
::rosea::InstCmds: :updateAttribute $Sref Al 27
—-result {cannot update identifying attributes, "Al"} -returnCodes error

<<instance command tests>>=
test updateAttribute-1.3 {

}

}

}

}

Update non-existent attributes
-setup {
setupDomain bar
addClass bar cl {Al int A2 string} Al
set ref [rosea::ClassCmds::create [namespace current]::bar::cl Al 5 A2 baz]
—cleanup {
cleanupDomain bar
-body {
::rosea::InstCmds: :updateAttribute $ref C3 27
-result {unknown attribute, "C3"} -returnCodes error

Relation Oriented Software Execution Architecture 60 /295

Modifying Attributes

It is frequently the case that an update to an attribute depends upon the current value of the attribute. The simple example of
incrementing an integer values attribute by one involves reading the current value, performing the addition and updating the new
value. To support this operation conveniently, we will supply a control structure type of command patterned off of the dict
with command.

withAttribute instref attrvarpairl ?attrvarpair2 ... ? body

instref
An instance reference to the instances whose attributes are to be updated. This instance reference must be a singular
reference.

attrvarpairN
Each attrvarpairN argument is interpreted as a two element list. The first element is the name of an attribute
and the second element is the name of a variable into which the attribute value is assigned. If the second element
is missing, then the attribute value is assigned into a Tcl variable that is named the same as the attribute. Attributes
may not be identifying attributes.

body
A Tecl script that is executed.

The withAttribute command assigns the values of the attributes given by the attrvarpairN arguments into Tcl
variables and evaluates body. After the evaluation of body the values of the attributes are updated. Updates to identifying
attributes are not allowed. Any variable holding an attribute that is unset by body is silently ignored and not updated.

Implementation

The implementation of withAttribute follows the same pattern as that for updateAttribute.

<<instance commands>>=

proc withAttribute {instref args} {
<<withAttribute: parse arguments>>
<<withAttribute: check for identifiers>>
<<withAttribute: execute body>>
<<withAttribute: extend instance reference>>
<<withAttribute: update class relvar>>

return

The interface has the complication of a variable number of attribute name / variable name pairs since we want to be able to
specify the evaluated body as the last argument (as is typical in these control oriented procedures).

<<withAttribute: parse arguments>>=
if {[llength $args] < 2} {
tailcall DeclError WITH_ATTR_USAGE

lassign $instref relvar insts
if {[relation cardinality $insts] != 1} {
tailcall MUST_BE_SINGULAR S$relvar [relation cardinality $insts]

set body [lindex $args end]

set attrspecs [lrange S$args 0 end-1]
set attrnames [list]

set varnames [list]

Relation Oriented Software Execution Architecture

61/295

foreach attrspec $attrspecs {

set speclen [llength S$attrspec]

if {$speclen == 1} {
lappend attrnames [lindex S$Sattrspec 0]
lappend varnames [lindex S$attrspec 0]

} elseif {S$speclen == 2} {
lappend attrnames [lindex S$Sattrspec 0]
lappend varnames [lindex S$attrspec 1]

} else {
tailcall DeclError ATTR_VAR_SPEC S$attrspec

<<error code formats>>=
WITH_ATTR_USAGE {wrong arguments, should be, \

"withAttribute attrvarpairl ?attrvarpair2 ...? body"}

ATTR_VAR_SPEC {attribute / variable argument must be a one or two element)\

list, got "%s"}

As with updateAttribute, identifiers may not be modified.

<<withAttribute: check for identifiers>>=

set idattrs [list]

foreach identifier [relvar identifiers S$relvar] {
::struct::set add idattrs $identifier

}

set idupdates [::struct::set intersect $idattrs Sattrnames]

if {![::struct::set empty S$idupdates]} {

tailcall DeclError ID_UPDATE [Jjoin $idupdates {, }]

Assign the attributes to variables and evaluate body in the context of the caller.

<<withAttribute: execute body>>=

uplevel 1 [list ral relation assign [deRef S$instref] {*}S$Sattrspecs]

uplevel 1 $body

As with updateAttribute, we will use the relvar updateper command. The only complication here is to make sure

that the variables to which the attributes were assigned still exist.

<<withAttribute: extend instance reference>>=
set extcmd [list relation extend $insts exttuple]
set heading [relation heading [relvar set Srelvar]]
foreach attr S$attrnames var $varnames {
if {[uplevel 1 [list info exists S$var]]} {
upvar 1 $var varvalue
lappend extcmd $attr [dict get S$heading $attr]

Finally, we perform the update.

<<withAttribute: update class relvar>>=
relvar updateper S$relvar [eval S$Sextcmd]

Tests

\"Svarvalue\"

Relation Oriented Software Execution Architecture

62 /295

<<instance command tests>>=
test withAttribute-1.0 {

}

}

}

}

Update single attribute wvalue
—-setup {
setupDomain bar
addClass bar cl {Al string A2 int} Al

set ref [rosea::ClassCmds::create [namespace current]::bar::cl Al baz A2 5]

—cleanup {
cleanupDomain bar

-body {
::rosea::InstCmds: :withAttribute S$ref A2 {
incr A2

}
relation extract [::rosea::InstCmds::deRef S$ref] A2
-result {6}

<<instance command tests>>=
test withAttribute-1.1 {

}

}

}

}

Update multiple attribute wvalues
-setup {
setupDomain bar
addClass bar cl {Al int A2 string A3 int} Al
set ref [rosea::ClassCmds::create [namespace current]::bar::cl\
Al 5 A2 baz A3 27]
—cleanup {
cleanupDomain bar
-body {
::rosea::InstCmds: :withAttribute S$ref {A3 x} {A2 y} {
set x [expr {$x + 10}]
set y foo
}
relation extract [::rosea::InstCmds::deRef S$Sref] A2 A3
-result {foo 37}

<<instance command tests>>=
test withAttribute-1.2 {

}

}

}

}

Unset update variable
—-setup {
setupDomain bar
addClass bar cl {Al int A2 string A3 int} Al
set ref [rosea::ClassCmds::create [namespace current]::bar::cl\
Al 5 A2 baz A3 27]
—cleanup {
cleanupDomain bar
-body {
::rosea::InstCmds: :withAttribute $ref {A3 x} {A2 y} {
set x [expr {$x + 10}]
unset y
}
relation extract [::rosea::InstCmds::deRef Sref] A2 A3
-result {baz 37}

Reading Attributes

The complement to updating attributes is, of course, to read them. Reading attributes is just a matter of dereferencing the instance
reference and extracting the requested attributes. We deal with the boundary case of reading no attributes by returning the empty
string. If only one attribute is read, then a simple scalar value is returned. If multiple attributes are read, then a list of attribute
values is returned.

Relation Oriented Software Execution Architecture 63 /295

This command is a convenience procedure for the common case where we want to deal with a single class instance. The
instref argument to the command must be singular. If you wish to deal with the attributes sets of class instances, the best
way is to dereference with the deRe f command to get a relation value that can then be used with ral relation commands.
This is the preferred way to perform set-at-a-time computations. However, most actions operate on a single instance only making
procedures such as this most convenient.

readAttribute instref ?attrl attr2 ...?

instref
An instance reference to the instances whose attribute is to be read. This instance reference must be a singular
reference.

attrN
The attrN arguments are a set of attribute names. The values of the attributes will be returned. If no attrN
arguments are given, the return value is the empty string. If only one attribute argument is given, then a simple
scalar value is returned. If multiple attribute arguments are given, then a list of values is returned. The order of the
returned list corresponds to the order of the affrN arguments.

Implementation

<<instance commands>>=
proc readAttribute {ref args} {
We insist upon a singular reference for reading attributes. Multiple
references can be handled by dereferences and using TclRAL "relation"
commands.
if {![isRefSingular S$ref]} {
tailcall DeclError SINGLE_REF_REQUIRED [refMultiplicity S$ref]

return [expr {[llength $args] == 0 ? {} :\
[relation extract [deRef $ref {*}Sargs] {x}Sargs]l}] ; # ©

o The relation extract command is smart enough to deal with returning a scalar value if only one attribute is ex-
tracted and a list of values otherwise.

<<instance command tests>>=
test readAttribute-1.0 {
Read single attribute value
} —setup {
setupDomain bar
addClass bar cl {Al int A2 string} Al
set ref [rosea::ClassCmds::create [namespace current]::bar::cl Al 5 A2 baz]
} —cleanup {
cleanupDomain bar
} -body {
::rosea::InstCmds: :readAttribute S$ref A2
} —result {baz}

<<instance command tests>>=
test readAttribute-1.1 {
Read multiple attribute values
} —setup {
setupDomain bar
addClass bar cl {Al int A2 string} Al
set ref [rosea::ClassCmds::create [namespace current]::bar::cl Al 5 A2 baz]

Relation Oriented Software Execution Architecture 64 / 295

} —cleanup {

cleanupDomain bar
} —body {

::rosea::InstCmds: :readAttribute $ref Al A2
} —result {5 baz}

<<instance command tests>>=
test readAttribute-1.2 {
Attempt to read multiple reference
} —setup {
setupDomain bar
addClass bar cl {Al int A2 string} Al
rosea::ClassCmds: :create [namespace current]::bar::cl Al 5 A2 baz
rosea::ClassCmds: :create [namespace current]::bar::cl Al 7 A2 foo
set ref [rosea::ClassCmds::findAll [namespace current]::bar::cl]
} —cleanup {
cleanupDomain bar
} —body {
rosea: :InstCmds: :readAttribute S$ref Al
} —result {single valued reference required, 2 found} -returnCodes error

It is often convenient to “unwrap” the attributes of an instance into Tcl variables. This is usually done to interface into other
procedures or Tcl commands that expect scalar arguments. The assignAttribute command accomplishes this.

assignAttribute instref ?attrvarpairl attrvarpair2 ...?

instref
An instance reference to the instances whose attributes are to be assigned. This instance reference must be a singular
reference.

attrvarpairN
The remaining arguments are each interpreted as attribute name / variable name pairs. If no additional arguments
are given, then all the attributes referenced by instref are assigned to Tcl variables whose name is the same as
the attribute name. If additional arguments are present, each argument is interpreted as a two element list. The first
element is the name of an attribute and the second element is the name of a variable into which the attribute value is
assigned. If the second element is missing, then the attribute value is assigned into a Tcl variable that is named the
same as the attribute.

Implementation

<<instance commands>>=
proc assignAttribute {ref args} {
We must insist upon a singular references, since assigning to scalar
variables from a relation value doesn’t make a lot of sense.
if {![isRefSingular Sref]} {
tailcall DeclError SINGLE_REF_REQUIRED [refMultiplicity S$ref]

uplevel 1 [list ral relation assign [deRef S$ref] {x}Sargs] ; # ©
return

(1] The relation assign command does all the heavy lifting with respect to assigning attributes into the requested Tcl
variables.

Relation Oriented Software Execution Architecture

65 /295

<<instance command tests>>=
test assignAttribute-1.0 {

}

}

}

}

Assign single attribute value into a given Tcl variable

—-setup {
setupDomain bar
addClass bar cl {Al int A2 string} Al

set ref [rosea::ClassCmds::create [namespace current]:

—cleanup {
cleanupDomain bar

-body {
::rosea::InstCmds: :assignAttribute Sref {A2 myvar}
set myvar

-result {baz}

<<instance command tests>>=
test assignAttribute-1.1 {

}

}

}

}

Assign multiple attribute values
—-setup {

setupDomain bar

addClass bar cl {Al int A2 string} Al

set ref [rosea::ClassCmds::create [namespace current]:

—cleanup {
cleanupDomain bar

-body {
::rosea::InstCmds: :assignAttribute Sref Al {A2 a2var}
list $Al S$Sa2var

-result {5 baz}

Deleting Instances

tbar::cl A1l 5 A2 baz]

:bar::cl Al 5 A2 baz]

As we say above, creating instances is a class based operation. Deleting them is a simple matter of invoking the delete
instance operation. However, deleting class instances that are involved in relationships can become quite complicated. It is the
responsibility of the model activities to leave the data model coherent by unlinking relationships as necessary before deleting
instance. If this is not done, then you will most assuredly encounter a constraint violation error.

delete ?instrefl instref2 ...?

instrefN
An instance reference to those instances that are to be deleted.

Implementation

<<instance commands>>=
proc delete {args} {

foreach instref $args {
lassign $instref relvar insts
relvar minus Srelvar [deRef S$instref]

SplitRelvarName S$relvar domain class
set instrelvar ${domain}::_ S$S{class}__ STATEINST
if {[relvar exists S$instrelvar]} {

relvar minus $instrelvar [relation semijoin $insts)\

[relvar set S$instrelvar]]

Relation Oriented Software Execution Architecture 66 / 295

return

Tests

<<instance command tests>>=
test delete-1.1 {
delete class instances
} —setup {
setupDomain bar
addClass bar cl {Al int A2 string A3 int} Al
rosea::ClassCmds: :create [namespace current]::bar::cl Al 5 A2 baz A3 27
rosea::ClassCmds: :create [namespace current]::bar::cl Al 6 A2 foo A3 37
rosea::ClassCmds: :create [namespace current]::bar::cl Al 7 A2 bar A3 47
} —cleanup {
cleanupDomain bar
} —body {
set before [relation cardinality [relvar set [namespace current]::bar::cl]]
rosea: :InstCmds: :delete [rosea::Helpers::ToRef\
[namespace current]::bar::cl\

[relvar set [namespace current]::bar::cl]]
set after [relation cardinality [relvar set [namespace current]::bar::cl]]
testConditions\

{Sbefore == 3}\

{Safter == 0}

} —result {1}

Signaling Events

Most state activities (maybe all) end up updating attribute values or signaling events or both. Here we discuss the implementation
of signaling an event.

For events, we track both the source and the target of the event. However, we don’t want to force the caller to provide the source
as an argument. What we are truly seeking to know is whether the signal originates from within a state activity and if so from
which instance. We can make this determination because state activities are located in a child namespace called, __Activity.
We can climb up the call stack until we find a procedure executing in the __Activity namespace.

Implementation

If we find that we are in executing in the __Activity namespace before we reach the global namespace level, we want to
deem the first se1f variable value encountered as the source instance. Each state activity has a variable named self generated
for it. However, as we climb the call stack we will test to see if any procedures we visit also have a defined self variable. The
first value of self that we find in the climb up the call stack is the one we will take as the source instance. This handles the case
where a state activity finds some related instance, invokes an instance operation (which also has a se1f variable) that signals the
event. In this case, we want the source of the event to be the related instance not the instance executing the state activity. So the
logic is a little more complicated that just taking the value of self when we find a procedure executing in the __ Activity
namespace and we will need some state information to keep track of our progress in finding a value for self.

<<helper commands>>=

proc SelfInstRef {{level 2}} {
set foundRef false
set ref [nilInstRef]

for {set ns [uplevel $level namespace current]} {$ns ne "::"}\
{set ns [uplevel [incr level] namespace current]} {
if {!S$foundRef} {

Relation Oriented Software Execution Architecture 67 /295

upvar S$level self srcself
if {[info exists srcself]} {
set ref S$srcself
set foundRef true

}
if {[string match {%__Activity=*} $ns]} {
return $ref ; # @

}

return [nilInstRef]

o One might conclude that it is not possible to reach this statement without re £ being set. Under most circumstances that
is true. Since only state activities reside in the __Activity namespace and all state activities have a self variable,
we would expect ref to be set in the first i f statement. But this is Tcl, and it is possible to inject code into the
namespace to be executed. Consider, for example, a Tk button command that is created in a state activity and given the
command [namespace code [list instop $self signal MyEvent]]. This will cause execution in the
__Activity namespace but no self variable will be defined when that execution takes place. So the initialization of
ref outside of the for loop is necessary to protect against this situation. N.B. that the correct way to signal events or
perform other instance based operations from outside of the domain (e.g. in Tk callbacks) is to use the rosea tunnel
command.

signal instref event ?paraml param?2 ... ?

instref
An instance reference whose instances are to be signaled.

event
The name of the event to signal.

paramN
The paramN arguments are a set of optional event parameter values. These values are delivered to the state activity
when it is run. It is a corollary of the rules of Moore type state machines that any event that causes a transition into a
state must supply the parametric event data defined by the signature of the state activity. Failing to do so will result
in a runtime error when the event is dispatched.

One complication with signaling events is dealing with polymorphic events. Polymorphic events are sent to a superclass instance
and, at run time, are mapped to an event in the subclass instance to which the superclass instance is currently related. In general
the rules of mapping polymorphic events can be complex, so we factor that into a procedure. Otherwise, the signal procedure
is simply a means of invoking a dispatch procedure that queues an event and hooks that action into the Tcl event loop.

Implementation

<<instance commands>>=
proc signal {dstset event args} {
set srcref [SelflInstRef]
if {![::rosea::Dispatch: :MapPolymorphicEvent ::rosea::Dispatch::SignalEvent)\
Ssrcref $dstset Sevent Sargs]} {
::rosea: :Dispatch::SignalEvent $srcref $dstset S$Sevent S$Sargs
}

return

Relation Oriented Software Execution Architecture 68 /295

Signaling Delayed Events

The XUML modeling semantics supply the concept of a delayed event as a means of dealing with time. Delayed events are

requests to deliver an event at some time in the future. Time is specified in units of milliseconds.

There is a rule in the XUML semantics that there may be no more than one outstanding delayed event between any sending /
receiving pair of instances. We will see below what happens when duplicate delayed events are signaled. For now we will simply

state the rule and state that it is enforced.

delaysignal time instref event ?paraml param?2 ...?

time
The number of milliseconds to delay in delivering the event. The time value must be a non-negative integer. Delay
times of zero are acceptable and result in the event being signaled immediately.

instref
An instance reference whose instances that are to be signaled.

event
The name of the event to signal.

paramN
The paramN arguments are a set of optional event parameter values. These values are delivered to the state activity
when it is run.

Implementation

<<instance commands>>=
proc delaysignal {time dstset event args} {
if {!([string is integer -strict $time] && Stime >= 0)} {
tailcall DeclError INVALID TIME S$time
}
set srcref [SelflInstRef]
if {![::rosea::Dispatch: :MapPolymorphicEvent\
[list ::rosea::Dispatch::SignalDelayedEvent $time]\
Ssrcref $dstset Sevent Sargs]} {
::rosea::Dispatch::SignalDelayedEvent $time $srcref S$dstset S$Sevent $args
}

return

<<error code formats>>=
INVALID_TIME {invalid time wvalue, "%s"}

Canceling Delayed Events

You may cancel a delayed event that is outstanding. There are three situations that might arise when a delayed event is to be

canceled.

* The delay time has not expired and the signal is still pending.
* The delay time has expired but the event has not yet been delivered.

* The event has already been delivered.

Relation Oriented Software Execution Architecture 69 /295

In the third case, canceling has no effect as it is not possible to reach backward in time. It is not an error to cancel a delayed event
that is not in flight. For the first two cases, canceling the delayed event will insure that it is not delivered. That is to say, that even
if the event is queued for delivery, it will be found and discarded.

canceldelayed srcref dstref event

srcref
The instance reference of the sender of the delayed event. The srcref reference may not be multiple.

dstref
The instance reference of the receiver of the delayed event. The dst ref reference may be multiple.

event
The name of the event to cancel.

Implementation

<<instance commands>>=
proc canceldelayed {srcref dstset event} {
set srcmult [refMultiplicity $srcref]
if {Ssrcmult > 1} {
tailcall DeclError SINGLE_OR_EMPTY REF_REQUIRED S$srcmult
}
forAllRefs dstref S$dstset {
::rosea::Dispatch: :CancelDelayedSignal $srcref S$Sevent $dstref

}

return

<<error code formats>>=
SINGLE_OR_EMPTY_REF_REQUIRED {single valued or nil reference required, %d found}

Remaining Time for a Delayed Event

The other operation for delayed is events is to inquire as to the amount of time remaining before the event is signaled.

delayremaining srcref dstref event
srcref
The instance reference of the sender of the delayed event. The srcref reference may not be multiple.

dstref
The instance reference of the receiver of the delayed event. The dst ref reference must be singular.

event

The name of the event to inquire of the remaining time.

The return value of the command is the number of milliseconds remaining before event is signaled. The returned value
will be zero if the event does not exist or has already been signaled.

<<instance commands>>=
proc delayremaining {srcref dstref event} {
set srcmult [refMultiplicity S$srcref]
if {$srcmult > 1} {
tailcall DeclError SINGLE_OR_EMPTY_REF_REQUIRED $srcmult

Relation Oriented Software Execution Architecture 70/ 295

}
if {![isRefSingular $dstref]} {

tailcall DeclError SINGLE_REF_REQUIRED [refMultiplicity S$dstref]
}

tailcall ::rosea::Dispatch::SignalTimeRemaining $srcref S$Sevent S$dstref

<<error code formats>>=
SINGLE_REF_REQUIRED {single valued reference required, %d found}

Invoking Instance Operations

instop instref operation ?argl arg2 ...?

instref
The instance reference of the class instance on which the operation is to be performed.

operation
The name of the operation.

argN
The arguments to the operation.

Implementation

The implementation of instop uses the relvar name that is part of the instance reference to invoke the ensemble command for
the appropriate class. This amounts to a convenient shortcut to avoid typing the class name when it can be deduced from the
instance reference.

<<instance commands>>=
proc instop {instref op args} {
tailcall [lindex $instref 0]::Instance $instref $op {*}$Sargs

Dispatch Commands

Let’s recap where we are with respect to the rosea package commands. So far we have seen commands associated with
classes, relationships and instances. These commands were intended to be invoked by the domain processing to translate XUML
semantics onto the underlying Tcl implementation. These commands primarily deal with access to data or requesting events to
be signaled. In this section we will see how execution is sequenced.

Dispatch commands are those commands in the rosea execution architecture that queue and dispatch state machine events and
provide the mapping between the XUML semantics of state machine execution and the Tcl event loop. Tcl has support in its core
commands for event based programming and in this section we show how those facilities are used to implement the Moore type
state machines that are part of the XUML execution model. We will use the : : after command to provide access to the event
loop.

The dispatch commands are not intended to be directly invoked by state activities or other domain processing code. These
commands are invoked as either part of requesting an event be signaled or as the means of delivering an event to a class instance.

Like the other aspects that support XUML semantics, there are a set of architectural relvars that contain the data needed to support
the run-time dispatch of events. The structure of this data is shown below.

Relation Oriented Software Execution Architecture 71/ 295

Transition
Class {I,R1}
State (I,R1}
Event {I,R1}
NewState
InitialState State —
Class {l,R2} R6 R1
State (R2} 0..1 is a starting state» 1 |Class{l} 1 7 reactsto» 1 n |Class{l}
<starts at State (1} <affects Event (I}
1
R7
is an ending state»
«endp at
PolymorphicEvent
0].n Class {I,R2}
TerminalState Event (I,R2}
Class {I,R2}
State (R2}

Figure 4.5: Class State Model Architecture Data

There are two distinct concerns regarding event dispatch.

* Ordinary events are dispatched via a Transition table.

* Polymorphic events must be mapped at run-time to ordinary events in the currently related subclass.

The Transition table here is the Cartesian product of the State and Event instances (R1). Every class has a well defined
InitialState (R6). Some states also serve as a TerminalState (R7) and the system will delete instances that transition into those
states. To map a PolymorphicEvent, we need only know its event name.

The class diagram is directly transliterated into TcIRAL commands.

<<arch relvar definitions>>=

ral relvar create _ Arch_State {
Class string
State string

} {Class State}

ral relvar create _ Arch_Event {
Class string
Event string

} {Class Event}

ral relvar create _ Arch_ Transition {
Class string
State string
Event string
NewState string

} {Class State Event}

Relation Oriented Software Execution Architecture

727295

ral relvar correlation _ Arch_R1l _ Arch_Transition\
{Class State} + _ Arch_State {Class State}\
{Class Event} + _ Arch_Event {Class Event}
ral relvar create _ Arch_InitialState {
Class string
State string
} Class
ral relvar association __Arch_R6\
_ _Arch_InitialState {Class State} 2\
_ _Arch_State {Class State} 1
ral relvar create _ Arch TerminalState {
Class string
State string
} {Class State}
ral relvar association __ Arch_R7\
_ Arch_TerminalState {Class State} =*\
_ Arch_State {Class State} 1

We place the dispatch commands in their own namespace to avoid any accidental invocation of these commands from state

activity code.

<<dispatch commands namespace>>=
namespace eval Dispatch {
<<tclral imports>>
namespace import ::ral::relvar
namespace path [list)\
[namespace parent]::Helpers\
[namespace parent]::InstCmds\
]
<<dispatch data>>
<<dispatch commands>>

Dispatching Events

The core part of XUML execution sequencing is rooted in the dispatch of events to state machines and the subsequent execution

of the state activities. There are several issues which the design must handle.

 Since we are storing data using TcIRAL and we wish to use TcIRAL’s ability to enforce referential integrity, we must define
what constitutes a transaction on the domain data model. Transactions are necessary since there will be times when a set of
operations must be executed to have a consistent data model. TcIRAL supports the required transaction functionality, it is only

necessary to define what constitutes the processing in a transaction.

» Support for delayed events requires support for canceling and querying the remaining time. When mapping XUML event con-
cepts onto Tcl event concepts we will find it necessary to store some additional data to support fully delayed event operations.

 Self directed events, i.e. those events that an instance signals to itself must be delivered before non-self directed events directed

to the same instance. This is a rule of the XUML execution model.!

The XUML execution rules require that a state activity either leave the domain data in a consistent state or generate events that
will cause further execution that eventually makes the data model consistent. In rosea, we interpret this rule to mean that the
data model must be consistent at the end of each thread of control. We define a thread of control as beginning with an event that
is signaled from outside of a state machine activity. We define the end of the thread of control to occur when the state activities

initiated by the thread of control starting event have signaled no more events.

Consider an event arising from the invocation of a domain operation. When that event is dispatched, it starts a thread of control.
The state activity executed when the event is dispatched will, in general, cause other events to be signaled. These other events

! The reason for this rule is beyond our scope here but, despite the special case nature of the rule, in the final analysis the rule greatly simplifies reasoning

about the analytical model.

Relation Oriented Software Execution Architecture 73 /295

are then dispatched and the execution of the state activities may yet signal more events. Eventually, signaling new events stops
and all the events generated by state activities is consumed. At that time, the thread of control is over and the data model must be
consistent with respect to its relationships. So, the implementation will start a relvar transaction at the beginning of the
thread of control and end that transaction when the thread of control ends. When the transaction ends, TcIRAL will evaluate the
relvar constraints that are associated with the class relationships. If one or more constraints fail, then the data is rolled back
to its state before the transaction began.

There is one other subtle aspect of event dispatch and transactions. We consider dispatching a delayed event as arising from
outside of a state activity. Although the delayed event may be signaled from inside a state activity, that signaling operation is
interpreted as a request to the system to signal the event at some future time. The event ultimately is delivered by the system and
so is considered to have arisen from outside of any state activity that made the delayed signaling request. We consider time to
be somewhat magical, pervasive and as existing outside of any domain. This interpretation is in effect even if the delay time is
zero. A state activity signaling a delayed event with a zero delay time will result, when the event is dispatched, in the start of a
new thread of control. This boundary condition case can actually be used to cause a state machine to yield the thread of control
allowing other processing to occur. Models that rely on such behavior should be considered suspect but the effect can be used
as a means of yielding execution from a long running computation to allow other threads of control to be run. Given the single
threaded nature of this implementation, that situation is sometimes needed.

To implement these ideas we will use two queues, one to hold events that arise outside of a state machine context and another
one to hold those that are signaled by state machine activities.

<<dispatch data>>=
variable toc_queue [list]
variable event_queue [list]

We implement the queues as simple Tcl lists. The elements of the list are dictionaries holding the event information.

For the t oc__gueue new events that originate outside of a state activity are simply appended to the list and the inherent ordering
of the list determines the sequence of execution for the threads of control. For the event_queue the inherent order of the events
placed in the list must account for self directed events. We want the event__queue list order to be the order of event dispatch
and this implies that when a self directed event is signaled it will be inserted into the event_queue list at the beginning.

SignalEvent

The SignalEvent procedure is invoked by the various instance commands that need to cause event generation.

Implementation

We first decide whether the signaled event will start a new thread of control.

* If the event is signaled from outside of a state activity it starts a new thread of control. This is determined by testing the source
of the event against the instance reference that represents no instance reference at all.

* Self directed events have to be placed in the event queue at the proper location.

* Non-self directed events are queued at the end of the queue.

<<dispatch commands>>=
proc SignalEvent {srcref dstset event arglist} {
<<SignalEvent: validate event>>

set callback [namespace code DispatchEvent]
set eventInfo [dict create\
src S$srcref\
event S$event\
params S$arglist)\
1
if {[isRefEqual $srcref [nilInstRef]]} {

Relation Oriented Software Execution Architecture 74/ 295

variable toc_qgueue
forAllRefs dstref Sdstset {
Queue the thread of control events.
dict set eventInfo dst S$dstref
lappend toc_qgueue S$eventInfo
::after 0 $callback
}
} else {
variable event_queue
forAllRefs dstref Sdstset {
dict set eventInfo dst S$dstref
if {[isRefEqual $srcref S$dstref]} { # (1)
<<SignalEvent: queue self directed event>>
} else {
Non-self directed events are always simply appended to the
event queue.
lappend event_queue S$eventInfo

}
::after 0 $callback

o We deem the event to be self directed if the srcref and dstref are equal. There is a bit of a strange case here. We
would expect that when signaling a self directed event that dst set would be a singular reference, probably just the value
of self inthe state activity. It’s not clear that signaling the same event to se 1 £ multiple times is a particularly meaningful
operation. However, since instance references can be computed in many ways and since there is nothing blatantly wrong
with signaling yourself with the same event multiple times, we iterate through the target instance references for self
directed events even though we would expect under the vast majority of cases that there would be only one target instance
for a self directed event.

Finally, we use the : : after command to interface to the Tcl event loop which ultimately causes the event to be delivered via
the associated callback. The above code insures that each event placed in queue is also accompanied by creating a Tcl event
using : :after. In this way each state machine event is mapped to a Tcl event.

We validate the event to insure sure that the class instances accept the event.

<<SignalEvent: validate event>>=
lassign $dstset relvar insts
SplitRelvarName S$relvar domain class
if {[relation isempty [relvar restrictone ${domain}::__ Arch_Event\
Class S$Sclass Event Sevent]]} {
tailcall DeclError UNKNOWN_EVENT Sevent S$Sclass

Finding the proper place for a self directed event requires inserting the event at the front of the event queue. However, there is a
minor complication. If there is already a self directed event on the event queue, we don’t want to place the new one directly on
the front. That would invert the order of the self directed event generation. So we search the event queue to find the boundary
between self directed and non-self directed events and insert the new event there.

Note there is another design alternative here. We could simply keep the self directed events on their own queue and then the
problem of ordering of the self directed events is solved by appending new self directed events to the queue. It is, however, a trade
off between another queue and the logic surrounding both selecting the next event to deliver and determining when the thread of
control has finished. In this case we have decided upon a single queue, expecting that we will make only a single comparison in
the loop below. In the majority of cases, a self directed event will be placed directly on the front of the event queue.

<<SignalEvent: queue self directed event>>=

for {set egindex 0} {$egindex < [llength $event_queue]} {incr egindex} {
set cmpevent [lindex S$event_queue $egindex]
if {![isRefEqual [dict get Scmpevent src] [dict get Scmpevent dst]]} {

Relation Oriented Software Execution Architecture 75 /295

break

}

set event_queue [linsert [K $event_queue [set event_queue {}]]\
$egindex $eventInfo] ; # @

(1] This code uses the K combinator trick. This is an optimization that exploits a particular design characteristic of Tcl. The
net effect is to prevent the sharing of the event__queue value and save the copy that would otherwise have to be made
when the list value is modified by the list insertion command. See the Tcl wiki for a complete discussion. We will use
this optimization in several places where we are dealing with the event queues as they can, in principle, be quite large and
dealing with the event queues is a frequent operation.

Testing

<<dispatch command tests>>=
test SignalEvent-1.0 {
Signal an event
} —setup {
setupDomain foo
addClass foo cl {Al int A2 string} Al
relvar eval {
addState foo Class cl State sl
addState foo Class cl State s2
addEvent foo Class cl Event el
addInitialState foo Class cl State sl
addTransition foo Class cl State sl Event el NewState s2
addTransition foo Class cl State s2 Event el NewState sl

set ref [rosea::ClassCmds::create [namespace current]::foo::cl Al 5 A2 baz]
rosea::InstCmds::signal $ref el
} —cleanup {

after cancel [namespace eval ::rosea::Dispatch namespace code DispatchEvent]
cleanupDomain foo
set ::rosea::Dispatch::toc_queue [list]

} -body {

set event [lindex $::rosea::Dispatch::toc_qgueue 0]
dict get $event dst
} —result {::rosea::test::foo::cl {{Al int} {{Al 5}}}} —-match ref

DispatchEvent

For each invocation of SignalEvent we use the : : after command to have DispatchEvent invoked as the callback. The
events have been properly ordered on the two queues by SignalEvent, soitis the job of DispatchEvent to select an event
and effect the state machine transition. Layered on the event dispatch is determining the boundaries of the thread of control.

Implementation

Dispatching an event first involves selecting the event. Here we need to make decisions about whether to start a new thread of
control. In a Moore type machine, the new state is a function of the current state and the event. Once we have the new state, there
is a state activity associated with the new state or the new state is one of the non-transitioning states that causes the event to be
ignored or treated as an error.

http://wiki.tcl.tk/1923

Relation Oriented Software Execution Architecture 76 /295

<<dispatch commands>>=

proc DispatchEvent {} {
<<DispatchEvent: select event>>
<<DispatchEvent: get current state>>
<<DispatchEvent: determine new state>>
<<DispatchEvent: execute state action>>
return

Events are removed from the event_queue list first. This queue holds the events generated on the currently running thread of
control and it is always our goal to run the current thread of control to completion. Otherwise, we start a new thread of control
by removing an event from the t oc__queue list. If we find both lists empty, then there is nothing to do and we simply return.

<<DispatchEvent: select event>>=
variable event_queue
variable toc_queue

if {[llength S$event_queue] != 0} {
set eventInfo [lindex S$event_queue 0]
set event_queue [lrange [K $event_gqueue [set event_queue {}]] 1 end] ; # (1
} elseif {[llength S$toc_queue] != 0} {
set eventInfo [lindex $toc_queue 0]
set toc_queue [lrange [K S$toc_qgqueue [set toc_queue {}]] 1 end]
relvar transaction begin ; # ©
} else {
return
}
(1] Note the use of the K trick here and immediately below.
(2] Each time we start a new thread of control, we begin a transaction.

Each class that has a state model also has an additional relvar that is used to hold the value of the current state for the instances
of the class. That relvar is named, __<class>___STATEINST, where <class> is replaced by the class name. The heading
of the current state relvar consists of the attributes of the first identifier of the class plus an attribute named, ___State, which
holds the current state. So obtaining the current state means that we semijoin the instance reference to the value of the
__<class>__STATEINST relvar.

<<DispatchEvent: get current state>>=
set dstref [dict get S$eventInfo dst]
lassign $dstref relvar ref
SplitRelvarName $relvar domain class

set instrelvar ${domain}::__ S${class}__ STATEINST
set state [relation semijoin S$ref [relvar set S$instrelvar]]
if {[relation isempty S$state]} {
tailcall DeclError EVENT_IN_FLIGHT [dict get S$eventInfo event] S$ref
}

set currstate [relation extract $state __ State]

<<error code formats>>=
EVENT_IN_FLIGHT {event, "%s", sent to "%s", which does not exist}

It is possible for an event to be signaled to an instance that has been deleted before the event is actually delivered. This is known
as the event in flight error and is one of the few run-time errors that is diagnosed by rosea. This is considered an analysis
error detected at run time. Correct analysis models must insure that no events are in flight to an instance before deleting it. In
general, deletion protocols within a domain model can be quite complicated as the model is responsible for all the compensatory
operations needed to make the instance population consistent with the relationship constraints.

Relation Oriented Software Execution Architecture 77 /1 295

To obtain the new state, we query the Transition relvar that was shown above. When the Transition relvar value is set up, it is
the Cartesian product of the states and events for the class. So it can be considered the complete transition matrix and the query
below will always find a tuple with the new state.

<<dispatch data>>=
pipe {
relvar restrictone ${domain}::__ Arch_Transition\
Class $class State S$Scurrstate Event S$Sevent |
relation extract ~ NewState
} transitionQuery

Combining the event name and the current state we perform the query to find the new state.

<<DispatchEvent: determine new state>>=
set event [dict get SeventInfo event]
variable transitionQuery

set newState [eval StransitionQuery]

::rosea: :Trace::TraceTransition [dict get S$SeventInfo src]\
Sevent $dstref Scurrstate S$newState [dict get S$SeventInfo params] ; # (1

] Note that we trace the transition before we take any action on it. It is a simpler control path. We will have much more to
say about state machine tracing.

Finally, we get to the heart of the event dispatch code. There are three cases to consider:

* The event causes a CH (Can’t Happen) transition and that is considered a serious error.
* The event causes an IG (Ignore) transition and we do nothing.

* We transition to the new state and execute the state activity.

In the end, we must decide if the thread of control has ended and if so then the transaction is also ended.

<<DispatchEvent: execute state action>>=
try {
if {$newState eq "CH"} {
<<DispatchEvent: handle transition error>>
} elseif {S$SnewState ne "IG"} {
<<DispatchEvent: transition to new state>>

}
} finally {
if {[llength S$event_queue] == 0} {
relvar transaction end

The CH (can’t happen) transition deserves special consideration. You can think of a CH transition as an analogy to the assert
macro in ordinary “C” code. Triggering a CH transition is a serious error that should never happen in production code. If it does,
usually there is no clear way to proceed and how to handle such situations is very application dependent. Often the only recourse
is to exit or reset to some saved checkpoint. However during development and testing, the CH transition can uncover a wealth
of analysis errors and misunderstandings. Consequently, it is very useful to have some control over what happens should a CH
transition occur. We delegate the error handling for CH transitions to the TransitionError Z procedure.

<<DispatchEvent: handle transition error>>=
TransitionError [dict get S$eventInfo src] $event S$dstref S$currstate

We supply a default implementation of TransitionError which simply throws an error. Application can redefine this
procedure to gain control over the error handling.

2 The fully qualified name is : : rosea: :Dispatch: : TransitionError

Relation Oriented Software Execution Architecture 78 /295

<<dispatch commands>>=
proc TransitionError {src event dst currstate} {
tailcall DeclError CANT_HAPPEN_EVENT S$src Sevent $dst Scurrstate

<<error code formats>>=
CANT_HAPPEN_EVENT {can’t happen transition, %s - %s —-> %s ==> %s —-> CH}

When transitioning to the new state, we update the value of the current state of the instance to be the newly determined state
value. The identifiers of the ___<class>__ STATEINST relvar are just the attributes of the instance reference for the instance.
Note that the current state is updated to the new state before the state activity is executed. Some architectures wait until after the
state activity is executed. Which is better or correct is hard to determine and in practice does not matter since state activities are
strongly discouraged from having knowledge of their own state.

<<DispatchEvent: transition to new state>>=

set idattrs [tuple get [relation tuple Sref]]

relvar updateone $instrelvar is $idattrs {
tuple update $is __State $newState

At last we execute the state activity. State activities are ordinary Tcl procedures named the same as the state and placed in the
__Activity namespace that is a child of the namespace associated to the class. The instance reference of the event target is
passed as the value of the self parameter and any other parameters carried along with the event are also given to the activity
procedure. Here is the explicit reason that the parameters carried with the event must match the arguments that the state activity
expects or Tcl will throw an error.

<<DispatchEvent: transition to new state>>=
try {
$S{relvar}::__Activity::S$newState S$dstref\
{x}[dict get SeventInfo params] ; # ©
} finally {
set term [relvar restrictone ${domain}::_ Arch_ TerminalState\
Class S$Sclass State $newState]
if {[relation isnotempty S$term]} {
relvar deleteone S$relvar {*}S$Sidattrs
relvar deleteone $instrelvar {x}$idattrs

(1] This command invocation has a lot of variable substitution. Each state activity is actually a procedure. Those procedures
are placed in the __Activity child namespace of the class so that there is no naming conflict. The value of dstref
becomes self in the state activity. Finally, we expand out the list of event parameters to be any additional arguments to
the state activity procedure.

After executing the state activity, we look to see if new state is a terminal state. If the state was marked as terminal when the state
model was defined, the the system automatically deletes the class instance. Of course, we must also delete the tuple that records
the current state.

Testing

<<dispatch command tests>>=
test DispatchEvent-1.0 {

Dispatch an event and execute a state action
} —setup {

setupDomain foo

addClass foo cl {Al int A2 string} Al

Relation Oriented Software Execution Architecture 79 /295

relvar eval {
addState foo Class cl State sl
addState foo Class cl State s2
addEvent foo Class cl Event el
addInitialState foo Class cl State sl
addTransition foo Class cl State sl Event el NewState s2
addTransition foo Class cl State s2 Event el NewState sl
}
proc [namespace current]::foo::cl::_ Activity::s2 {self} {
set ::done S$self

set ref [rosea::ClassCmds::create [namespace current]::foo::cl Al 5 A2 baz]
rosea::InstCmds::signal $ref el

} —cleanup {
cleanupDomain foo

} —body {
vwait ::done
set ::done
} —result {::rosea::test::foo::cl {{Al int} {{Al 5}}}} -match ref

Dispatching Delayed Events

The mapping of delayed events onto the Tcl event loop again uses the : :after command. However, there is not enough
information available from ::after to support some of the features of delayed events. Further, callers of delayed event
procedures use the source, target and event as identifiers of a delayed event and : : after uses its own generated identifiers.
Consequently, we will maintain a relvar that contains the mapping between delayed event identifying attributes and the : : after
timer id’s along with additional data we need to support all the delayed event operations.

<<dispatch data>>=
relvar create DelayedSignal {

RefId int
SrcInstRef list
Event string
DstInstRef list
TimerId string
Expire bignum

} RefId {SrcInstRef Event DstInstRef} TimerId

The Refld attribute is an arbitrary integer identifier that provides an easy handle on to access the delayed event information. We
will supply the value from an ordinary variable.

<<dispatch data>>=
variable DelayedSignalId O

The Expire attributes allows us to keep track of the remaining delay time for an event. We keep that time in units of milliseconds.

We will need some procedures to operate on the DelayedSignal relvar. In particular we need to find and delete instances of
DelayedSignal. There is a complication. The SrcInstRef and DstInstRef attributes are instance references which are Tcl list
types. If TcIRAL is left to its own devices, it would compare the string representations of the instance references when performing
operations on the relvar that require a comparison for equality. Since part of the instance reference is a relation value we don’t
want to use string comparison to test for equality. Relation values do not have a canonical string representation. We have defined
the necessary procedures to properly compute whether two instance references are equal. So here we define procedures that
explicitly use the proper comparison to locate and delete DelayedSignal instances.

<<dispatch commands>>=
proc FindDelayedSignal {srcref event dstref} {
variable DelayedSignal
return [relation restrictwith $DelayedSignal {
[isRefEqual $SrcInstRef S$srcref] && S$Event eqg S$event &&\

Relation Oriented Software Execution Architecture 80 /295

[isRefEqual $DstInstRef S$dstref]}]

<<dispatch commands>>=
proc DeleteDelayedSignal {srcref event dstref} {
relvar delete DelayedSignal dsig {
[isRefEqual [tuple extract $dsig SrcInstRef] S$srcref] &&\
[tuple extract $dsig Event] eq $event &&\
[isRefEqual [tuple extract $dsig DstInstRef] S$dstref]

SignalDelayedEvent
To signal a delayed event is much the same logic as signaling one that is not delayed. The addition work involves:

* Creating an instance of DelayedSignal to record the additional information we need.

* Having : : after invoke a different callback to handle the event when the delay time has expired.

Here we must also deal with the issue referred to earlier regarding the rules for delayed events. There can be only one outstanding
delayed event for any sending / receiving pair of class instances. In this architecture, requests to create duplicate delayed events
are interpreted to mean that the outstanding one should be canceled and a new delayed event at the new delay time should be
established. This is generally what is convenient.

Implementation

The implementation does validate that the event is known for the class. Like SignalEvent we treat the target instance reference
as potentially referring to multiple instances and each must have the event signaled to it.

<<dispatch commands>>=
proc SignalDelayedEvent {time srcref dstset event arglist} {
lassign $dstset relvar insts
SplitRelvarName S$relvar domain class
if {[relation isempty [relvar restrictone ${domain}::__Arch_Event\
Class $class Event Sevent]]} {
tailcall DeclError UNKNOWN_EVENT S$Sevent S$class

variable DelayedSignalId
set eventInfo [dict create\
id [incr DelayedSignalId]\
src S$srcref\
event S$event\
params Sarglist\
1
forAllRefs dstref Sdstset {
dict set eventInfo dst S$dstref
DeleteDelayedSignal $srcref $event $dstref ; # ©
relvar insert DelayedSignal [list)\

RefId SDelayedSignalId\
SrcInstRef S$srcref)

Event Sevent\

DstInstRef S$dstref\

TimerId [::after Stime [list\

::rosea::Dispatch: :DispatchDelayedEvent $eventInfo]]\
Expire [expr {entier([clock milliseconds]) + entier ($time) }]\

Relation Oriented Software Execution Architecture 81/295

}

return

o Note that we only delete the delayed event information here. If the event has already been dispatched to the toc_queue,
then we will still signal another event here.

DispatchDelayedEvent

Dispatching a delayed event is a simple operation since all delayed events are placed on the toc_queue. The only minor
complication is that we must delete the instance of DelayedSignal that corresponds to the dispatched event. Otherwise, Dispa
tchEvent does all the real work.

<<dispatch commands>>=
proc DispatchDelayedEvent {eventInfo} {
relvar deleteone DelayedSignal RefId [dict get $eventInfo id]
variable toc_queue
lappend toc_queue S$eventInfo
tailcall DispatchEvent

Testing

<<dispatch command tests>>=
test DispatchDelayedEvent-1.0 ({
Dispatch a delayed event and execute a state action
} —-setup {
setupDomain foo
addClass foo cl {Al int A2 string} Al
relvar eval {
addState foo Class cl State sl
addState foo Class cl State s2
addEvent foo Class cl Event el
addInitialState foo Class cl State sl
addTransition foo Class cl State sl Event el NewState s2
addTransition foo Class cl State s2 Event el NewState sl
}
proc [namespace current]::foo::cl::_ Activity::s2 {self} {
set ::done S$self

set ref [rosea::ClassCmds::create [namespace current]::foo::cl Al 5 A2 baz]
rosea::InstCmds: :delaysignal 100 Sref el

} —cleanup {
cleanupDomain foo

} -body {
vwait ::done
set ::done

} —result {::rosea::test::foo::cl {{Al int} {{Al 5}}}} —-match ref

CancelDelayedEvent

To cancel a delayed event, we handle both cases where the delay time has not expired and where it has expired and the event may
be queued for dispatch.

Relation Oriented Software Execution Architecture 82 /295

Implementation

<<dispatch commands>>=
proc CancelDelayedSignal {srcref event dstref} {
variable DelayedSignal
set sig [FindDelayedSignal S$srcref S$Sevent S$dstref]
if {[relation isnotempty $sigl} {
::after cancel [relation extract $sig TimerId]
DeleteDelayedSignal $srcref Sevent S$dstref
} else {
Search the toc_qgqueue to see if the signal delay has already expired
and the event is awaiting dispatch.
variable toc_gueue
for {set 1 0} {$i < [llength S$toc_queue]} {incr i} {
set eventInfo [lindex S$toc_gueue $i]
dict update eventInfo src evtsrc dst evtdst event evtevent ({
if {[isRefEqual S$evtsrc $srcref] &&\
[isRefEqual Sevtdst S$dstref] &&\
Sevtevent eq $event} {
set toc_queue [lreplace\
[K $toc_queue [set toc_queue {}]] $i $i]
break

Testing

<<dispatch command tests>>=
test CancelDelayedSignal-1.0 {
Cancel a delayed event
} —setup {
setupDomain foo
addClass foo cl {Al int A2 string} Al
relvar eval {
addState foo Class cl State sl
addState foo Class cl State s2
addEvent foo Class cl Event el
addInitialState foo Class cl State sl
addTransition foo Class cl State sl Event el NewState s2
addTransition foo Class cl State s2 Event el NewState sl

set ref [rosea::ClassCmds::create [namespace current]::foo::cl Al 5 A2 baz]
} —cleanup {

cleanupDomain foo
} -body {

rosea: :InstCmds: :delaysignal 100 S$ref el

set src [rosea::Helpers::nilInstRef]

rosea: :InstCmds: :canceldelayed S$src Sref el

relation cardinality [rosea::Dispatch::FindDelayedSignal $src el $ref]
} —result {0}

Relation Oriented Software Execution Architecture 83 /295

SignalTimeRemaining

To support determining the remaining delay time for an event, we stored the time at which the event was due to expire into its
DelayedSignal tuple at the time we created the delayed event. The remaining time computation then just computes the difference
between the expiration time and the current time. There are a few boundary conditions to consider and zero is returned in those
cases.

Implementation

<<dispatch commands>>=
proc SignalTimeRemaining {srcref event dstref} {
set sig [FindDelayedSignal $srcref S$Sevent S$dstref]
return [expr {[relation isempty $sig] ? 0 :\
max ([relation extract $sig Expire] - [clock milliseconds], 0)}] ; # ©

(1] Okay, this is rather dense. If we don’t find a matching delayed event, then just return zero under the assumption that
it has already been dispatched or never existed in the first place. Otherwise, we want to return the difference between
the expiration time and the current time unless that difference is negative. A negative difference means that we were
executing when expiration time occurred and we just haven’t gotten back to the event loop to dispatch the event. We will
soon enough so, just return zero to indicate that the ship has sailed.

Testing

<<dispatch command tests>>=
test SignalTimeRemaining-1.0 {
Obtain remaining time on a delayed signal
} —setup {
setupDomain foo
addClass foo cl {Al int A2 string} Al
relvar eval {
addState foo Class cl State sl
addState foo Class cl State s2
addEvent foo Class cl Event el
addInitialState foo Class cl State sl
addTransition foo Class cl State sl Event el NewState s2
addTransition foo Class cl State s2 Event el NewState sl

set ref [rosea::ClassCmds::create [namespace current]::foo::cl Al 5 A2 baz]
} —cleanup {

cleanupDomain foo
} —body {

rosea: :InstCmds: :delaysignal 100 S$Sref el

set src [rosea::Helpers::nilInstRef]

set remain [rosea::InstCmds::delayremaining $src $ref el]

rosea: :InstCmds: :canceldelayed $src $ref el

expr {Sremain <= 100 && Sremain >= 95}
} —result {1}

Dispatching Polymorphic Events

We now consider the job of dispatching polymorphic events. Polymorphic events are events directed at the superclass of a
generalization that are mapped at run time to an event in the subclass to which the superclass instance is currently related. This

Relation Oriented Software Execution Architecture 84 /295

is the only type of polymorphism that XUML execution rules support>.

The rules for polymorphic events can, in general, be rather intricate and complicated. These rules are also the least well specified
of the XUML rules, so it is important to state here the rules that rosea uses.

* Polymorphic events are directed at superclass instances and are mapped to events in one of the subclasses of the generalization.

* If the superclass of a generalization defines a polymorphic event, then the ultimate leaf subclasses of the generalization hierar-
chy must have defined state models to consume the polymorphic events. Although, the leaf subclasses may choose to ignore
the ordinary events mapped to it, such constructs should be considered as suspect analysis albeit the execution rules operate
properly in that case.

* The name of the ordinary event consumed in the leaf subclass instances is the same as the name of the polymorphic event.
Using a naming convention to distinguish ordinary events from polymorphic event may be useful but such conventions do not
affect the event dispatch.

* Polymorphic events have no effect on the superclass instance. A superclass may have its own state model and react to ordinary
events directed at the superclass state model independent of any polymorphic events defined for the state model. If a superclass
does have a state model, the names of the events to which it responds must be disjoint from any polymorphic events.

* A class may serve as the superclass for multiple generalization hierarchies, a so called compound generalization. For a com-
pound generalization, polymorphic events directed at the superclass will propagate down all the hierarchies for which the class
serves as a superclass. This implies that signaling a single polymorphic event may cause multiple events to ultimately be
signaled.

* A class may serve as both the subclass of one generalization and the superclass of a different generalization, a so called repeated
specialization. In this case, polymorphic events defined for the generalization where the class serves as a subclass are inherited
by the generalization for which the class serves as a superclass. A class that is subject to repeated specialization may also
define it own polymorphic events and the generalization for which it is the superclass will inherit the union of the events that
derive from its subclass role and those defined for its superclass role.

* A class may be the subclass of multiple generalization hierarchies®. In this case, the state model must respond to the union of
the events from all the generalization for which the class is a subclass. Note that some care might have to be taken to insure
that the polymorphic event names of the multiple hierarchies are distinct.

MapPolymorphicEvent

The MapPolymorphicEvent procedure is called by the instance commands that deal with signaling events to determine if the
event is indeed polymorphic. It is, then the the event is recursively signaled to the currently related subclass instance. Otherwise,
MapPolymorphicEvent returns an indication that the event is not polymorphic and the instance signaling commands can
then perform the operation of signaling an ordinary event. Ultimately, execution sequencing is only accomplished by delivering
ordinary events. Event polymorphism is a convenience and optimization that prevents state activities from performing event
mapping themselves.

Implementation

One consideration for the implementation of the MapPolymorphicEvent procedure is that we want to use this procedure
to handle both immediate and delayed events. The function of mapping the event is the same. The only difference is how the
mapped event is handled. So we will pass in a forwarding command prefix as an argument. Once the work is accomplished
to determine which subclass instance is to be signaled, the forwarding command will determine if it is a delayed or immediate
event.

3 In particular note there are no polymorphic operations supported.
4 XUML rules prohibit multiple generalizations the have a common root class since such arrangements violate the requirement that the subclass instances
form a disjoint union.

Relation Oriented Software Execution Architecture 85/295

<<dispatch commands>>=

proc MapPolymorphicEvent {frwdcmd srcref dstrefs event arglist} {
<<MapPolymorphicEvent: check if event is polymorphic>>
<<MapPolymorphicEvent: find subclasses>>
<<MapPolymorphicEvent: map event>>

return true

We use the PolymorphicEvent relvar to determine if is the event is polymorphic. If the event is not found here, then we just
return and the event will be signaled as an ordinary event.

<<arch relvar definitions>>=

ral relvar create __ Arch_PolymorphicEvent ({
Class string
Event string

} {Class Event}

<<MapPolymorphicEvent: check if event is polymorphic>>=

lassign $dstrefs dstrelvar dstinsts

SplitRelvarName $dstrelvar domain dstclass

set polyevent [relvar restrictone ${domain}::__Arch_PolymorphicEvent\
Class $dstclass Event S$Sevent]

if {[relation isempty Spolyevent]} {
return false

If we indeed have a polymorphic event, we need to determine the generalization hierarchies that are affected. We do that with a
query.

<<MapPolymorphicEvent: find subclasses>>=
variable polymapQuery
set partitions [eval S$polymapQuery]

The essential query for dispatching a polymorphic event is to find the set of hierarchies originating at the source relvar.

<<dispatch data>>=

pipe {
relvar set ${domain}::__Arch PartitionDst |
relation restrictwith ~ {$SrcClass eq S$dstclass} |

relation group ~ DstLinks DstClass Attrs
} polymapQuery

The polymapQuery is on the PartitionDst relvar which is the same data we used to navigate relationships. This makes
sense because mapping a polymorphic event implies that we must navigate the generalization relationships from the superclass
to the subclass. The PartitionDst relvar contains the information needed to accomplish the generalization traversal.

This query is accomplished by finding all the partition link tuples that originate at the relvar which is the target of the event
signaling. The result is grouped so we may consider all the superclass to subclass links for a given hierarchy. We want to
do this because we know that a superclass instance will reference exactly one subclass from among all the subclasses in the
generalization and it is to that subclass instance that the event will be forwarded.

The heading of the result of this query will be:

Table 4.1: Heading of Polymorphic Event Mapping Query Result

Name SrcClass DstLinks
string string Relation
DstClass Attrs
string list

Relation Oriented Software Execution Architecture 86 /295

Note that the DstLinks attribute is relation valued.’

The polymorphic event mapping operation consists of three nested iterations. The outside loop iterates over the target superclass
instances since we may be signaling several instances in the same call. The next iteration is over all the hierarchies that originate
from the superclass. Typically, this is only one, but it can be several for a compound generalization. Finally, we iterate over all
the subclass links.

<<MapPolymorphicEvent: map event>>=
relation foreach inst $dstinsts {
relation foreach partition $partitions {
relation assign $partition
relation foreach dstlink $DstLinks {
relation assign $dstlink
<<MapPolymorphicEvent: signal subclass>>

We must traverse the generalization relationship to find the one subclass that is actually linked and forward the event on to that
one. Note that we are semijoining to each subclass in the generalization until one is found. This is different from navigating the
relationship in the context of the findRelated command. There we determined whether the superclass instance is related to
a specific subclass instance. Here we are searching for the subclass instance to which the superclass instance is related. Once
we know which is the related subclass instance we can formulate an instance reference to it and trace the polymorphic event
dispatch. We forward the event to the subclass instance by recursively signaling the event. Once forwarding has happened, we
can stop looking any further since we know that there is exactly one subclass instance linked to any given superclass instance
because the partition constraint guarantees that.

<<MapPolymorphicEvent: signal subclass>>=

set related [relation semijoin $inst)\
[relvar set ${domain}::$DstClass] -using S$SAttrs]

if {[relation isnotempty S$related]} {
set dstreference [ToRef ${domain}::$DstClass Srelated]
::rosea: :Trace: :TracePolymorphic $srcref\

Sevent S$dstreference ${domain}::SrcClass SName

{x}Sfrwdemd S$srcref S$Sdstreference $event Sarglist ; # ©
break

o The forward command prefix will either be SignalEvent or SignalDelayedEvent <time> depending whether
we arrived here via the signal instance command or the delaysignal instance command.

Testing

<<test utility procs>>=
proc addPolymorphic {domain args} {
relvar insert [namespace current]::${domain}::__Arch_PolymorphicEvent\
Sargs

proc polysignal {srcref dstref event paramlist} {
puts —-nonewline [info level 0]

5 That is what the group operation does.

Relation Oriented Software Execution Architecture 87 /295

<<dispatch command tests>>=

test MapPolymorphicEvent-1.0 {
Map a polymorphic event

} —setup {
setupDomain bar
addClass bar S {S1 int S2 string} S1
addClass bar X {X1 int X2 string} X1
addClass bar Y {Y1 int Y2 string} Y1

addAssoclLink bar {Name R1 SrcClass X}\

{Name R1 SrcClass X DstClass S Attrs {X1 S1} PrevSrcClass {}}
addAssocLink bar {Name Rl SrcClass Y}\

{Name R1 SrcClass Y DstClass S Attrs {Y1l S1} PrevSrcClass {}}
relvar eval {

addParitionLink bar {Name ~R1 SrcClass S}

addPartitionDst bar {Name ~R1 SrcClass S DstClass X Attrs {S1 X1}}

addPartitionDst bar {Name ~R1 SrcClass S DstClass Y Attrs {S1 Y1}}

addPolymorphic bar Class S Event el
set ref [rosea::ClassCmds::create [namespace current]::bar::S S1 5 S2 baz]
rosea::ClassCmds: :create [namespace current]::bar::X X1 5 X2 bar
} —cleanup {
cleanupDomain bar
} —body {
rosea: :Dispatch: :MapPolymorphicEvent [namespace current]::polysignal\
{} Sref el {}
} —result {true} -output {::rosea::test::polysignal {} {::rosea::test::bar::X {{X1 int} {{ ¢
X1 5}ty el {}}

Helper Commands

In this section we present a set of commands that factor common processing used in a number of areas. These commands are
placed in a separate namespace which is imported into most of the other package namespaces.

<<helper commands namespace>>=
namespace eval Helpers ({
<<tclral imports>>
namespace import ::ral::relvar
<<helper data>>
<<helper commands>>

DeclError

All error notification in the package is consolidated in the Dec1Error procedure.

Implementation

The DeclError procedure locates a format string based on the error code and applies its arguments to it. We use the : : throw
command to raise the error to insure that we have consistent error code information for the package.

<<helper commands>>=
namespace export DeclError

Relation Oriented Software Execution Architecture 88 /295

proc DeclError {errcode args} {
variable errFormats
set errmsg [format [dict get S$SerrFormats Serrcode] {x}S$args]
tailcall throw [list ROSEA $errcode {*}Sargs S$Serrmsg] Serrmsg

The mapping of errcode values to format strings is held as package data in the helper namespace of the package.

<<helper data>>=

variable errFormats

set errFormats [dict create {=*}{
<<error code formats>>

H

SplitRelvarName

The rosea package uses a naming convention whereby the names of the domain classes are encoded in the name of the relvar
that holds the class instances. The class name is the last namespace component of the relvar name and the domain name, including
it location relative the global namespace, is the set of leading namespace components. This function splits apart the class name
from its domain and returns the two elements via variable references.

Implementation

<<helper commands>>=

proc SplitRelvarName {relvar {dvarname domain} {cvarname class}} {
upvar 1 $dvarname domain $cvarname class
set domain [namespace qualifiers S$relvar]
set class [namespace tail S$relvar]

Relation Oriented Software Execution Architecture 89 /295

Chapter 5

Configuration Language

In this section we consider the domain specific language (DSL) that is used to configure a domain under rosea. Let’s use this
opportunity to recap our intent.

Rosea is divided into two main parts:

* A set of procedures that implement the run-time execution model. These procedures are data-driven and assume the existence
of particular data structures and namespace organizations. These are the procedures that have been described in the previous
section.

* A configuration language to populate the data structures and organize the namespaces as needed by the run-time mechanisms.

Strictly speaking, the configuration language will not do anything that cannot be done manually. Indeed, as we have been testing
the run-time mechanisms above, we have done so using ad hoc constructed data and namespaces. But such an undertaking is
too error prone for productive uses and some type of configuration scheme is needed. Configuring the run-time mechanisms via
a DSL has the added benefit of creating a well defined interface that will insulate the package user from minor changes in the
underlying data structures and procedural mechanisms.

The configuration language itself will be a Tcl script'. Commands in that script will define the aspects of a domain such as its
classes, attributes and relationships. The DSL script will be evaluated in a context where the command names will conveniently
resolve without any qualification.

There are two basic approaches to the DSL that were considered.

* As each DSL command is executed, create the corresponding run-time structure. One can view that as a type of on-the-fly
interpretation.

* Consume all the DSL commands, storing away any data that the commands contain and then generate the run-time structure at
the end.

The first approach is certainly simpler to code but has some decided disadvantages. To create the run-time structure as each
command is executed will impose a rather strict ordering of the commands. For example, TcIRAL insists that the participating
relvars exist before a constraint may be defined upon them. This would imply that the DSL would have to be ordered in that way.
Also, defining state models needs some semantic checking to insure a reasonable and consistent model is defined. That checking
is hard to do in an on-the-fly interpretation scheme.

These disadvantages lead us to choose the second alternative, namely, build the configuration DSL commands to store away
their data and then generate the run-time structures from the stored data. This approach requires significantly more programming
but leads to considerable flexibility. It has the added benefit of allowing much easier and extensive introspection of the domain
than could be possible if we were just examining the run-time structures themselves. As we shall see below, the data structures
required to accumulate the domain definition are quite large and we will spend considerable time discussing them. There are a
relatively large number of rules about how an XUML domain is specified and we will need data structures to hold the specification
data and enforce the rules.

! This places the language into a category sometimes known as an internal DSL.

Relation Oriented Software Execution Architecture 90/ 295

Config Namespace Layout

The : : rosea: : Config namespace has a relatively more complex layout than we have seen before. The reason for this is that
we want to create a set of child namespaces that mirror the nesting of the configuration language statements. At the top level, the
domain command is used to define each domain. The domain command accepts a script body that then defines the components
of the domain. That script will be evaluated in a namespace where the commands that define the domain components, e.g. class
and relationship commands, resolve appropriately. This lets us put commands for the body specifying a particular component
into a namespace which prevents any problems of accidentally invoking commands that are inappropriate for that context.

We layout the : : rosea: : Config namespace as shown below.

<<configuration commands namespace>>=
namespace eval Config {
logger::initNamespace [namespace current]

<<tclral imports>>

namespace import ::ral::relvar

namespace path [namespace parent]::Helpers
<<config data>>

<<config commands>>

<<domain config namespace layout>>

Evaluating Configuration Scripts

You can evaluate the configuration script by simply gathering it together and passing it to the core namespace eval command.
Unfortunately, the first error that is encountered will terminate the evaluation. This is decidedly inconvenient as you would prefer
to continue on and come up with a list of errors for the evaluation much like a conventional language compiler would do when
compiling a source file. Discovering errors one at a time is tediously unproductive.

Of course, it is possible to continue evaluating after an error but that requires a bit more code. We will also want to be able
to evaluate scripts in different namespace contexts as we described above. We will accomplish all this by taking advantage of
the core : : apply command and its ability to execute a lambda function in a given namespace. So given a script body and an
namespace we can evaluate it as shown below.

<<config commands>>=
namespace export ConfigEvaluate

proc ConfigEvaluate {ns body} {
variable evalLambda
tailcall ::apply [concat SevalLambda [list $ns]] S$body ; # ©

] The concat command treats its arguments as a list. On the off chance that the ns argument contains embedded whites-
pace, we need to insure that it is treated as a single element list. Hence the need to include the invocation of the 1ist
command.

The lambda function that performs the command evaluation is given below. We hold the evaluation lambda as a piece of data.

<<config data>>=
variable evallambda {{body} {
upvar #0 ::rosea::Config::errcount errcount ; # @
upvar #0 ::rosea::Config::configlineno configlineno
set lineno $configlineno
set command {}
foreach line [split S$body \n] { # ©
append command $line \n

Relation Oriented Software Execution Architecture 91/295

incr lineno ; # ©
if {[info complete S$command]} {
try {
eval $command
} on error {result} {
log::error "line $configlineno: \"S$result\""
incr errcount

}
set command {} ; # O
set configlineno $lineno

}

return $errcount

b}

] We need to keep track of all the errors encountered and what line of the script we are currently dealing with.

2] We split the body along lines and then reassemble the lines into a complete command. The info complete command
tells us when we have something that has some chance of being a real command.

(3] We need to keep track of where we are in the body.
o After evaluating a command we begin to assemble another one and set our location counter to where that command starts.
Configure

One of our top level rosea commands is to configure a domain from a script.

::rosea configure script

script
A Tcl script that is executed in an environment that will resolve domain configuration commands that may be used
to define the characteristics of a domain.

Implementation

<<rosea exports>>=
namespace export configure

<<rosea commands>>=

proc configure {script} {
namespace upvar Config errcount errcount configlineno configlineno
set errcount 0
set configlineno 1

ConfigEvaluate ::rosea::Config S$script

if {$errcount > 0} {
tailcall DeclError CONFIG_ERRORS S$errcount
}

return S$errcount

<<error code formats>>=
CONFIG_ERRORS {encountered %d configuration script errors}

Relation Oriented Software Execution Architecture 92 /295

ConfigureFromChan

It is often convenient to obtain the configure script from an I/O channel. The rosea configureFromChan command
supports reading the configure script directly from a channel.

::rosea configureFromChan channel

channel
A Tcl channel handle that is readable.

The configureFromChan command invokes configure on the script obtained by reading channel until end of file
is reached.

Implementation

<<rosea exports>>=
namespace export configureFromChan

<<rosea commands>>=

proc configureFromChan {chan} {
tailcall configure [::chan read -nonewline S$chan]

ConfigureFromFile

It is often convenient to hold the configure scriptin a file. The rosea configureFromFile command supports reading
the configure script directly from a file.

::rosea configureFromFile filename

filename
The name of a file containing a domain configuration script.

The configureFromFile command invokes configure on the script obtained by reading the contents of the file
named, filename.

Implementation

<<rosea exports>>=
namespace export configureFromFile

<<rosea commands>>=
proc configureFromFile {filename} {
set £ [::open $filename r]
try {
configureFromChan $f
} finally {
::chan close $f

Relation Oriented Software Execution Architecture 93 /295

Defining a Domain

The script handed to the configure command should contain invocations of the domain command.

As we described above, the domain configuration commands will take the data in their arguments and store it away. After we
have finished all the configuration scripts, then the generate command is used to layout the data structures and namespace as
needed.

The structure of the data that is populated by the configuration scripts is rather complicated itself. There are many rules as to what
is allowed or not allowed when configuring the characteristics of a domain. It is important that these rules be enforced to insure
that the generated domain is correct. To accomplish that we will formulate a model of the domain rules. Such models-of-models
are usually called meta-models. An unfortunate consequence of using a meta-model is that they tend to be rather abstract and it
is easy to confuse the rules associated with building models with the rules associated with some particular application domain.
We will strive to make the distinction clear. To further confound the situation, we will implement the meta-models as a set of
TcIRAL relvars and relvar constraints. This means we are putting TcIRAL commands to two distinct uses: first as a basis for the
data architecture of the generated domains and second as the basis for accumulating the domain definition during configuration.
Again, we will strive to make the distinction clear.

In this section we start the process of configuring a domain by showing some of the data structures we will use to store the
configuration data as it is being collected. The design of this meta-model was first defined in the raloo package. We will
present these meta-model diagrams in small groups that are associated with the configuration commands being discussed. We
will establish a pattern of presenting the meta-model class diagram followed by a discussion of the rules it enforces and finally
show the configuration code and how it populates the meta-model relvars.

Below is a UML class diagram for a domain and some of its component parts.

http://repos.modelrealization.com/cgi-bin/fossil/tclral

Relation Oriented Software Execution Architecture 94 / 295

Domain R1 Domain Element
Name {I} models entities using» __ 0..n |20Main {I,R1}
Location <is a entity of Element {1}
A
R2
DomainOperation Relationship Class
Domain {I,R2} Domain {I,R2} Domain {I,R2}
Name {I,R2} Name {I,R2} Name {I,R2}
Parameters
Body
1

R8
operates overp»
«is the bjasis for

0..n
Operation
Domain {I,R8}
Class {I,R8}
Name {I}
-
Instance Operation Class Operation
Domain {I,R7} Domain {I,R7}
Class {I,R7} Class {I,R7}
Name {I,R7} Name {I,R7}
9 R10
User Instance Operation System Instance Operation System Class Operation User Class Operation
Domain {I,R9} Domain {I,R9} Domain {I,R10} Domain {I,R10}
Class {I,R9} Class {I,R9} Class {I,R10} Class {I,R10}
Name {I,R9} Name {I,R9,R16} Name {I,R10,R15} Name {I,R10}
Parameters Parameters
Body Body
0..n 0..n
R16 R15
is defined by» is defined by»
«gives the command for «gives the command for
1 1
Supplied Instance Operation Supplied Class Operation
Name {I,R14} Name {I,R14}

R:t4
Supplied Operation
Name {I}

Command
RequiresStateModel

Figure 5.1: Domain Configuration Class Diagram

A Domain is characterized by a Name and Location and consists of a set of Domain Elements (R1). Domain Elements are
of three types (R2), Domain Operation, Relationship and Class. R2 insures that no two elements have the same name and
this makes sure that there are no naming conflicts with the namespace ensemble commands that are generated for the domain. A

Relation Oriented Software Execution Architecture 95 /295

Class may also have a set of operations (R8). These operations are of two types (R7), Instance Operation and Class Operation.
The difference between the two is that Instance Operation will have a generated self argument that refers to the instance on
which the operation is performed. A Class Operation has no such argument. In turn, operations may be either user defined or
system defined (R9 and R10). System operations are one of the Supplied Operation (R16 and R15) A Supplied Operation is
mapped to a Tcl Command and may be supplied to all classes and instances or to those where RequiresStateModel is true.

As we will see repeated many times below, the above UML class diagram has a direct textual correspondence to TcIRAL relvar
commands.

<<config data>>=
relvar create Domain {

Name string
Location string
} Name

relvar create DomainElement ({
Domain string
Element string

} {Domain Element}

relvar association RI1\
DomainElement Domain x\
Domain Name 1

relvar create Class {
Domain string
Name string

} {Domain Name}

relvar create Relationship ({
Domain string
Name string

} {Domain Name}

relvar create DomainOperation ({

Domain string
Name string
Parameters list

Body string

} {Domain Name}

relvar partition R2 DomainElement {Domain Element}\
Class {Domain Name}\
Relationship {Domain Name}\
DomainOperation {Domain Name}

We postpone the definitions of the relvars for the operations until later.

When configuring a domain, we will evaluate the configuration script in the DomainDef child namespace. That namespace will
define commands for all the components of the domain. We will use a similar arrangement for other nested aspects of domain
definitions.

Domain

domain name body

name
The name of the domain. A domain name must be a non-empty string.

body
A Tcl script containing invocation of the domain definition commands to specify the details of the domain configu-
ration.

Implementation

Relation Oriented Software Execution Architecture 96 / 295

<<config commands>>=

proc domain {name body} {
namespace upvar DomainDef DomainName DomainName ; # (1
set DomainName S$name

relvar uinsert ::rosea::Config::Domain [list Name S$name Location {}] ; # (2
try {
if {$name eqg {}} {
tailcall DeclError EMPTY_NAME domain
}

relvar eval { # ©
ConfigEvaluate [namespace current]::DomainDef $body

At this point we have the definition of the domain and enough
information to tie together the referential attributes and

the association definitions.

<<domain: bind association references>>

We must also compute how polymorphic events are inherited
down generalization hierarchies.
<<domain: propagate polymorphic events>>

}
} on error {result} {
::rosea::Config::HandleConfigError S$result

o We place the domain name into the child namespace where the context implies that all the components defined are to be
part of this domain.

(2] We allow the domain command to be invoked more than once. Domains are open ended definitions and the uinsert
command will not throw an error upon a duplicate.

o Evaluating the script must be done as a relvar transaction as we will need to defer the constraint checking until all the
domain components have been defined.

<<error code formats>>=
EMPTY_NAME {the empty string is not a valid name for a %s}

After evaluating the domain configuration script, it is necessary to patch up the association data. We will defer the discussion
about binding the associations and their attribute referenced until later when we have covered those commands. For now, we will
say that there are semantic evaluations and checks that can only be done after the entire domain configuration script has been
processed. The reason for this lies mainly with the way the DSL script commands were defined to make them more convenient
to use when translating an XUML model. Polymorphic events also must be dealt with after the domain configuration is in place.
Again we will discuss this further below.

Although we have said that domain configurations are cumulative, clearly the need to resolve association bindings and poly-
morphic event inheritance means that domain configurations cannot be split arbitrarily. You will need to be aware that certain
divisions of domain configuration will end up separating information that is needed at the end of the configuration process.

Tests

<<config command tests>>=

test configure-1.0 ({
Define domain

} —setup {

Relation Oriented Software Execution Architecture 97 /295

} —cleanup {
cleanupConfigData
} —body {
rosea configure ({
domain foo {
A domain may be empty of components.

}
relation extract [relvar set ::rosea::Config::Domain] Name
} —result {foo}

<<config command tests>>=
test configure-1.1 ({
Define domain -- bad name
} —setup {
} —cleanup {
cleanupConfigbData
} —body {
rosea configure {
domain {} {
}
}

} —result {encountered 1 configuration script errors} -returnCodes error

We need some more testing support. After running configuration commands, we will need to clean up the configuration data
population to ready it for the next test.

<<test utility procs>>=
proc cleanupConfigData {} {
set preserved {
::rosea::Config::TransitionRule
::rosea::Config::SuppliedOperation
::rosea::Config: :SuppliedInstanceOperation
::rosea::Config::SuppliedClassOperation
::rosea::Config::Config_AssocSpec
::rosea: :Config::Config_DataError
b+ ©
relvar eval {
foreach rname [relvar names ::rosea::Config::x] {
if {$rname ni $preserved} {
relvar set S$Srname [relation emptyof [relvar set S$rname]]

o Note that some of the configuration data is specification information and needs to be preserved. We keep a list of the
preserved relvars so we can skip over them.

Defining Domain Components

In this section we discuss the commands that are used to define the components of a domain. We define child namespaces for
those domain component commands that have a nested structure. In this case, it is the class command that requires additional
configuration commands.

We start with the namespace layout for the DomainDef namespace.

<<domain config namespace layout>>=

Relation Oriented Software Execution Architecture 98 /295

namespace eval DomainDef {
logger::initNamespace [namespace current]

<<tclral imports>>

namespace import ::ral::relvar
namespace import ::rosea::Config::ConfigEvaluate
namespace import ::rosea::Helpers::DeclError

<<domain config commands>>

<<class config namespace layout>>
<<assigner config namespace layout>>

Defining Classes

An XUML class represents a real world entity. It is defined by giving it a name and providing a script to further define its
characteristics.

Below is a UML class diagram of the configuration data for defining classes.

99 /295

Relation Oriented Software Execution Architecture

{ory

01 s
<«Aq pad

{ovy‘1} aj0y
{ovy'1} diysuonejay |
{ovy‘1} sse|ol

‘1} urewoq!

EIEIS
219)a1 sI
o

{eTy'1} diysuone|ay

{zTy'1} 1equinNpIpaoUBIalRY
{zT¥'1} ajoyooUaIB)RY
{zTy'1} @InguNVpasuaialey
{z1y'1} sse|opaouaiayey
{zTy'1} ej0ybulisley
{e14'1} anqunybuliajey
{eTd'2Ty"1} sse|obulsyey
{eTy'zTy'1} urewoq

{9y'1} ainquny
{9y} sse|o
{9y'1} utewoaq

anjea

anfen 1nejea

9oualajay AINqLUNY

{11

{tTa i}
{
{11

Y1} sequinN

{TTd'1} @nqunv

{1141} 2104
diysuone|ay
TTY'1} sseo
d'l} urewoq

3INquNY p| paoualsay

r——-——---=-=-=-== 1
{ovy‘1} al0y|
{ov¥‘1} diysuonejay | uo

Aq paynuapt s

{ovy'i} sse|of
{ovy'1} urewoq!

T----

'sse|9 awes ay) Jo
13113UBPI JUBIBYIP B 10} ISOY) JO
19sqns & 8q Jou Aew Iayylauapl ue
w0} Jey) saInguie 4o 18s ayL
*SI91J13UBPI [RWIUIW 3] 0}
paurensuod 1aylny ase sialiuap|
*9J0N

uolssaldx3g
uo {zTy"1} ainquny
{L14"1} sse|d
10} anjea Buissiw sanddns {2141} urewoq
9y %298yd anjea
Aq paiddns anjea Buissiw sey
uro
T
Aq pajepijea anjea s)i sey
10} 9j01 € SIp adky| T J0 anjeA ay} sajepljea
"0 440 3j0J e sey T E dweN L1d Jo saiadoud ayy sauyapy
€14 {ey'1} sse|o| -
7 ut <« Aq paziieyoereyd s|
{ed'1} urewoqg
e
ainquny
o
jo 1upd sip
«JO SISISu0d
S|
{sy'1} tequinN
1 {gy‘1} angqunvy
{gy'1} sse|o
{sy'1} urewoq u I
ainquny Buikinuap)
{1} sequinN J0 saouelsul saluapl Alenbiunp I {ea1} wEmz_
{py'1} ssep| YT <« Aq paulwlialap sasuelsul anbiun sey T Eme_vlchmmhmoL
{ry'1} urewoq i | sse|o |
seynuepr | TTTTEmT -

iagram

Class Di

10N

Classes Configurat

Figure 5.2

Relation Oriented Software Execution Architecture 100/ 295

There are a substantial number of rules about what constitutes a proper XUML class. A Class has one or more Attributes
(R3). It also has one or more Identfiers (R4). An Attribute that serves as part of an Identifier is known as an Identifying
Attribute (R5). An Attribute may have a Default Value (R6). An Identifiying Attribute is sometimes referenced as part of
realizing a relationship and in that role is treated as a Referenced Id Attribute (R11). Also, classes may contain attributes that
are referential and in that role the attribute is treated as an Attribute Reference (R12). Of course, any Attribute Reference must
ultimately refer to some Attribute that is in a class (R13).

As before, the TcIRAL relvar definitions corresponding to the class model are are direct text transliteration of the model graphic.

<<config data>>=
relvar create Attribute {
Domain string

Class string
Name string
Type string

} {Domain Class Name}

relvar association R3\
Attribute {Domain Class} +\
Class {Domain Name} 1

relvar create Identifier {
Domain string
Class string
Number int

} {Domain Class Number}

relvar association R4\
Identifier {Domain Class} +\
Class {Domain Name} 1

relvar create IdentifyingAttribute {

Domain string
Class string
Attribute string
Number int

} {Domain Class Attribute Number}
relvar correlation R5 IdentifyingAttribute\
{Domain Class Number} 4+ Identifier {Domain Class Number}\
{Domain Class Attribute} * Attribute {Domain Class Name}
relvar create DefaultValue {

Domain string
Class string
Attribute string
Value string

} {Domain Class Attribute}
relvar association R6\
DefaultValue {Domain Class Attribute} 2\
Attribute {Domain Class Name} 1
relvar create ValueCheck {
Domain string
Class string
Attribute string
Expression string
} {Domain Class Attribute}
relvar association R17\
ValueCheck {Domain Class Attribute} 2\
Attribute {Domain Class Name} 1
relvar create AttributeReference {

Domain string
ReferringClass string
ReferringAttribute string
ReferringRole string
ReferencedClass string

ReferencedAttribute string
ReferencedRole string

Relation Oriented Software Execution Architecture

101 /295

ReferencedIdNumber int
Relationship string

} {Domain ReferringClass ReferringAttribute ReferringRole\
ReferencedClass ReferencedAttribute ReferencedRole ReferencedIdNumber\
Relationship}

relvar association R13\
AttributeReference {Domain ReferringClass ReferringAttribute} =\
Attribute {Domain Class Name} 1

relvar create ReferencedIdAttribute {

Domain string
Class string
Relationship string
Role string
Attribute string
Number int

} {Domain Class Relationship Role Attribute Number}

Class

The class command is used to define classes and specify their characteristics.

class name script

name
The name of the class. A class name must be a non-empty string.

script

A Tecl script containing invocation of the class definition commands to specify the details of the class configuration.

Implementation

<<domain config commands>>=

proc class {name body} {
namespace upvar [namespace current] DomainName DomainName ; # @
namespace upvar ClassDef ClassName ClassName
set ClassName $name

if {Sname eqg {}} {
tailcall DeclError EMPTY_NAME class
}
try {
relvar insert ::rosea::Config::DomainElement [list\
Domain $DomainName\
Element S$name\
]
} trap {RAL relvar insert DUPLICATE_TUPLE} {} {
tailcall DeclError DUP_ELEMENT_NAME S$name

b o+ ©

relvar insert ::rosea::Config::Class [list\
Domain $DomainName\
Name Sname\

set instops [pipe {
relvar set ::rosea::Config::SuppliedInstanceOperation |
relation extend ~ ioptuple\
Domain string {[set DomainName] }\
Class string {[set ClassName]}

Relation Oriented Software Execution Architecture 102 /295

}]

relvar union ::rosea::Config::SystemInstanceOperation $instops
relvar union ::rosea::Config::InstanceOperation $instops

relvar union ::rosea::Config::Operation $instops

set classops [pipe {
relvar set ::rosea::Config::SuppliedClassOperation |
relation extend ~ coptuple\

Domain string {[set DomainName] }\

Class string {[set ClassName]}
}]
relvar union ::rosea::Config::SystemClassOperation S$classops
relvar union ::rosea::Config::ClassOperation $classops

relvar union ::rosea::Config::Operation $classops
ConfigEvaluate [namespace current]::ClassDef $body
}
o Again we arrange for namespace variables to hold the current domain and class names to provide the context of the
definition.
(2] We trap this relvar insert specifically so we can give a more meaningful error message.

<<error code formats>>=
DUP_ELEMENT_NAME {a class, relationship or domain operation named, "%s",\
already exists}

Defining Classes Components

Since there are several aspects of classes, the class command takes a script argument which should invoke the commands we
discuss in this section. Following our pattern, we define a namespace where the class body script is evaluated.

<<class config namespace layout>>=
namespace eval ClassDef {
logger::initNamespace [namespace current]

<<tclral imports>>

namespace import ::ral::relvar
namespace import ::rosea::Config::ConfigEvaluate
namespace import ::rosea::Helpers::DeclError

<<class config commands>>

<<state model config namespace layout>>

Attribute

Within a class definitions, the at t ribute command specifies the attributes of the class.

Relation Oriented Software Execution Architecture 103 /295

attribute name type loption value ...?

name
The name of the attribute. Attributes names may not be the empty string.

type
P The type of the attribute. The fype may be any type that is acceptable to the : : ral: : tuple command. Those are:

* string
* int
* long
* widelnt
e bignum
* double
* boolean
e list
e dict
* bytearray
* Tuple

¢ Relation

option wvalue
A set of option/value pairs that define the characteristics of the attribute. Valid options are:

—default value
Specifies a default value that will be supplied if an instance is created and no value is provided for the attribute.

—check expr
Check that values of the attribute satisfy expr. Expr must be suitable for the : : expr command and may
reference variables that are the same name as the attributes of the class. Checks are made on a tuple-by-tuple
basis during any insert or update operation for the class instance.

—id number
Specifies that the attribute is part of the identifier given by number. All classes must have at least one identifier.
Classes may have multiple identifiers and each is given a separate number. Typically, number is a small integer
such as 1, 2 or 3.

Relation Oriented Software Execution Architecture 104 /295

A Note About Types

You will notice that the att ribute command requires that you declare a type for the attribute. That type is one of the
supported internal Tcl types along with Tuple and Relation types. It may seem strange to demand type information for a
language like Tcl where the prevailing mantra is everything is a string. * TcIRAL demands the type information and does
so as another form of data integrity checking. If you declare an attribute to be, say a double, then you are stating that at
some time the attribute may be used in a context where a double is expected. For example the attribute might be added
or multiplied. Given the type of “duck typing” that Tcl uses, any string that can be reasonably interpreted as a double
and converted into one is what is expected in that context. Otherwise, an error is thrown. So, if you set the value of such an
attribute declared to be double to the value of, “foo”, then when the arithmetic operation is performed, an error would be
thrown. The type declaration is really a declaration of the context in which the value may be placed and we want to insure
that any values assigned to the attribute will not cause an error to be thrown later. Since st ring is the universal Tcl type,
an attribute defined to be of st ring type accepts any value.

Note that attributes may be of Tuple or Relation type. TcIRAL allows attributes to be typed according to most of the
built in Tcl data types. We would consider it very suspect for the base classes of a domain to contain relation or tuple
valued attributes. However, relation valued attributes are not uncommon in relational algebraic expressions, have some
very convenient uses, are perfectly valid values and we have seen several instances of them already when the package
commands were discussed.

4 Well, really, it’s more like “everything looks like a string at the script level”, but that is just too many words.

A Note About Identifiers

Integer numbers are used to distinguish identifiers. The most common case is for a class to have a single identifier and for
that identifier to have a single attribute. Typically, one attribute of the class will be marked as —id 1. Identifiers must also
be minimal identifiers, i.e. one identifier’s attributes must not be a subset (proper or improper) of the attributes of another
identifier. The rule of minimal identifiers is not enforced by the class configuration UML model but TcIRAL will insist
upon it when the underlying relvar is created.

The implementation of the at t ribute command simply creates tuples in the relvars to hold the attribute characteristics.

Implementation

<<class config commands>>=
proc attribute {name type args} {
if {$name eq {}} {
tailcall DeclError EMPTY_ NAME attribute
}
if {[string range $name 0 1] eq "__ "} {
tailcall DeclError RESERVED_NAME Sname
}
if {[llength Sargs] % 2 != 0} {
tailcall DeclError ARG_FORMAT $args

namespace upvar ::rosea::Config::DomainDef DomainName DomainName
namespace upvar ::rosea::Config::DomainDef::ClassDef ClassName ClassName
relvar insert ::rosea::Config::Attribute [list)\

Domain $DomainName\
Class SClassName\
Name Sname\

Type Stype\

foreach {option value} S$args {
switch -exact —-- $option {
—default {

Relation Oriented Software Execution Architecture 105 /295
relvar insert ::rosea::Config::DefaultValue [list)\
Domain $DomainName\
Class SClassName\
Attribute Sname\
Value Svalue\
]
}
—-id {
relvar uinsert ::rosea::Config::Identifier [list\
Domain S$SDomainName\
Class $ClassName\
Number Svalue\
1 ; +O©
relvar insert ::rosea::Config::IdentifyingAttribute [list\
Domain $DomainName\
Class SClassName\
Attribute Sname\
Number Svalue\
]
}
—check {
relvar insert ::rosea::Config::ValueCheck [list)\
Domain $SDomainName\
Class $ClassName\
Attribute Sname\
Expression $value\
]
}
default {
tailcall DeclError UNKNOWN_OPTION attribute S$option
}
}
}
}
(1] Using uinsert here insures we don’t get an error when an identifiers has multiple attributes. The uinsert command

performs an insert with union semantics, i.e. duplicates are simply ignored.

<<error code formats>>=

RESERVED_NAME {names beginning with two underscore characters are reserved, \

"%S"}

Tests

<<config command tests>>=
test configure-2.0 {
Define domain and classes
} —setup {
} —cleanup {
cleanupConfigData
} —-body {
rosea configure {
domain foo {
class cl {

attribute al string -id 1
attribute a2 string -default 20

}

class c2 {

Relation Oriented Software Execution Architecture 106/ 295

attribute al string -id 1
attribute a2 string -default 40

}
relation cardinality [relvar set ::rosea::Config::Class]
} —result {2}

<<config command tests>>=
test configure-2.1 ({

Define domain -- bad attribute option
} —setup {
} —cleanup {

cleanupConfigbData
} —body {

rosea configure {

domain foo {
class cl {
attribute al string -foo 1 -id 1

}

} —result {encountered 2 configuration script errors} -returnCodes error

Reference

One of the more complicated aspects of XUML is understanding class relationships and how the fundamental notions of referen-
tial integrity constraints from relational algebra are implemented. For our purposes, we have chosen to specify relationships in
two pieces:

1. Specifying that some attributes are referential. Attribute references are the formalism by which relationships are realized.
They define attributes whose values are equal to the value of a corresponding attribute in the related class.

2. Specifying the relationship characteristics such as the classes involved and the multiplicity and conditionality of the rela-
tionship. Relationships stand for real world associations between classes and those associations have properties of multi-
plicity and conditionality that are independent of the manner in which the relationship is realized.

The reason we have taken this approach is that it corresponds closely to the UML graphic that we are translating. The referential
nature of an attribute is denoted in the graphic as a characteristic of the attribute and relationships have a separate graphical
representation. The result of this decision is that the most common case of simple associations can be specified with the least
amount of text. The trade-off is that the most general case of a reflexive, class-based association requires more specification to
resolve an inherent ambiguity.

The reference command states that a class contains attributes that refer to another class and are the means by which a
relationship between the classes is realized. It is with the reference command that we can state the correspondence between
attributes in the referring class and attributes in the referenced class.

Relation Oriented Software Execution Architecture 107 / 295

reference relationship class option value ...?

relationship
The name of the relationship to which the reference applies.

class
The name of the class to which the reference refers.

option value
A set of option/value pairs that define the characteristics of the reference. Valid options are:

—1link attrmap

The —1ink option specifies an attribute reference. The attrmap value is a one or two element list. The first
element is the name of an attribute in the class being defined. The second element is the name of an attribute in
the class given by the class argument. The —1 ink option specifies that an attribute in the class being defined
is a reference to (i.e. will have the same value as) an attribute in the class class. If the second element of the
attrmap is missing, then the name of the referenced attribute in class is assumed to be the same as the referring
attribute. The link options must define a one-to-one correspondence between referring attributes in the class
being defined and an identifier in class. At least one 1ink option must be given. Multiple —~1ink options
may be given for relationship when the referenced identifier of class has more than one attribute.

—refid number
The refid option gives the number of the identifier to which the reference is directed. If missing, then —
refid defaults to 1. Typically, references in the class being defined refer to the primary identifier in class.
However, if they refer to another identifier, then the —refid option is necessary. All the attributes given by
the —1ink options, as a group, must reference a specific identifier in class.

Implementation

<<class config commands>>=
proc reference {relname rclass args} {
if {[llength $args] % 2 != 0} {
tailcall DeclError ARG_FORMAT $args

namespace upvar ::rosea::Config::DomainDef DomainName DomainName
namespace upvar ::rosea::Config::DomainDef::ClassDef ClassName ClassName

set refnum 1
set linkopts [list]

foreach {option value} $args {
switch -exact —-- S$Soption {
-refid {
set refnum $value
}
-link {
if {[llength $value] < 1 || [llength $value] > 2} {
tailcall DeclError ARG_FORMAT S$value
}
lappend linkopts $value
}
default {
tailcall DeclError UNKNOWN_OPTION reference S$option

Relation Oriented Software Execution Architecture 108 /295

We defer processing the link options until the end so as not

to impose an order on the -refid option.

foreach linkopt $linkopts {
lassign $linkopt referring referenced

if {Sreferenced eq {}}

{

set referenced S$referring

}

relvar insert ::rosea::Config::AttributeReference [list)\
Domain $DomainName\
ReferringClass $ClassName\
ReferringAttribute S$referring\
ReferringRole source\
ReferencedClass Srclass\
ReferencedAttribute S$referenced\
ReferencedRole target\
ReferencedIdNumber S$refnum\
Relationship Srelname
1 ; # 0
}
}
(1] For class based associations, the values inserted here are wrong. It is only after the association has been defined that we

know it is class based and can then update the ReferringRole and ReferencedRole properly.

<<error code formats>>=

ARG_FORMAT {options and values must come in pairs, got "%s"}
UNKNOWN_OPTION {unknown %s command option, "%s"}

Tests

<<config command tests>>=
test configure-2.2 ({
Define class reference
} —-setup {
} —cleanup {
cleanupConfigData
} ~body {
catch {
rosea configure {
domain foo {
class cl {

attribute al string -id 1
attribute a2 string -default 20
}
class c2 {
attribute al string -id 1
attribute a2 string -default 40
reference R1 cl -1link al
}
set ::rosea::test::arefs [relation cardinality\

$::rosea::Config::AttributeReference]

}

set arefs
} —result {1}

Relation Oriented Software Execution Architecture 109 /295

Defining Operations

Operations are a means of factoring code into reusable modules. We make the distinction between class based operations and
instance based operations.

For instance based operations, there is an implicit self argument defined. Class based operations have no self argument.
Otherwise, there is little difference between the two.

To prevent naming conflicts, we insist that all the operations for a class, be they class based or instance based, have distinct
names. Further, we have the notion of system supplied versus user supplied operations. The ensemble commands for domain
classes have both the system and user supplied commands and so we insist that user supplied operation names not conflict with
those supplied by the system.

To support these ideas, we define the following relvars. These relvars are part of the configuration information for domains that
was discussed above.

<<config data>>=

relvar create Operation {
Domain string
Class string
Name string

} {Domain Class Name}

relvar association R8\
Operation {Domain Class} = Class {Domain Name} 1

relvar create InstanceOperation {
Domain string
Class string
Name string

} {Domain Class Name}

relvar create ClassOperation {
Domain string
Class string
Name string

} {Domain Class Name}

relvar partition R7 Operation {Domain Class Name}\
InstanceOperation {Domain Class Name}\

ClassOperation {Domain Class Name}

relvar create UserInstanceOperation {

Domain string
Class string
Name string
Parameters string
Body string

} {Domain Class Name}

relvar create SystemInstanceOperation {

Domain string
Class string
Name string

} {Domain Class Name}

relvar partition R9 InstanceOperation {Domain Class Name}\
UserInstanceOperation {Domain Class Name}\
SystemInstanceOperation {Domain Class Name}

relvar create UserClassOperation {
Domain string

Relation Oriented Software Execution Architecture 110/ 295

Class string
Name string
Parameters string
Body string

} {Domain Class Name}

relvar create SystemClassOperation ({
Domain string
Class string
Name string

} {Domain Class Name}

relvar partition R10 ClassOperation {Domain Class Name}\
UserClassOperation {Domain Class Name}\

SystemClassOperation {Domain Class Name}

relvar create SuppliedOperation {

Name string

Command string

RequiresStateModel boolean
} Name

relvar create SuppliedClassOperation {
Name string
} Name

relvar create SuppliedInstanceOperation {
Name string
} Name

relvar partition R14 SuppliedOperation Name\
SuppliedClassOperation Name\
SuppliedInstanceOperation Name

relvar association R15\
SystemClassOperation Name =\
SuppliedClassOperation Name 1

relvar association R16\
SystemInstanceOperation Name =\
SuppliedInstanceOperation Name 1

Classop

Since we make the distinction between user supplied and system supplied class based operations, we need to define those that
are to be supplied by the system. Here we populate the Supplied Operation and Supplied Class Operation relvars to match the
set of class commands we discussed above.

<<config data>>=
relvar eval {
relvar insert SuppliedOperation {
Name findAll
Command ::rosea::ClassCmds::findAll
RequiresStateModel false

Name findById
Command ::rosea::ClassCmds: :findById

RequiresStateModel false

Name findWhere

Relation Oriented Software Execution Architecture 111/295
Command ::rosea::ClassCmds: : findWhere
RequiresStateModel false
Name create
Command ::rosea::ClassCmds: :create
RequiresStateModel false
Name createin
Command ::rosea::ClassCmds: :createin
RequiresStateModel true
Name createasync
Command ::rosea::ClassCmds: :createasync
RequiresStateModel true
Name update
Command ::rosea::ClassCmds: :update
RequiresStateModel false

relvar insert SuppliedClassOperation {
Name findAll
}oA
Name findById
PoA
Name findWhere
boAo
Name create
PoA
Name createin
PoA
Name createasync
bAoA
Name update
}
}
classop name params body
name
The name of the class based operation.
params
A list of the formal parameters of the operation. Parameters are specified in the same manner as for the : :proc
command.
body

A Tecl script containing code to be executed when the class operation is invoked. Class based operations will be
made part of the ensemble of commands for the class being defined.

Implementation

<<class config commands>>=
proc classop {name params body} {
if {$name eq {}} {
tailcall DeclError EMPTY_ NAME "class operation”
} elseif {[string first :: Sname] != -1} {
tailcall DeclError NS_QUALIFIERS Sname

Relation Oriented Software Execution Architecture 112 /295

namespace upvar ::rosea::Config::DomainDef DomainName DomainName
namespace upvar ::rosea::Config::DomainDef::ClassDef ClassName ClassName
set sysop [relvar restrictone ::rosea::Config::Operation\

Domain $DomainName Class $ClassName Name Sname]
if {[relation isnotempty S$sysop]} {
tailcall DeclError DUP_OP_NAME S$name

set optuple [list Domain $DomainName Class $ClassName Name S$name]
relvar insert ::rosea::Config::Operation S$Soptuple
relvar insert ::rosea::Config::ClassOperation $Soptuple

lappend optuple Parameters S$params Body S$body
relvar insert ::rosea::Config::UserClassOperation S$Soptuple

<<error code formats>>=
DUP_OP_NAME {operation call, "%s", already exists}
NS_QUALIFIERS {name, "%s", contains namespace qualifiers}

Instop

As for class based operations, we define here the instance based operations provided by the system. These are the same operations
discussed above. For each class, an ensemble command named, instop, is created and all the instance operations, both system
supplied and user supplied, are made part of that ensemble.

Below we have the data for the system supplied instance operations.

<<config data>>=
relvar eval {
relvar insert SuppliedOperation {

Name findRelated

Command ::rosea::InstCmds::findRelated
RequiresStateModel false

Name findUnrelated

Command ::rosea::InstCmds: : findById
RequiresStateModel false

Name findRelatedWhere

Command ::rosea::InstCmds: :findRelatedWhere
RequiresStateModel false

Name findUnrelatedWhere

Command ::rosea::InstCmds: :findUnrelatedWhere
RequiresStateModel false

Name updateAttribute

Command ::rosea::InstCmds: :updateAttribute
RequiresStateModel false

Name readAttribute

Command ::rosea::InstCmds: :readAttribute
RequiresStateModel false

Name delete

Command ::rosea::InstCmds: :delete

Relation Oriented Software Execution Architecture

113/295

RequiresStateModel

Name
Command
RequiresStateModel

Name
Command
RequiresStateModel

Name
Command
RequiresStateModel

Name
Command
RequiresStateModel

Name
Command
RequiresStateModel

Name
Command
RequiresStateModel

Name
Command
RequiresStateModel

Name
Command
RequiresStateModel

Name
Command
RequiresStateModel

Name
Command
RequiresStateModel

Name
Command
RequiresStateModel

false

signal
::rosea::InstCmds:
true

delaysignal
::rosea::InstCmds:
true
canceldelayed
::rosea::InstCmds:
true
delayremaining
::rosea::InstCmds:
true

deRef
c:rosea::InstCmds:
false

isEmptyRef
::rosea::InstCmds:
false
isNotEmptyRef
::rosea::InstCmds:
false
refMultiplicity
t:rosea::InstCmds:
false
isRefSingular
::rosea::InstCmds:
false

isRefEqual
::rosea::InstCmds:
false

forAllRefs

t:rosea::InstCmds:

false

:signal

:delaysignal

:canceldelayed

:delayremaining

:deRef

:isEmptyRef

:isNotEmptyRef

:refMultiplicity

:isRefSingular

:isRefEqual

:forAllRefs

relvar insert SuppliedInstanceOperation {

Name findRelated
boA

Name findUnrelated
PoA

Name findRelatedWhere
bAoA

Name findUnrelatedWhere
PoA

Name updateAttribute
PoA

Name readAttribute

Name delete

Relation Oriented Software Execution Architecture 114 /295

Name signal
}oA

Name delaysignal
boA

Name canceldelayed
bAoA

Name delayremaining
}oA

Name deRef
boA

Name isEmptyRef
oA

Name isNotEmptyRef
}oA

Name refMultiplicity
boA

Name isRefSingular
oA

Name isRefEqual
boA

Name forAllRefs

instop name params body

name
The name of the instance based operation.

params
A list of the formal parameters of the operation. Parameters are specified in the same manner as for the : :proc
command. The system will add an additional formal parameter named self and invocations of instance based
operations must provide as the first argument an instance reference.

body
A Tcl script containing code to be executed when the instance operation is invoked. Class based operations will be
made part of the ensemble of commands for the class being defined.

Implementation

<<class config commands>>=
proc instop {name params body} {
if {Sname eq {}} {
tailcall DeclError EMPTY_NAME "instance operation"
} elseif {[string first :: S$name] != -1} {
tailcall DeclError NS_QUALIFIERS S$name

namespace upvar ::rosea::Config::DomainDef DomainName DomainName
namespace upvar ::rosea::Config::DomainDef::ClassDef ClassName ClassName
set sysop [relvar restrictone ::rosea::Config::Operation)\

Domain $DomainName Class $ClassName Name Sname]
if {[relation isnotempty S$sysop]} {
tailcall DeclError DUP_OP_NAME S$name

set optuple [list Domain $DomainName Class $ClassName Name S$name]

Relation Oriented Software Execution Architecture 115/295

relvar insert ::rosea::Config::Operation S$Soptuple
relvar insert ::rosea::Config::InstanceOperation S$Soptuple

lappend optuple Parameters S$params Body S$body
relvar insert ::rosea::Config::UserInstanceOperation Soptuple

Defining Relationships

To define the various types of relationships, we have a rather extensive data model to encode all the rules about class relationships.

The figure below shows the class model for relationships.

116 /295

Relation Oriented Software Execution Architecture

u seedioieds

! I

{1} sweN| u'T <usamiag uoneloosse ayy sjgpow U0 | {1} mEmZW
{1} urewoq] vy | {1} urewoq,
W sse|y | ,a_zm:o:m_wmp,

{Try'1} o0y

{141} diysuonejay

{Tva‘1} sse|o

{1vy'1} urewoqg

3|0y sse|D
o

{ova'1} aj0y {ovu'l} al0y
{ova'n) diusuoneioy {ova'1} diysuonejex
{ory'i} sseio {ova't} sserd

{ovy'1} urewoq

{ovy'1} urewoqg

{8ey'1} a0y
sse|Q padualsjey (gey'zpy'1} diysuoneley sse|D Bulisjey
{8ey'1} sse;d
{gey‘zry'l} urewoqa
sse|) 10jeldossy gdy
T
64y
10 Jaquwaw Bl1iIajal B Seyr
<«Jaquaw Byiiagal ayy st Aordniny
k4 ¢8| Aueuonipuod Anjeuonipuod
. . {6e4'1} 2104 {6ey'1} aj0y {8ey'1} o104
o {gey'1} sj0y o {6ey'1} aj0y o {6gu'vey1} diysuonejay {6ed'eey'l} diysuonejay {gey'zey 1} diysuonejay
{8ey’2ey"1} diysuonejay {6cy'9gy"1} diysuonejoy {6gu'sey’"1} diysuonejay {6c4'l} ssBID {6£41} sse|D {gey‘|} sse|d
{8ey'i} sse;dp {6€y'1} sselp {6€y'1} sselo ey [Pser e
6€Y'vEY'l} urewog 6€Y'€€Y' I} urewog 8€Y'zeY' I} urewog
{sew’sed'} uiewog {6ex’oen I} urewoq {eeu’se '} uewoq ﬁmmm wu:._vo sse| ! EEIVEIT) wv ajduwr mmmﬁ Bulsye vw dwi
sse|joqns ssepladng sse|D 19bie) 19 S op 4oy ajdwis 12 Buiiaay ajdwis
Ut T T T T T T
J0 Jaquaw 9Jj19ads e seyr {ogy'l} aweN J0 Jaquwaw 1Jelisqe e sey» 10 Jaquiaw }abiel e seyr {1ey'l} swen 10 Jaqwaw §2inos e seyr 10 Jaquiaw Bliuislal e seys {1ey'l} swen Jo Jaquaw Buiiiayel e seyr
<Jaquaw dads ay sI Tlogy 1} urewoq <Jagqwaw 1oeasqe ayl si <Jaquauw 1phie) ayl si T {1841} urewoq| T <449qwaw 3pinos ayy si <Jaquaw sousisyel ayi sl T T <isquaw Bylusjal syl si

Led

uonezijeiaus

9ed

sed

UoNeI0SSY paseg Sse|)

ved

eed

{1ey'1} urewoq

uoneloossy a|dwis

{oey'1} awenN
{oey'1} urewoqg

UoNEI0SSY

ogy

Lo awen|
! {1} urewoq,

[t e

diysuonejay

1
|

zed

iagram

Class Di

10N

hip Configurati

10ns

Relati

Figure 5.3

Relation Oriented Software Execution Architecture 117 /295

A Relationship is either an Association or a Generalization (R30). A Generalization has one Superclass (R36) and one or
more Subclass (R36). In practice we will insist upon two or more subclasses.

An Association also comes in two types, a Simple Association or a Class Based Association (R31). For a Simple Association,
there are two participants (R32 and R33). The Simple Referring Class is the class that contains referential attributes and the
Simple Referenced Class contains the identifying attributes that are referenced.

A Class Based Association uses an Associator Class (R42) as the referring class. Its referential attributes refer to identifiers in
the Source Class (R34) and Target Class (R35).

All these distinctions are variations on the Class Role that is played by a Class when participating in a Relationship (R41). A
class is either a Referring Class or a Referenced Class (R40). Classes that serve the referring role are the Simple Referring
Class, Associator Class and the Subclass (R38). The referenced role is played by Simple Referenced Class, Source Class,
Target Class and Superclass (R39).

Following our familiar pattern, we express the data model for relationships in relvars as follows.

<<config data>>=

relvar create Association {
Domain string
Name string

} {Domain Name}

relvar create Generalization {
Domain string
Name string

} {Domain Name}

relvar partition R30 Relationship {Domain Name}\
Association {Domain Name}\
Generalization {Domain Name}

relvar create SimpleAssociation {
Domain string
Name string

} {Domain Name}

relvar create ClassBasedAssociation {
Domain string
Name string

} {Domain Name}

relvar partition R31 Association {Domain Name}\
SimpleAssociation {Domain Name}\
ClassBasedAssociation {Domain Name}

relvar create SimpleReferringClass {

Domain string
Class string
Relationship string
Role string
Conditionality boolean
Multiplicity boolean

} {Domain Class Relationship Role}

relvar association R32\
SimpleReferringClass {Domain Relationship} 1\
SimpleAssociation {Domain Name} 1

relvar create SimpleReferencedClass {

Domain string
Class string
Relationship string
Role string

Conditionality boolean
} {Domain Class Relationship Role}
relvar association R33\
SimpleReferencedClass {Domain Relationship} 1\
SimpleAssociation {Domain Name} 1
relvar create SourceClass {
Domain string

Relation Oriented Software Execution Architecture

118 /295

Class
Relationship
Role
Conditionality
Multiplicity

string
string
string
boolean
boolean

} {Domain Class Relationship Role}
relvar association R34\

SourceClass {Domain Relationship} 1\
ClassBasedAssociation {Domain Name} 1

relvar create TargetClass {

Domain

Class
Relationship
Role
Conditionality
Multiplicity

string
string
string
string
boolean
boolean

} {Domain Class Relationship Role}
relvar association R35\

TargetClass {Domain Relationship} 1\
ClassBasedAssociation {Domain Name} 1

relvar create AssociatorClass {

Domain

Class
Relationship
Role

string
string
string
string

} {Domain Class Relationship Role}
relvar association R42\

AssociatorClass {Domain Relationship} 1\
ClassBasedAssociation {Domain Name} 1

relvar create Superclass {

Domain

Class
Relationship
Role

string
string
string
string

} {Domain Class Relationship Role}
relvar association R36\

Superclass {Domain Relationship} 1\

Generalization {Domain Name} 1
relvar create Subclass {

Domain

Class
Relationship
Role

string
string
string
string

} {Domain Class Relationship Role}
relvar association R37\
Subclass {Domain Relationship} +\
Generalization {Domain Name} 1
relvar create ReferringClass {

Domain

Class
Relationship
Role

string
string
string
string

} {Domain Class Relationship Role}

relvar partition R38 ReferringClass {Domain Class Relationship Role}\
SimpleReferringClass {Domain Class Relationship Role}\
AssociatorClass {Domain Class Relationship Role}\
Subclass {Domain Class Relationship Role}

relvar create ReferencedClass {

Domain

Class
Relationship
Role

string
string
string
string

Relation Oriented Software Execution Architecture 119/295

} {Domain Class Relationship Role}

relvar partition R39 ReferencedClass {Domain Class Relationship Role}\
SimpleReferencedClass {Domain Class Relationship Role}\
SourceClass {Domain Class Relationship Role}\
TargetClass {Domain Class Relationship Role}\
Superclass {Domain Class Relationship Role}

relvar create ClassRole {

Domain string
Class string
Relationship string
Role string

} {Domain Class Relationship Role}
relvar partition R40 ClassRole {Domain Class Relationship Role}\
ReferringClass {Domain Class Relationship Role}\
ReferencedClass {Domain Class Relationship Role}
relvar correlation R41 ClassRole\
{Domain Relationship} + Relationship {Domain Name}\
{Domain Class} * Class {Domain Name}
relvar correlation R11 ReferencedIdAttribute\
{Domain Class Relationship Role} +\
ReferencedClass {Domain Class Relationship Role}\
{Domain Class Attribute Number} =\
IdentifyingAttribute {Domain Class Attribute Number}
relvar correlation R12 AttributeReference\
{Domain ReferringClass Relationship ReferringRole} +\
ReferringClass {Domain Class Relationship Role}\
{Domain ReferencedClass Relationship ReferencedRole ReferencedAttribute\
ReferencedIdNumber} +\
ReferencedIdAttribute {Domain Class Relationship Role Attribute Number}

Association

The association command is used to define both simple and class based associations depending upon arguments.

Relation Oriented Software Execution Architecture 120/ 295

association name source spec target ?option value ... ?

name
The name of the association. Conventionally, relationships names are of the form R<d> where <d> is one or more
decimal digits but any non-empty string can be used.

source
The name of the class that defines the starting class for a forward traversal of the relationship.

spec
The specifier of the relationship conditionality and multiplicity. The spec argument is one of the following strings.
We allow two forms for some of the specifiers. The first form follows UML notation and the second form follows
TcIRAL notation.

1--1

The association is one to one.
0..1--1lor?--1

The association is at most one to one.
0..1--0..1lor?--7

The association is at most one to at most one.
1..%x—=1lor+--1

The association is one or more to one.
0..%——1or x——1

The association is zero or more to one.
1..%——=0..1lor+--?

The association is one or more to at most one.
0..%—=0..1o0r »——"?

The association is zero or more to at most one.
1..%=—=1..%xo0r+——+

The association is one or more to one or more.
0..%——1..%o0r x——+

The association is zero or more to one or more.
1..%——=0..%xo0r+——%

The association is one or more to zero or more.
0..%=—=0..%0or x——=x*

The association is zero or more to zero or more.

target
The name of the class that defines the ending class for a forward traversal of the relationship.

option value
Options to the association command are given as argument option / value pairs: Valid options and their values
are:

—associator class
The ~associator option define the association to be class based and specifies class as the association class.

—path attribute_list
The —path option defines the direction of reference for class based reflexive associations. The attribute_list
argument is a list of attribute name pairs that define the attribute correspondence when traversing the reflexive
association in the forward direction.

In the command, we are using the spec string to encode several distinct pieces of information. Each different association specifier
implies the conditionality, multiplicity and other properties of the association. We encode those properties in data whose identifier
is the spec string itself.

Relation Oriented Software Execution Architecture

121/295

<<config data>>=

relvar create Config_AssocSpec {

Spec string
NeedsAssociator boolean
ReflexiveAllowed boolean
ReferringCond boolean
ReferringMult boolean
ReferencedCond boolean
ReferencedMult boolean
} Spec

relvar insert Config_AssocSpec {

Spec 1--1 NeedsAssociator false ReflexiveAllowed true
ReferringCond false ReferringMult false
ReferencedCond false ReferencedMult false

Spec 0..1--1 NeedsAssociator false ReflexiveAllowed false
ReferringCond true ReferringMult false
ReferencedCond false ReferencedMult false

Spec 0..1--0..1 NeedsAssociator false ReflexiveAllowed true
ReferringCond true ReferringMult false
ReferencedCond true ReferencedMult false

Spec 1..x—-1 NeedsAssociator false ReflexiveAllowed true
ReferringCond false ReferringMult true
ReferencedCond false ReferencedMult false

Spec 0..%—--1 NeedsAssociator false ReflexiveAllowed false
ReferringCond true ReferringMult true
ReferencedCond false ReferencedMult false

Spec 1..%x—-0..1 NeedsAssociator false ReflexiveAllowed false
ReferringCond false ReferringMult true
ReferencedCond true ReferencedMult false

Spec 0..x——0..1 NeedsAssociator false ReflexiveAllowed true
ReferringCond true ReferringMult true
ReferencedCond true ReferencedMult false

Spec 1..%x—-1..x NeedsAssociator true ReflexiveAllowed true
ReferringCond false ReferringMult true
ReferencedCond false ReferencedMult true

Spec 0..%x—-1..x NeedsAssociator true ReflexiveAllowed false
ReferringCond true ReferringMult true
ReferencedCond false ReferencedMult true

Spec 1..x——0..% NeedsAssociator true ReflexiveAllowed false
ReferringCond false ReferringMult true
ReferencedCond true ReferencedMult true

Spec 0..%—-0..x NeedsAssociator true ReflexiveAllowed true
ReferringCond true ReferringMult true
ReferencedCond true ReferencedMult true

Spec ?--1 NeedsAssociator false ReflexiveAllowed false
ReferringCond true ReferringMult false
ReferencedCond false ReferencedMult false

Spec ?--? NeedsAssociator false ReflexiveAllowed true
ReferringCond true ReferringMult false

Relation Oriented Software Execution Architecture 122 /295

ReferencedCond true ReferencedMult false

Spec +--1 NeedsAssociator false ReflexiveAllowed true
ReferringCond false ReferringMult true
ReferencedCond false ReferencedMult false

Spec x*—-1 NeedsAssociator false ReflexiveAllowed false
ReferringCond true ReferringMult true
ReferencedCond false ReferencedMult false

Spec +--7? NeedsAssociator false ReflexiveAllowed false
ReferringCond false ReferringMult true
ReferencedCond true ReferencedMult false

Spec x——? NeedsAssociator false ReflexiveAllowed true
ReferringCond true ReferringMult true
ReferencedCond true ReferencedMult false

Spec +-—+ NeedsAssociator true ReflexiveAllowed true
ReferringCond false ReferringMult true
ReferencedCond false ReferencedMult true

Spec x*——+ NeedsAssociator true ReflexiveAllowed false
ReferringCond true ReferringMult true
ReferencedCond false ReferencedMult true

Spec +-—* NeedsAssociator true ReflexiveAllowed false
ReferringCond false ReferringMult true
ReferencedCond true ReferencedMult true

Spec x*——* NeedsAssociator true ReflexiveAllowed true
ReferringCond true ReferringMult true
ReferencedCond true ReferencedMult true

The consequence of the decision to specify separately the realization of relationships as attribute references from the specification
of the participants, conditionality and multiplicity of the association is that we will have to hold, temporarily, some data about
associations until all of the classes are defined. Then we will bind the attribute references to the relationship characteristics.
This is done below. For now we show the data that must be kept aside to perform the binding of the attribute references to the
corresponding associations.

<<config data>>=
relvar create Config_ClassAssoc {

Domain string
Relationship string
AssocClass string
SourceClass string

} {Domain Relationship AssocClass SourceClass}
relvar create Config_NonReflexiveAssoc {

Domain string
Relationship string
AssocClass string
SourceClass string
TargetClass string

} {Domain Relationship AssocClass SourceClass}
relvar create Config_ReflexiveAssoc {

Domain string
Relationship string
AssocClass string
SourceClass string

} {Domain Relationship AssocClass SourceClass}
relvar create Config_ReflexivePath {

Relation Oriented Software Execution Architecture

123 /295

Domain string
Relationship string
AssocClass string
SourceClass string
SourceAttr string
TargetAttr string

} {Domain Relationship AssocClass SourceClass SourceAttr}
relvar partition Configl\
Config_ClassAssoc\
{Domain Relationship AssocClass SourceClass}\
Config_NonReflexiveAssoc\
{Domain Relationship AssocClass SourceClass}\
Config_ReflexiveAssoc\
{Domain Relationship AssocClass SourceClass}
relvar association Config2\
Config_ReflexivePath {Domain Relationship AssocClass SourceClass} +\
Config_ReflexiveAssoc {Domain Relationship AssocClass SourceClass} 1

Implementation

Like most of the commands in the configuration language, the bulk of the code is involved with populating the relvars holding
the essential data provided in the command arguments. For the association command, there is some argument parsing to
determine whether the association is simple or class based. Then it is a matter of filling in the correct information based on the

type of the association.

<<domain config commands>>=
proc association {name source spec target args} {
if {[llength $args] % 2 != 0} {
tailcall DeclError ARG_FORMAT $args
}
if {$Sname eq {}} {
tailcall DeclError EMPTY_ NAME association
}
if {[string index $name 0] eq "~"} {
tailcall DeclError TILDE_NAME S$name

Obtain references to the domain and class context.
namespace upvar ::rosea::Config::DomainDef DomainName DomainName

namespace upvar ::rosea::Config::DomainDef::ClassDef ClassName ClassName

<<association: parse arguments>>

try {
relvar insert ::rosea::Config::DomainElement [list\
Domain $DomainName\
Element S$name\
]
} trap {RAL relvar insert DUPLICATE_TUPLE} {result opts} {
tailcall DeclError DUP_ELEMENT_NAME S$name

Many relvars have tuples with the same heading, so we construct it
once here.
set reltuple [list\

Domain $DomainName\

Name S$name\

Populate the data for a Relationship and Association since that

Relation Oriented Software Execution Architecture

124 /295

is what this command defines.
relvar insert ::rosea::Config::Relationship S$reltuple
relvar insert ::rosea::Config::Association S$reltuple

Populate the type of association we are dealing with.
if {S$Sassociator eqg {}} {

<<association: populate simple association>>
} else {

<<association: populate class based association>>

<<error code formats>>=

TILDE_NAME {names beginning with the tilde character are not allowed\
in this context, "%s"}

Argument parsing uses a simple switch command arrangement. We use two variables to hold the option values.

<<association: parse arguments>>=
set associator {}
set path {}

foreach {option value} S$args {
switch -exact —-- S$Soption {
—associator {
set associator $value

}

-path {
set path $value
if {[llength S$path] % 2 != 0} {

tailcall DeclError ARG_FORMAT $path

}
default {
tailcall DeclError UNKNOWN_OPTION association S$option

}

<<association: check arguments>>

Here we use the data that we supplied above to make sure the spec association specifier and the supplied arguments make
sense together. Certain forms of reflexiveness are not allowed and certain specifiers imply that you must define a class based

association. Such rules are easier to express in data rather than long sequences of checking code.

<<association: check arguments>>=
set cas [relvar restrictone ::rosea::Config::Config_AssocSpec Spec $spec]
if {[relation isempty S$cas]} {
tailcall DeclError BAD_RELATIONSHIP_SPEC $spec
}
set needsassoc [relation extract $cas NeedsAssociator]
if {$needsassoc && S$Sassociator eq {}} {
tailcall DeclError NEED_ASSOCIATOR S$spec
}
if {$source eqg S$target} {
if {![relation extract $cas ReflexiveAllowed]} {
tailcall DeclError REFLEXIVE_NOT_ALLOWED $spec
}
if {Sneedsassoc && S$path eq {}} {
tailcall DeclError NEED_REFLEXIVE_PATH $name $source $spec S$Starget

Relation Oriented Software Execution Architecture 125/ 295

<<error code formats>>=

BAD_RELATIONSHIP_SPEC {bad relationship specifier, "%s"}

NEED_ASSOCIATOR {relationship of type, "%s", requires associative class}

NEED_REFLEXIVE_PATH {traversal path must be specified for reflexive\
association, %s, %s %s %s}

REFLEXIVE_NOT_ALLOWED {associations of type, "%s", cannot be reflexive}

For simple associations, the association command argument supply what we need and we perform a series of inserts into
the configuration language data model.

<<association: populate simple association>>=

relvar insert ::rosea::Config::SimpleAssociation S$reltuple
relvar insert ::rosea::Config::SimpleReferringClass [list\
Domain $DomainName\
Class $Ssource\
Relationship Sname\
Role source\
Conditionality [relation extract $cas ReferringCond]\
Multiplicity [relation extract $cas ReferringMult]\
1
relvar insert ::rosea::Config::ReferringClass [list)\
Domain $DomainName\
Class $source\
Relationship Sname\
Role source\
1
relvar insert ::rosea::Config::ClassRole [list)\
Domain $DomainName\
Class $source\
Relationship Sname\
Role source\
1
relvar insert ::rosea::Config::SimpleReferencedClass [list\
Domain $DomainName\
Class Starget\
Relationship Sname\
Role target\
Conditionality [relation extract $cas ReferencedCond]\
]
relvar insert ::rosea::Config::ReferencedClass [list\
Domain SDomainName\
Class Starget\
Relationship Sname\
Role target\
]
relvar insert ::rosea::Config::ClassRole [list)\
Domain SDomainName\
Class Starget\
Relationship Sname\
Role target\

For class based associations, the situation is more complex. We need to hold information about whether the relationship is
reflexive. This is used later to match up the referential attributes that are used to realize the relationship to the class participants.
Other than this complication, it is more of inserting the command argument data into the proper set of configuration language
relvars.

<<association: populate class based association>>=
relvar insert ::rosea::Config::Config_ClassAssoc [list\
Domain SDomainName \
Relationship Sname\

Relation Oriented Software Execution Architecture

126 /295

Sassociator\
Ssource\

AssocClass
SourceClass
]

if {[llength $path] == 0} {

relvar insert ::rosea::Config::Config NonReflexiveAssoc [list)\
Domain $DomainName\
Relationship $Sname\
AssocClass Sassociator\
SourceClass Ssource\
TargetClass Starget\

]

} else {

relvar insert ::rosea::Config::Config_ReflexiveAssoc [list)\
Domain SDomainName\
Relationship Sname\
AssocClass Sassociator\
SourceClass Ssource\

1

foreach {sourceattr targetattr} $path {
relvar insert ::rosea::Config::Config_ReflexivePath [list)\

Domain $DomainName\
Relationship Sname\
AssocClass Sassociator\
SourceClass Ssource\
SourceAttr Ssourceattr\
TargetAttr Stargetattr\

relvar insert

relvar insert ::rosea::Config::SourceClass [list\
Domain $DomainName\
Class $Ssource\
Relationship Sname\
Role source\
Conditionality [relation extract $cas ReferringCond]\
Multiplicity [relation extract $cas ReferringMult]\
]
relvar insert ::rosea::Config::ReferencedClass [list\
Domain SDomainName\
Class Ssource\
Relationship Sname\
Role source\
]
relvar insert ::rosea::Config::ClassRole [list)\
Domain S$SDomainName\
Class Ssource\
Relationship Sname\
Role source\
]
relvar insert ::rosea::Config::TargetClass [list\
Domain SDomainName\
Class Starget\
Relationship Sname\
Role target\
Conditionality [relation extract $cas ReferencedCond]\
Multiplicity [relation extract S$cas ReferencedMult]\

]

relvar insert
Domain
Class

::rosea::Config::ReferencedClass [list\
$DomainName\

Starget\

::rosea::Config::ClassBasedAssociation S$Sreltuple

Relation Oriented Software Execution Architecture

127 /295

Relationship Sname\
Role target\
]
relvar insert ::rosea::Config::ClassRole [list)\
Domain $DomainName\
Class Starget\
Relationship Sname\
Role target\
]
relvar insert ::rosea::Config::AssociatorClass [list)\
Domain $SDomainName\
Class Sassociator)\
Relationship Sname\
Role associator\
]
relvar insert ::rosea::Config::ReferringClass [list\
Domain $SDomainName\
Class Sassociator\
Relationship Sname\
Role associator\
]
relvar insert ::rosea::Config::ClassRole [list\
Domain $SDomainName\
Class Sassociator\
Relationship S$Sname\
Role associator\

After defining the association properties, we can determine if we have a class based association. In the case of a class based
association, we need to patch up the roles that the classes have. In the reference command, we simply assumed that all
associations were simple. This assumption lets us separate the idea of defining the association and its characteristics from the
idea of specifying the attribute references that realize the association. We do this separation to make translation a bit easier and
more directly related to the nature of the UML graphical representation, i.e. we have separate commands for the association line

and the attribute annotation.

The code below is executed at the end of the domain command to correct the AttributeReference relvar values for any asso-
ciations that were defined to be class based. We present it here, to show how the data stored away during the association

command is used.

First, we consider the non-reflexive case. Here we must patch the role that the association class plays in attribute references and

the role that the source class plays.

<<domain: bind association references>>=
variable Config_NonReflexiveAssoc

relation foreach nra $Config_NonReflexiveAssoc {
relation assign $nra

relvar update ::rosea::Config::AttributeReference ar {

[tuple extract $ar Domain] eq $Domain &&

[tuple extract $ar Relationship] eqg $Relationship &&

[tuple extract $ar ReferringClass] eq S$AssocClass
} {tuple update $ar ReferringRole associator}

relvar update ::rosea::Config::AttributeReference ar ({

[tuple extract $ar Domain] eq $Domain &&

[tuple extract $ar Relationship] eqg $Relationship &&
[tuple extract $ar ReferringClass] eq S$AssocClass &&
[tuple extract $ar ReferencedClass] eq $SourceClass

} {tuple update $ar ReferencedRole source}

Relation Oriented Software Execution Architecture 128 /295

Considering the reflexive case, we have to resolve the inherent ambiguity that results from the fact that the associative class refers
to two instances of the same class. The —path option shows which of the attribute references is considered the source of a
forward traversal.

<<domain: bind association references>>=
variable Config ReflexivePath

relation foreach rp $Config_ReflexivePath ({
relation assign $rp
relvar update ::rosea::Config::AttributeReference ar {
[tuple extract $ar Domain] eqg $Domain &&
[tuple extract $ar Relationship] eg S$Relationship &&
[tuple extract $ar ReferringClass] eq S$AssocClass
} {tuple update $ar ReferringRole associator}

relvar update ::rosea::Config::AttributeReference ar {
[tuple extract $ar Domain] eq $Domain &&
[tuple extract $ar Relationship] eg S$Relationship &&
[tuple extract $ar ReferringClass] eq $AssocClass &&
[tuple extract $ar ReferringAttribute] eq $SourceAttr
} {tuple update $ar ReferencedRole source}

Finally, we have all the information necessary to create the required instances of ReferencedIdAttribute. We do that by evalu-
ating a preformulated query.

<<domain: bind association references>>=
variable refIdQuery

eval S$refIdQuery

The purpose of the refIdQuery is to create the instances of ReferenceldAttribute that correlate identifying attributes to the
referenced class in which they reside. Recall, that when a class refers to another class to realize a relationship, the referential
attributes of the referring class have the same values as a set of identifying attributes in the referenced class. The combination of
the reference and association commands have given us the necessary information about those references. What we do
here is create instances that correlate those references back to identifiers of the referenced class. The result will be to make sure
that the attribute names were correctly specified. If they weren’t, then the constraint check that occurs at the end of the domain
configuration will fail.

All the data we need to create the instances of ReferencedIdAttribute is contained in the instances of AttributeReference that
we have been so carefully creating. The query itself takes the AttributeReference instances and simply projects out the part we
need, renames the attributes appropriately and adds in the tuples to the ReferencedIdAttribute relvar value.

<<config data>>=

pipe {
relvar set ::rosea::Config::AttributeReference |
relation project ~ Domain ReferencedClass Relationship ReferencedRole\

ReferencedAttribute ReferencedIdNumber |
relation rename ~ ReferencedClass Class ReferencedRole Role\
ReferencedAttribute Attribute ReferencedIdNumber Number |
relvar union ::rosea::Config::ReferencedIdAttribute
} refIdQuery

Tests

<<config command tests>>=
test configure-3.0 {

Define simple association
} —setup {

Relation Oriented Software Execution Architecture

129 /295

} —cleanup {
cleanupConfigData
} —body {
rosea configure ({
domain foo {
class x {
attribute al string -id 1
attribute a2 string -default 20
}
class y {
attribute al string -id 1
reference R1 x —-link al
}

association Rl y 1--1 x

}

relation cardinality [relvar set ::rosea::Config::SimpleAssociation]

} —result {1}

<<config command tests>>=
test configure-3.1 {
Define reflexive simple association
} —-setup {
} —cleanup {
cleanupConfigbData
} —body {
rosea configure ({
domain foo {
class x {
attribute al string -id 1
attribute prev string -id 2
attribute a2 string -default 20
reference R1 x —-link {prev al}
}

association Rl x 1--1 x

}

relation cardinality [relvar set ::rosea::Config::SimpleAssociation]

} —result {1}

<<config command tests>>=
test configure-3.2 {
Define class based association
} —setup {
} —cleanup {
cleanupConfigData
} —body {
rosea configure {
domain foo {
class a {
attribute x1 string -id 1
attribute yl string -id 1
reference R1 x —-link x1
reference Rl y -link yl
}
class x {
attribute x1 string -id 1
attribute x2 string -default 20
}
class y {
attribute yl string -id 1

Relation Oriented Software Execution Architecture

130/295

}

}

association R1 x 1..%x--1..x y —associator a

}

relation cardinality [relvar set ::rosea::Config::ClassBasedAssociation]
-result {1}

<<config command tests>>=
test configure-3.3 {

Define reflexive class based association
-setup {
—cleanup {
cleanupConfigData
-body {
rosea configure ({
domain foo {
class a {
attribute x1 string -id 1
attribute next string -id 1
reference R1 x —-link x1 -link {next x1}
}
class x {
attribute x1 string -id 1
attribute x2 string -default 20
}

association R1 x 1..%x--1..x x —associator a -path {x1 next}

}
relation cardinality [relvar set ::rosea::Config::ClassBasedAssociation]
-result {1}

<<config command tests>>=
test configure-3.4 {

}
}

}

}

Simple association —-- bad class
—-setup {
—cleanup {

cleanupConfigbData
-body {

rosea configure {

domain foo {
association R1 y 1--1 x

}

—-result {encountered 2 configuration script errors} -returnCodes error

<<config command tests>>=
test configure-3.5 ({

}
}

}

}

Simple association —-- need associator
—-setup {
—cleanup {

cleanupConfigbData
-body {

rosea configure {

domain foo {
association R1 y 1..x—=1..% x

}

—-result {encountered 1 configuration script errors} -returnCodes error

Relation Oriented Software Execution Architecture 131/295

Generalization

Defining a generalization relationship is quite a bit simpler than the effort we just saw in defining associations. For generaliza-
tions, it is necessary to specify the superclass and the set of subclasses.

generalization name super subl sub2 ?...?

name
The name of the generalization. Conventionally, relationships names are of the form R<d> where <d> is one or
more decimal digits but any non-empty string can be used.

super
The name of the class that serves as the superclass of the generalization.

subN
The names of the classes that serve as the subclasses of the generalization. You must have at least two subclasses to
define a generalization.

Implementation

We show the implementation of the generalization command with little additional commentary. It consists primarily of
inserting the values of the command arguments into the configuration relvars that define generalization relationship semantics.

<<domain config commands>>=
proc generalization {name super args} {
if {[llength $args] < 2} {
tailcall DeclError TOO_FEW_SUBCLASSES [llength S$args]
}
if {$Sname eqg {}} {
tailcall DeclError EMPTY_NAME generalization
}
if {[string index $name 0] eq "~"} {
tailcall DeclError TILDE_NAME S$name

namespace upvar ::rosea::Config::DomainDef DomainName DomainName
try {
relvar insert ::rosea::Config::DomainElement [list\

Domain $DomainName\
Element S$name\
]
} trap {RAL relvar insert DUPLICATE_TUPLE} {result opts} {
tailcall DeclError DUP_ELEMENT_NAME S$name

set reltuple [list\
Domain $DomainName\
Name S$name\
]
relvar insert ::rosea::Config::Relationship S$reltuple
relvar insert ::rosea::Config::Generalization S$reltuple

set supertuple [list\

Domain $SDomainName\
Class Ssuper\
Relationship Sname\

Role target\

Relation Oriented Software Execution Architecture 132 /295

relvar insert ::rosea::Config::Superclass $supertuple
relvar insert ::rosea::Config::ReferencedClass $supertuple
relvar insert ::rosea::Config::ClassRole $supertuple

set subtuple [dict create\

Domain SDomainName \
Relationship Sname\
Role source\

]
foreach sub $args {
dict set subtuple Class $sub

relvar insert ::rosea::Config::Subclass S$subtuple
relvar insert ::rosea::Config::ReferringClass S$subtuple
relvar insert ::rosea::Config::ClassRole S$subtuple

<<error code formats>>=
TOO_FEW_SUBCLASSES {at least 2 subclasses must be specified, got %d}

Tests

<<config command tests>>=
test configure-4.0 {
Define generalization
} —setup {
} —cleanup {
cleanupConfigData
} —body {
rosea configure {
domain foo {
class super {
attribute al string -id 1
attribute a2 string -default 20
}
class subl {
attribute al string -id 1
reference Rl super -link al
}
class sub2 {
attribute al string -id 1
reference R1 super —-link al
}

generalization R1 super subl sub?2

}
relation cardinality [relvar set ::rosea::Config::Class]
} —result {3}

Defining Class State Models

State models in XUML are used to specify the sequence of computations associated with the life cycle of class instances. All
instances of a class have the behavior, yet each instance has it own notion of current state and so may progress through its life
cycle independently of any other instance.

Traditionally, Moore type state models are used in XUML to define the life cycle behavior. The other alternative is a Mealy type
state model. They are mathematically equivalent in the sense that any problem that can be solved by one formulation can also be

http://en.wikipedia.org/wiki/Moore_machine
http://en.wikipedia.org/wiki/Mealy_machine

Relation Oriented Software Execution Architecture 133 /295

solved by the other. Individuals have their preferences over which formulation is better and we will not indulge in that discussion
here. We only point out that hierarchical state models are not supported in the this translation scheme. Hierarchical state models
are an unnecessary abomination.

As usual, we need a namespace in which to hold the state model definition commands.

<<state model config namespace layout>>=
namespace eval StateModelDef ({
logger::initNamespace [namespace current]

<<tclral imports>>

namespace import ::ral::relvar
namespace import ::rosea::Config::ConfigEvaluate
namespace import ::rosea::Helpers::DeclError

<<state model config commands>>

Statemodel

statemodel body

body
A Tcl Script that is evaluated in a context to allow the definition of the properties of the class state model.

Implementation

The implementation of the statemodel command follows the usual pattern. We evaluate body in the proper context and then
insert the argument data into the proper relvars that are used to collect the state model specifications. Those relvar are described
below.

<<class config commands>>=

proc statemodel {body} {
namespace upvar ::rosea::Config::DomainDef DomainName DomainName
variable ClassName

namespace upvar StateModelDef\
InitialState InitialState)\
DefaultTrans DefaultTrans\
Terminals Terminals

set InitialState {}
set DefaultTrans {}
set Terminals [list]

try f
ConfigEvaluate [namespace current]::StateModelDef S$body

if {$DefaultTrans eq {}} {
set DefaultTrans CH
}

relvar insert ::rosea::Config::StateModel [list)\
Domain $DomainName\
Model $ClassName\
InitialState $InitialState\

DefaultTrans SDefaultTrans\

Relation Oriented Software Execution Architecture 134 /295

relvar insert ::rosea::Config::InstanceStateModel [list\
Domain $DomainName\
Class $ClassName\

foreach terminal $Terminals {
relvar updateone ::rosea::Config::State stup [list)\
Domain $DomainName Model $ClassName Name Sterminall] {
tuple update $stup IsFinal true

}
} on error {result opts} {
log::error S$result
upvar #0 ::rosea::Config::errcount errcount
incr errcount

The figure below shows the way that state models are specified.

135/295

Relation Oriented Software Execution Architecture

1} soquinn!
| {}sseid| 1

JO sasuelsul suolied»
<« Aq pauoniyed s|

u

0

{1} swenN
{1} 1epon
{1} urewoa

aoe|d 1els

{1} urewoq;

vSsd

[eui4s|
uonoy
aoe|d uoneald ouhs ayl si» siajoweled
{1541} sweN «Ul paleald JUAS sI {1641} sweN
{25¥d'95Y 1} 19apoN 89d {25¥4'554'1} 1Iapon
{154'964"1} urewoq {,154'554'1} urewoq
8lels uonesid alels
U
T°0
BIA Bloep
T <}0 JUBW?a|g 3AII0E UE S|
jo aoejd uonedio oukse ayy i |16GY} suelLinejeq Sou
<«U| pajealo ouAkse s| {8gy} arErsieniul
: ooy - Awmw_.: 19poN ®IA 1|neJOp AQ SuonisueIl>
{sgy'I} urewod| u'g <oy uopisuely JNB4BP BY} SI T {1} swenN
I3pON 81e1S 65 a|ny uonisues]
0g9d
{1541} sse|o <Aq paquasap s apkoay nuusm wm:w_ﬂ
{egy'1} diysuonejay {15u'1} urewoq| 10 40 819Kkoay ays saquosaps T {1} urewoq!
{egy'1} urewoq [SPOW 81elS 8ou’lsU| Tsd i Tssen |
ubissy opws | | |\ . mTmmm
<«Aq paquosap si 9]24K23}| T |
{zgd'1} diysuone|dd| 170 10 9]9£2841] Y1 S8qIIoSap»> T, {1} swen
g5 {zgy‘1} urewoq Z5d {1} urewoq!
{rsy} 1oqunnN s 4
Twmmv sse|D |SPON 91e1s ‘_wcm_ww/.\ _Eo_um_oomw,q_
{esy'} diysuoneren| | T
{rsy‘esy‘l} urewoq
JaubBissy ajdniny

iagram

ion Class Di

State Model Configurat

Figure 5.4

Relation Oriented Software Execution Architecture 136 /295

There are two types of StateModel (R50). The Instance State Model is used for classes (R51) and the Assigner State Model
is defined for associations (R52). There are both Single Assigner and Multiple Assigner state models (R53). A Multiple
Assigner is partitioned by the identifier of a class (R54).

A State Model is characterized by an InitialState for synchronous creation (R58) and possibly a Creation State used for asyn-
chronous creation (R56). Every State Model has a set of State (R55) which are characterized by an Action and its Parameters.
A State may also be marked as IsFinal. Together the State and Creation State form a set of State Place (R57) from which
transitions may occur.

Expressing the graphic in TcIRAL relvars we obtain:

<<config data>>=
relvar create StateModel {

Domain string
Model string
InitialState string
DefaultTrans string

} {Domain Model}

relvar create InstanceStateModel {
Domain string
Class string

} {Domain Class}

relvar association R51\
InstanceStateModel {Domain Class} 2\
Class {Domain Name} 1

relvar create AssignerStateModel {
Domain string
Relationship string

} {Domain Relationship}

relvar association R52\
AssignerStateModel {Domain Relationship} ?\
Association {Domain Name} 1

relvar partition R50 StateModel {Domain Model}\
InstanceStateModel {Domain Class}\
AssignerStateModel {Domain Relationship}

relvar create SingleAssigner {
Domain string
Relationship string

} {Domain Relationship}

relvar create MultipleAssigner {

Domain string
Relationship string
Class string
Number int

} {Domain Relationship}

relvar partition R53 AssignerStateModel {Domain Relationship}\
SingleAssigner {Domain Relationship}\
MultipleAssigner {Domain Relationship}

relvar association R54\
MultipleAssigner {Domain Class Number} ?\
Identifier {Domain Class Number} 1

relvar create State {
Domain string

Relation Oriented Software Execution Architecture

137 /295

Model string

Name string

Parameters string

Action string

IsFinal boolean
} {Domain Model Name}

relvar association R55\
State {Domain Model} +\
StateModel {Domain Model} 1

relvar association R58\
StateModel {Domain Model InitialState} 2\
State {Domain Model Name} 1

relvar create TransitionRule {
Name string
} Name

relvar insert TransitionRule {Name IG} {Name CH}

relvar association R59\
StateModel DefaultTrans =\
TransitionRule Name 1

relvar create CreationState {
Domain string
Model string
Name string

} {Domain Model Name}

relvar create StatePlace {
Domain string
Model string
Name string
} {Domain Model Name}

relvar partition R57 StatePlace {Domain Model Name}\

State {Domain Model Name}\
CreationState {Domain Model Name}

State

state name parameters body

name
The name of the state. Name must not be the empty string or one of the reserved names of @, CH or IG.

parameters
A list of the formal parameters of the state. Parameters are specified in the same manner as for the
command.

body
A Tecl script that is to be executed when the class instance enters this state.

::proc

Implementation

Relation Oriented Software Execution Architecture 138 /295

<<state model config commands>>=
proc state {name params body} {
if {Sname eq {}} {
tailcall DeclError EMPTY_ NAME state
}
if {$Sname in {@ CH IG}} {
tailcall DeclError PSEUDO_STATE S$name state

namespace upvar ::rosea::Config::DomainDef DomainName DomainName
namespace upvar ::rosea::Config::DomainDef::ClassDef ClassName ClassName
variable InitialState

if {$InitialState eq {}} {
set InitialState $name

relvar insert ::rosea::Config::State [list\
Domain SDomainName \
Model $ClassName\
Name Sname\
Parameters Sparams\
Action Sbody\
IsFinal false\
]
relvar insert ::rosea::Config::StatePlace [list\
Domain SDomainName\
Model SClassName\
Name Sname\
]
return

Before we can discuss state model transitions, we need to deal with events. The figure below shows the model of events. This
model is complicated by the need to handle the rules of polymorphic events. For most state models, events are defined locally and
the model responds to signaling those local events. However, polymorphic event can be inherited down one or more hierarchies
and the state models that are the leaf classes in a generalization hierarchy respond to the set of both inherited and local events.

139/295

Relation Oriented Software Execution Architecture

{65} sueiLinesaq!
1 {ssu} arersieniur,

| {8541} 19po; T

Agq pasneo suolsuell sey»
«Ul UonIsuel) sasnea Ul

{s8y} a0y
Tt T T oo | {ggy} diysuone|ay
| § {1} ajoy, Aq pa1oaye si» {1} wuan3z
“ﬁ: Ewm_h%_umm%w_ T <«spaye Uuo {5841} 1opon
" o c_msooun S84 {8y} urewoq
|||||||| JUSAT |BD07-UON
! sse|ogns |

{zsy'1} wen3

{r8y} 1aponiualed

f . . {esd'T8d 1} uang
{rey‘esy'z8y 1} wan3

{esy'T8Y'l} 1apo

{841} wanz
{t8y'1} 1epon
{t8y'1} urewoq

1uang olydiowAjod

I {8gy'I} urewoqi

184

{08Y4‘I} 1uaAg| jo uonezi|eal ayl si»
{,£8y'08Y4'l} I9pon <«Se papieal s T
{,£8y'08y'1} urewoq 784

{zsy'1} 1spon {esy'zsy’'l} 1spon { ‘ .
h . h h €84'T8Y'I} ulewoq
{z8y'I} urewoq {rey‘esy‘z8y I} urewoq
1UaAg pallayul|
JUaAT |ed07] juang paddep
uio
T
84
V

1UBAT 9A08Y3T

{o8y‘I} wang
{osy‘1} 1spon| U0
{o8¥‘1} urewoaq 98y

Aq palebedoid si»
«salebedoud

1uUaA3 palislag

{1} 1uan3z
{1} 1epon
{1} urewoq

IUEYE!

{984‘l} 80y
{98y'1} diysuonejay
{9841} wuang
{98d‘1} 1epon
{9841} urewoaq

yied |elisjaq

|
urT “3 diysuonejeyi

{1} sse|o!

|
__ 1 mewiog,

ssejosadns |

iagram

ion Class D

Event Configurat

Figure 5.5

Relation Oriented Software Execution Architecture 140/ 295

An Event is of two types (R80), Effective Event and Deferred Event. Transitions in state models occur only on an Effective
Event. The concept of a Deferred Event is used to handle the polymorphism property. The typing implied by R80 insures that
for a given state model, polymorphic and local events must have distinct names.

An Effective Event is either a Local Event, defined specifically for the state model, or a Mapped Event that has be subjected to
a polymorphic mapping (R82). Effective Events are those which drive transitions in a State Model (R87). A Deferred Event is
an event that must eventually be polymorphically mapped (R84) and consists of the Polymorphic Event defined for a superclass
or the Inherited Event (R81) should the class be subjected to repeated specialization. In all cases a Deferred Event is deferred
along a Deferral Path (R86) that originates at a Superclass.

Whether a polymorphic event is consumed at the leaf as a Mapped Event or passed further down the generalization hierarchy as
an Inherited Event, both are forms of Non-Local Event (R83). A Non-Local Event can only affect a Subclass (R85) by the
definition of polymorphic events.

These rules are represented in TcIRAL relvars and constraints as:

<<config data>>=

relvar create Event {
Domain string
Model string
Event string

} {Domain Model Event}

relvar create DeferredEvent ({
Domain string
Model string
Event string

} {Domain Model Event}

relvar create EffectiveEvent ({
Domain string
Model string
Event string

} {Domain Model Event}

relvar partition R80 Event {Domain Model Event}\
DeferredEvent {Domain Model Event}\

EffectiveEvent {Domain Model Event}

relvar create DeferralPath {

Domain string
Model string
Event string
Relationship string
Role string

} {Domain Model Event Relationship Role}

relvar correlation R86 DeferralPath\
{Domain Model Event} + DeferredEvent {Domain Model Event}\
{Domain Model Relationship Role} x Superclass\
{Domain Class Relationship Role}

relvar create PolymorphicEvent {
Domain string
Model string
Event string

} {Domain Model Event}

relvar create InheritedEvent {
Domain string
Model string
Event string

} {Domain Model Event}

Relation Oriented Software Execution Architecture

141 /295

relvar partition R81 DeferredEvent {Domain Model Event}\
PolymorphicEvent {Domain Model Event}\
InheritedEvent {Domain Model Event}

relvar create MappedEvent ({

Domain string
Model string
Event string

ParentModel string
} {Domain Model Event}

relvar association R84\
MappedEvent {Domain ParentModel Event} =*\
DeferredEvent {Domain Model Event} 1

relvar create LocalEvent {
Domain string
Model string
Event string

} {Domain Model Event}

relvar partition R82 EffectiveEvent {Domain Model Event}\
MappedEvent {Domain Model Event}\

LocalEvent {Domain Model Event}

relvar create NonLocalEvent {

Domain string
Model string
Event string
Relationship string
Role string

} {Domain Model Event}

relvar partition R83 NonLocalEvent {Domain Model Event}\
MappedEvent {Domain Model Event}\
InheritedEvent {Domain Model Event}

relvar association R85\
NonLocalEvent {Domain Model Relationship Role} =\
Subclass {Domain Class Relationship Role} 1

relvar association R87\
EffectiveEvent {Domain Model} +\
StateModel {Domain Model} 1

Compared to events, the data needed to dispatch state model transitions is much simpler. The figure below shows the class model

for transitions.

142 /295

Relation Oriented Software Execution Architecture

T

10} 108448 8Y1 S8qIIosap»

«]0 109}]8 Ue sey

u

‘0

{24} aInysuesy
{0241} wen3z
{0241} a1e1s8

€/d

|
1

{0241} 1spon
{0241} urewoq

{z,4} @1€ISMBN
{t24d"1} wen3z

uonisuel] a1e1S-uon

T

o

{0241} wuen3z
{ozyd‘1} @re1s
{0241} 1spoN
{0241} urewoaq

aoe|d uonisuel]

{1} Em;m_“

{1} 1apon, uo

I
I
10} paulsap si» I
I
I

{1} urewoq

1JuaAg |mN:|oMt|m_|"

{T24°1} eyers| U0 «jo uoneunsap ayi s T
{zsd'T24'1} 19poN ¢l |
{z/d'T2d"1} wrewoaq !
uolisuel] arels
I~ ;
Buowe uonisueil SaALIp» {1} swenN;,
<01 Buipioooe uonisuen u-o “ {1} 1epon !
0.d i1} urewoq
'a0e|d 9181S |

{1} swen!
{1} 19pon,

{1} urewoq,

Figure 5.6: Transitions Configuration Class Diagram

Relation Oriented Software Execution Architecture 143 /295

The Transition Place models the cell of a state transition matrix as it is the correlation between State Place and Effective
Event (R70). A Transition Place can be a State Transition or a Non-State Transition (R71). This depends upon whether we
transition to a State (R72) or are one of the non-transitioning actions given by a Transition Rule (R73).

<<config data>>=
relvar create TransitionPlace {
Domain string
Model string
State string
Event string
} {Domain Model State Event}

relvar correlation R70 TransitionPlace\
{Domain Model State} x StatePlace {Domain Model Name}\

{Domain Model Event} * EffectiveEvent {Domain Model Event}

relvar create StateTransition {

Domain string
Model string
State string
Event string
NewState string

} {Domain Model State Event}

relvar create NonStateTransition {

Domain string
Model string
State string
Event string
TransRule string

} {Domain Model State Event}

relvar partition R71 TransitionPlace {Domain Model State Event}\
StateTransition {Domain Model State Event}\
NonStateTransition {Domain Model State Event}

relvar association R72\
StateTransition {Domain Model NewState} =*\
State {Domain Model Name} 1

relvar association R73\

NonStateTransition TransRule x\
TransitionRule Name 1

Transition

transition source — event —> target
source
The name of a state in the state model being defined or the special reserved name, @.

event
The name of an event that causes the transition.

target
The name of a state in the state model being defined or one of the special non-transitioning states, IG or CH.

Relation Oriented Software Execution Architecture 144 / 295

Implementation

The implementation of the t ransition command consists mainly of inserting tuples into the event relvars using the data from
the command arguments. Note however, that all the events defined by invoking t ransition are deemed to be a LocalEvent.
This certainly may not be true for classes that are leaf subclass of a generalization hierarchy. When the domain configuration
is completed we will propagate the polymorphic events down the generalization hierarchies and in that process recategorize any
inherited events properly.

One other minor concern is dealing with the initial pseudo-state, @. This state is where an instance resides if it has been created
asynchronously. One may not define the @ state in a state command (it cannot have an activity) and the only valid place it can
appear is as the source state in a transition command.

<<state model config commands>>=
proc transition {source - event -> target} {
if {Sevent eqg {}} {
tailcall DeclError EMPTY_NAME event
}
if {Ssource in {CH IG}} {
tailcall DeclError PSEUDO_STATE S$name "transition source state"
}
namespace upvar ::rosea::Config::DomainDef DomainName DomainName
namespace upvar ::rosea::Config::DomainDef::ClassDef ClassName ClassName

if {Ssource eq "@"} {
if {S$target in {CH IG}} {
tailcall DeclError BAD_CREATION_TARGET S$target
}
set cstuple [list\

Domain $DomainName\

Model $ClassName\

Name e\
]
relvar uinsert ::rosea::Config::CreationState $cstuple
relvar uinsert ::rosea::Config::StatePlace S$cstuple

set eventtuple [list\
Domain S$DomainName\
Model SClassName\

Event Sevent\
]
relvar uinsert ::rosea::Config::Event Seventtuple ; # ©
relvar uinsert ::rosea::Config::EffectiveEvent S$eventtuple
relvar uinsert ::rosea::Config::LocalEvent $eventtuple
set tranrule [relvar restrictone ::rosea::Config::TransitionRule\

Name S$target]

set transtuple [list\
Domain $DomainName\
Model $ClassName\

State $Ssource\
Event Sevent\
]
relvar insert ::rosea::Config::TransitionPlace $transtuple

if {[relation isnotempty S$tranrule]} {
lappend transtuple TransRule S$target
set tpsubtype NonStateTransition

} else {
lappend transtuple NewState S$target
set tpsubtype StateTransition

Relation Oriented Software Execution Architecture 145/ 295

relvar insert ::rosea::Config::S$Stpsubtype S$transtuple
return
}
o When we insert event tuples into the relvars we use the uinsert operation which does not raise an error on duplicates.

This just lets us glean any event names from all the invocations of t ransit ion without having to be particularly careful

if we have seen the event before.

<<error code formats>>=
BAD_CREATION_TARGET {the target of a creation event must be a state,\

got "%s"}

Initialstate

By default, instances created from classes that have a state model are placed in the first state that was defined for the model. The
initialstate command is used to specify explicitly the inital state for newly created instances.

initialstate name

name
The name of at state in the state model being defined. Instances of the class that are created synchronously using the

create class command will be placed in this state.

Implementation

<<state model config commands>>=
proc initialstate {name} {
if {$name eq {}} {
tailcall DeclError EMPTY NAME initialstate

}
if {$Sname in {@ CH IG}} {
tailcall DeclError PSEUDO_STATE S$name initialstate

}

variable InitialState $name
return

Defaulttrans

It is customary to write t ransition commands only for outgoing transition that appear on the state model graphic. For any
entries in transition matrix that are not set by a t ransition command, a default value is supplied. That default is either IG or
CH depending upon the argument to the defaulttrans command. If no defaulttrans command is invoked when a state

model is defined, then the default transition will be CH.

defaulttrans trans

trans
Either the string IG or CH. For all transitions not explicitly mentioned in a transition command, the default

transition is defined as trans. If defaulttrans is not invoked during a state model definition then the default

transition is CH.

Relation Oriented Software Execution Architecture 146 /295

Implementation

<<state model config commands>>=
proc defaulttrans {name} {
if {Sname ni {CH IG}} {
tailcall DeclError EXPECTED_PSEUDO_STATE S$name
}
variable DefaultTrans S$name
return

Terminal

Terminal states are those where the class instance is deleted after the state activity is executed. This allows for asynchronous
deletion of class instances.

terminal ’state...?

state
The name of a state in the state model that will be marked as a terminal state. If a state machine transitions into a
terminal state, the associated instance is deleted after the state activity is executed.

Implementation

<<state model config commands>>=

proc terminal {args} {
variable Terminals
::struct::set add Terminals $args
return

Tests

<<config command tests>>=
test configure-5.0 {
Define statemodel
} —setup {
} —cleanup {
cleanupConfigData
} -body {
rosea configure {
domain foo {
class cl {
attribute al string -id 1
statemodel {
state sl1 {a b} {
puts $a Sb
}

transition sl - el —-> s2

state s2 {} {
puts "in s2"
}

transition s2 - el —-> sl

Relation Oriented Software Execution Architecture 147 / 295

}
relation cardinality [relvar set ::rosea::Config::StateModel]
} —result {1}

Polymorphic

Polymorphic events are those defined in a superclass and mapped at run time to an event in a subclass.

polymorphic ?event...?

event
The name of an event that is to be marked as polymorphic. This command should only be invoked when defining a
class that will serve as the superclass for a generalization relationship.

Implementation

<<class config commands>>=

proc polymorphic {args} {
namespace upvar ::rosea::Config::DomainDef DomainName DomainName
namespace upvar ::rosea::Config::DomainDef::ClassDef ClassName ClassName

foreach polyevent $args {
set eventtuple [list)\
Domain $DomainName\
Model $ClassName\
Event S$polyevent)\
]

relvar insert ::rosea::Config::PolymorphicEvent $eventtuple
relvar insert ::rosea::Config::DeferredEvent $eventtuple
relvar insert ::rosea::Config::Event Seventtuple

}

return

Previously, we indicated that polymorphic event rules require that we perform some other processing once the configuration
script for a domain has been executed. Now we are prepared to show that processing. It will be helpful to refer to the Event
Configuration Class Diagram above to follow the description.

The polymorphic command above inserts the argument event names into the configuration relvars simply as a deferred event
that is polymorphic. We must resolve two issues.

1. For classes that are super classes for mutiple generalizations, we must have corresponding instances of Deferral Path for
each of the generalization hierarchies.

2. For classes that are sub classes, they either consume the polymorphic event in a state model or it continues to be inherited
by any sub classes further down the generalization hierarchy.

To solve the first issue we know that relationship, R86, specifies how a polymorphic event may be propagated along multiple
generalizations when it is signaled to a given superclass. After the configuration scripts have been executed, we will have all the
Superclass instances and all the Deferred Event instances and can now make up the correlation between them.

Relation Oriented Software Execution Architecture 148 /295

<<domain: propagate polymorphic events>>=
Create Deferral Path instances

variable PolymorphicEvent
variable DeferredEvent
variable Superclass
variable Subclass
variable DeferralPath

set dpaths [pipe {
relation restrictwith S$PolymorphicEvent {$Domain eq $name} |

relation semijoin ~ $DeferredEvent |
relation join ~ $Superclass -using {Domain Domain Model Class}
H]
relvar insert ::rosea::Config::DeferralPath {x}[relation body $dpaths]

Starting with the Polymorphic Event class we can navigate R81 to find the corresponding Deferred Event and the join to the
Superclass. This gives the set of paths along which the polymorphic event must be propagated.

To solve the second issue, we must walk the generalization hierarchy and determine if events are being consummed or inherited
down the hierarchy. We want to start the walk only on the ultimate super classes, i.e. those super classes that are not themselves
the sub class of some other generalization.

<<domain: propagate polymorphic events>>=
set supers [relation semiminus $Subclass $Superclass\
-using {Domain Domain Class Class}]

relation foreach super S$supers {
PropagatePolyEvents S$super

So we find all Superclass instances that have no corresponding Subclass role and propagate any polymorphic events down the
generalization hierarchy.

The problem we are trying to solve in the propagation of polymorphic events arises from the way in which we attempt to
minimize the amount of input from the user when specifying the events. Recall that the polymorphic command simply inserts
instances into the Polymorphic Event class (and corresponding instances in Deferred Event and Event classes). Events found
when defining a state model are simply created as instances of the Local Event class (and again the corresponding Effective
Event and Event instances). At the end of the configuration process we can now deduce which events were inherited down the
generalization hierarchy and which were truly local events.

For sub classes that are leafs of generalization hierarchy, polymorphic events inherited from the super class are migrated to
be Mapped Events. For sub classes that are intermediate in the hierarchy, polymorhphic events are migrated to instances of
Inherited Event. Both Inherited Event and Mapped Event are types of Non-Local Event and R85 insures that they affect
only Subclass instances.

The PropagatePolyEvents procedure below accomplishes this reclassification operation. By doing it this way, we do
not have to burden the user with all the subtle characteristics of polymorphic events. We need only specify which events are
polymorphic and which events cause a state model transition and then we can deduce the intent to inherit down the generalization
hierarchy.

The PropagatePolyEvents procedure takes a singular relation value that is from the Superclass relvar and tracks the
polymorphic event inheritance down the hierarchy.

<<helper commands>>=
proc PropagatePolyEvents {super} ({
namespace upvar ::rosea::Config\

DeferredEvent DeferredEvent)\
LocalEvent LocalEvent\
Superclass Superclass\
Subclass Subclass\
DeferralPath DeferralPath\

Relation Oriented Software Execution Architecture 149 /295

Generalization Generalization ; # ©
set supername [relation extract $super Class]
<<PropagatePolyEvents: find sub classes>>

relation foreach sub S$subs {
<<PropagatePolyEvents: determine deferred events>>
<<PropagatePolyEvents: find multiple generalization classes>>

if {[relation isempty Smultigens]} {
<<PropagatePolyEvents: migrate for single generalization>>
} else {
<<PropagatePolyEvents: migrate for multiple generalization>>

<<PropagatePolyEvents: add non-local events>>
<<PropagatePolyEvents: continue propagation>>

o There are a number of configuration relvars that we will need, so we bring them into scope here.

We can find the subclasses that particpate in a particular generalization by navigating R36 and R37.

<<PropagatePolyEvents: find sub classes>>=
set subs [pipe {
relation semijoin $super\
$Generalization -using {Domain Domain Relationship Name}\
$Subclass -using {Domain Domain Name Relationship}

H

The instances of Deferred Event for the superclass have corresponding instances for the subclass. We need to create those
instances. Conveniently, we can accomplish that by navigating R86 and then updating the Model attribute to be the name of the
subclass. Since R86 is an associative relationships, we have to traverse to the associator class and then on to the Deferred Event
class.

<<PropagatePolyEvents: determine deferred events>>=
set defrdevents [pipe {
relation semijoin $super $DeferralPath\
—using {Domain Domain Class Model Relationship Relationship}\
SDeferredEvent |
relation update ~ deftup {1} {
tuple update $deftup Model [relation extract $sub Class]

H

We need to know if a given subclass is a leaf subclass in the generalization hierarchy or if it is part of a multiple generalization
arrangements. This tells us if we must consume any inherited events or if they will be allowed to be inherited further down
the hierarchy. Subclasses that are part of a multiple generation will have instances of Superclass to show their role in that
generalization.

<<PropagatePolyEvents: find multiple generalization classes>>=
set multigens [relation semijoin $sub $Superclass\
-using {Domain Domain Class Class}]

In the case of a leaf subclass, all the events must be Effective Event instances since there must be a state model in the leaf
subclass to consume any inherited polymorphic events. The events to which the state model responds are inherited ones and
any newly introduced local ones. The inherited events that appear in t ransition statements will have been created as Local
Event during the configuration script execution. So we want to subtract out any local events that are mapped to the leaf subclass
by deferral from a superclass. The deferred events are then created as Mapped Event instances.

Relation Oriented Software Execution Architecture 150/ 295

<<PropagatePolyEvents: migrate for single generalization>>=

relvar minus ::rosea::Config::LocalEvent S$defrdevents
relvar union ::rosea::Config::Event $defrdevents

relvar union ::rosea::Config::EffectiveEvent $defrdevents
relvar union ::rosea::Config::MappedEvent [relation extend\

Sdefrdevents metuple ParentModel string {$supername}]

For the case where a subclass participates in a multiple generalization, the deferred events become instances of Inherited Event.

<<PropagatePolyEvents: migrate for multiple generalization>>=

relvar union ::rosea::Config::Event $defrdevents
relvar union ::rosea::Config::DeferredEvent $defrdevents
relvar union ::rosea::Config::InheritedEvent $defrdevents

Because we are creating new instances of Deferred Event, we must also add instances of Deferral Path so as to know which
superclass is passing the polymorphic event along.

<<PropagatePolyEvents: migrate for multiple generalization>>=
relvar union ::rosea::Config::DeferralPath [relation Jjoin\
Sdefrdevents $Superclass -using {Domain Domain Model Class}]

In both cases, inherited polymorphic events, whether consumed or passed along, are a form of Non-Local Event.

<<PropagatePolyEvents: add non-local events>>=

relvar union ::rosea::Config::NonLocalEvent [relation extend\
$defrdevents nletuple\
Relationship string {[relation extract $sub Relationship]}\
Role string {[relation extract $sub Role]}]

For the multiple generalization subclasses, we recursively continue to propagate the polymorphic events.

<<PropagatePolyEvents: continue propagation>>=
relation foreach multigen $multigens {
PropagatePolyEvents S$multigen

Tests

<<config command tests>>=
test configure-6.0 {
Define polymorphic events
} —setup {
} —cleanup {
cleanupConfigData
} -body {
rosea configure {
domain foo {
class S {
attribute id string -id 1
polymorphic el e2
}
class X {
attribute id string -id 1
reference R1 S -link id
statemodel {
state sl {} {
puts "in s1"
}

transition sl - el -> sl

Relation Oriented Software Execution Architecture

151 /295

transition sl - e2 —>

}
class Y {
attribute id string -id 1
reference R1 S -1link id
statemodel {
state s1 {} {
puts "in s1"
}
transition sl - el —>
transition sl - e2 —>

}
generalization R1 S X Y

}
testConditions\
{[relation cardinality $::rosea:
{[relation cardinality $::rosea::
{[relation cardinality $::rosea::
} —result {1}

<<config command tests>>=
test configure-6.1 {
Define polymorphic events —-- inherit
} —setup {
} —cleanup {
cleanupConfigData
} -body {
rosea configure {
domain foo {
class S {
attribute id string -id 1
polymorphic el e2
}
class X {
attribute id string -id 1
reference R1 S —-link id
}
class Y {
attribute id string -id 1
reference R1 S —-link id
statemodel {
state s1 {} {
puts "in s1"
}
transition sl - el ->
transition sl - e2 —>

}
generalization R1 S X Y

class A {

attribute id string -id 1
reference R2 X -1link id
statemodel {

state s1 {} {

puts "in s1"

}

transition sl - el -—>

transition sl - e2 —>

sl

sl
sl

Config: :MappedEvent]
Config::LocalEvent]

across

sl
sl

sl
sl

one level

:Config::NonLocalEvent]

== 4}\

== 41\

0}

Relation Oriented Software Execution Architecture 152 /295

}
class B {
attribute id string -id 1
reference R2 X —-link id
statemodel {
state s1 {} {
puts "in s1"
}
transition sl - el —> sl
transition sl - e2 —-> sl

}
generalization R2 X A B

}

testConditions\
{[relation cardinality $::rosea::Config::NonLocalEvent] == 8}\
{[relation cardinality $::rosea::Config::InheritedEvent] == 2}\
{[relation cardinality $::rosea::Config::MappedEvent] == 6}\
{[relation cardinality $::rosea::Config::LocalEvent] == 0}
} —result {1}
<<config command tests>>=
test configure-6.2 ({
Define polymorphic events —-- new event in leaf subclass

} —setup {
} —cleanup {
cleanupConfigData
} -body {
rosea configure {
domain foo {
class S {
attribute id string -id 1

polymorphic el e2

}

class X {
attribute id string -id 1
reference R1 S -link id

statemodel {
state s1 {} {
puts "in s1"
}
state s2 {} {
puts "in s2"

}

transition sl - el —-> s2
transition s2 - e2 -> sl
transition s2 — e3 —-> s2 ; # New local event!

}

class Y {
attribute id string -id 1
reference R1 S -1link id

statemodel {
state sl {} {
puts "in s1"
}
state s2 {} {

Relation Oriented Software Execution Architecture 153 /295

puts "in s2"
}
transition sl - el —-> s2
transition s2 - e2 —-> sl

}
generalization R1 S X Y

}

testConditions\
{[relation cardinality $::rosea::Config::NonLocalEvent] == 4}\
{[relation cardinality $::rosea::Config::InheritedEvent] == 0}\
{[relation cardinality $::rosea::Config::MappedEvent] == 4}\
{[relation cardinality $::rosea::Config::LocalEvent] == 1}
} —result {1}
<<config command tests>>=
test configure-6.3 {
Define polymorphic events -- inject polymorphic event mid-level

} —setup {
} —cleanup {
cleanupConfigData
} —body {
rosea configure ({
domain foo {
class S {
attribute id string -id 1
polymorphic el e2
}
class X {
attribute id string -id 1
reference R1 S -1link id
polymorphic e3
}
class Y {
attribute id string -id 1
reference R1 S -1link id
statemodel {
state s1 {} {
puts "in s1"
}
transition sl - el —> sl
transition sl - e2 -> sl

}
generalization R1 S X Y

class A {

attribute id string -id 1
reference R2 X -1link id
statemodel {

state s1 {} {

puts "in s1"

}

transition sl - el -> sl

transition sl - e2 -> sl

}

class B {
attribute id string -id 1
reference R2 X -1link id
statemodel {

Relation Oriented Software Execution Architecture

154 /295

state s1 {} {

puts "in s1"
}
transition sl - el —> sl
transition sl - e2 -> sl
}
}
generalization R2 X A B
}
}
testConditions\
{[relation cardinality $::rosea::Config::NonLocalEvent] == 10}\
{[relation cardinality $::rosea::Config::InheritedEvent] == 2}\
{[relation cardinality $::rosea::Config::MappedEvent] == 8}\
{[relation cardinality $::rosea::Config::LocalEvent] == 0}
} —result {1}
<<config command tests>>=
test configure-6.4 {
Define polymorphic events —-- multiple hierarchies

} —setup {
} —cleanup {
cleanupConfigData
} —body {
rosea configure {
domain foo {
class S {
attribute id string -id 1
polymorphic el e2
}
class X {
attribute id string -id 1
reference R1 S —-link id
statemodel {
state sl {} {

puts "in s1"
}
transition sl - el —-> sl
transition sl - e2 —> sl

}
class Y {
attribute id string -id 1
reference R1 S -1link id
statemodel {
state s1 {} {

puts "in s1"
}
transition sl - el -> sl
transition sl - e2 -> sl

}
generalization R1 S X Y

class A {
attribute id string -id 1

reference R2 S —-link id
statemodel {
state sl {} {
puts "in s1"

}

transition sl - el -> sl

Relation Oriented Software Execution Architecture

155/295

transition sl - e2 —-> sl

}
class B {
attribute id string -id 1
reference R2 S -1link id
statemodel {
state s1 {} {
puts "in s1"
}
transition sl - el —-> sl
transition sl - e2 —-> sl

}
generalization R2 S A B

}

testConditions\
{[relation cardinality $::rosea::Config::NonLocalEvent] == 8}\
{[relation cardinality $::rosea::Config::InheritedEvent] == 0}\
{[relation cardinality $::rosea::Config::MappedEvent] == 8}\
{[relation cardinality $::rosea::Config::LocalEvent] == 0}
} —result {1}
<<config command tests>>=
test configure-6.5 {
Define polymorphic events —-- common subclass

} —setup {
} —cleanup {
cleanupConfigData
} -body {
rosea configure {
domain foo {
class S {
attribute id string -id 1
polymorphic el e2
}
class X {
attribute id string -id 1
attribute zid string -id 2
reference R1 S —-1link id
reference R2 Z -link zid
statemodel {
state sl {} {
puts "in s1"

}

transition sl - el —-> sl
transition sl - e2 —-> sl
transition sl - e3 -> sl

}
class Y {
attribute id string -id 1
reference R1 S —-link id
statemodel {
state sl {} {
puts "in s1"

}
generalization R1 S X Y

Relation Oriented Software Execution Architecture 156 / 295

class 72 {
attribute zid string -id 1
polymorphic e3
}
class A {
attribute zid string -id 1
reference R2 Z -link zid
statemodel {
state sl {} {
puts "in s1"

}
generalization R2 Z A X

}

testConditions\
{[relation cardinality $::rosea::Config::NonLocalEvent] == 6}\
{[relation cardinality $::rosea::Config::InheritedEvent] == 0}\
{[relation cardinality $::rosea::Config::MappedEvent] == 6}\
{[relation cardinality $::rosea::Config::LocalEvent] == 0}

} —result {1}

Defining Assigners

The assigner concept is not frequently used in XUML models but is an essential concept in modeling competitive relationships.
Some associations model competitive behavior such as allocating resources. For such situations, instances of the relationships
must be created and deleted, i.e. linked and unlinked, according to some protocol and in some fashion that serializes the re-
lationship lifecycle among the competing accessors. Lifecycles behavior of associations is accomplished in XUML models by
associating a state model and having the state model activities insure the proper creation of relationship instances. Such state
models are known as assigners.

Note that we associate the assigner with the relationship. We do not require factoring the relationships into a class based
association and then attach the assigner to the associator class. In rosea, the relationship may or may not be class based and if
it is that class may or may not have a state model. The assigner state model is independent of any class and its state model. It is,
after all, a state model to deal with the application semantics of forming and dissolving the relationship.

Also note that only associative relationships may have an assigner. Assigners are not meaningful for generalization relationships
given the disjoint union nature of a generalization.

There is a further complication. Usually, there is a single state machine associated with the association assigner. However,
some assigners have more complicated competitive protocols. In those cases the association may have multiple assigners that are
partitioned by another class. The archetypal example is that of assigning department store clerks to customers. If any clerk can
service any customer, then a single assigner is used to sequence the life cycle of clerks and customers to insure that clerks are
not over allocated or customers over served. If a customer can only be served by a clerk working in a particular department, then
there will be as many assigners as there are departments and the identifier of the department class serves to identify the assigner
instances needed to insure that clerks, within the department, are not over allocated and that customers, visiting the department,
are not over served. We will see below how multiple assigner are specified.

Assigners and multi-assigners fall into the XUML semantics category of not that common but essential to express the proper
execution semantics. As we will see, the specifications required for assigners is almost the same as that for ordinary class state
models.

We will create an assigner command and, as usual, allocate a namespace in which to evaluate the definition of an assigner.

<<assigner config namespace layout>>=
namespace eval AssignerDef {
logger::initNamespace [namespace current]

<<tclral imports>>

Relation Oriented Software Execution Architecture

157 /295

namespace import ::ral::relvar
namespace import ::rosea::Config::ConfigEvaluate
namespace import ::rosea::Helpers::DeclError

<<assigner config commands>>

Assigner

body

assigner association body
association

The name of an association relationships to which the assigner is bound. Conventionally, relationships names are of
the form R<d> where <d> is one or more decimal digits but any non-empty name is acceptable.

A Tecl Script that is evaluated in a context to allow the definition of the properties of the assigner.

Implementation

<<domain config commands>>=

proc assigner {rname body} {
namespace upvar ::rosea::Config::DomainDef DomainName DomainName
namespace upvar AssignerDef\

set
set
set
set
set

try

RelationshipName RelationshipName\
multiClass multiClass\

multiIdNum multiIdNum\
InitialState InitialState\
DefaultTrans DefaultTrans

RelationshipName $rname
multiClass {}
multiIdNum 1
InitialState {}
DefaultTrans {}

{

ConfigEvaluate [namespace current]::AssignerDef S$body

if {$DefaultTrans eq {}} {
set DefaultTrans CH
}

relvar insert ::rosea::Config::StateModel [list)\
Domain $DomainName\
Model Srname\
InitialState SInitialState\
DefaultTrans SDefaultTrans\

set assigntuple [list)\

Domain SDomainName \

Relationship Srname\
]
relvar insert ::rosea::Config::AssignerStateModel $assigntuple
if {SmultiClass eq {}} {

relvar insert ::rosea::Config::SingleAssigner S$assigntuple

} else {

Relation Oriented Software Execution Architecture

158 /295

lappend assigntuple Class S$multiClass Number $multiIdNum
relvar insert ::rosea::Config::MultipleAssigner S$assigntuple
}
} on error {result opts} {
log::error Sresult
upvar #0 ::rosea::Config::errcount errcount
incr errcount

State

<<assigner config commands>>=
proc state {name params body} {
if {$name eq {}} {
tailcall DeclError EMPTY_NAME state
}
if {$name in {CH IG}} {
tailcall DeclError PSEUDO_STATE S$name state

namespace upvar ::rosea::Config::DomainDef DomainName DomainName
namespace upvar ::rosea::Config::DomainDef::AssignerDef\
RelationshipName RelationshipName

variable InitialState

if {$InitialState eq {}} {
set InitialState $name

relvar insert ::rosea::Config::State [list\
Domain SDomainName\
Model SRelationshipName\
Name Sname\
Parameters Sparams\
Action Sbody\
IsFinal false\
1
relvar insert ::rosea::Config::StatePlace [list\
Domain $DomainName\
Model SRelationshipName\
Name Sname\
1
return
}
Transition

<<assigner config commands>>=
proc transition {source - event -> target} {
if {Sevent eq {}} {
tailcall DeclError EMPTY_ NAME event
}
if {$source in {CH IG}} {
tailcall DeclError PSEUDO_STATE S$name "transition source state"

Relation Oriented Software Execution Architecture

159 /295

namespace upvar ::rosea::Config::DomainDef DomainName DomainName

namespace upvar ::rosea::Config::DomainDef::AssignerDef\
RelationshipName RelationshipName

set eventtuple [list\
Domain S$DomainName\
Model SRelationshipName\

Event Sevent\
]
relvar uinsert ::rosea::Config::Event Seventtuple
relvar uinsert ::rosea::Config::EffectiveEvent S$eventtuple
relvar uinsert ::rosea::Config::LocalEvent S$eventtuple
set tranrule [relvar restrictone ::rosea::Config::TransitionRule\

Name S$target]
set transtuple [list\
Domain $DomainName\
Model SRelationshipName\

State $Ssource\
Event Sevent\
]
relvar insert ::rosea::Config::TransitionPlace $transtuple

if {[relation isnotempty S$tranrule]} {
lappend transtuple TransRule S$target
set tpsubtype NonStateTransition
} else {
lappend transtuple NewState S$target
set tpsubtype StateTransition
}
relvar insert ::rosea::Config::S$tpsubtype S$transtuple
return

Initialstate

<<assigner config commands>>=
proc initialstate {name} {
if {$name eq {}} {
tailcall DeclError EMPTY_NAME initialstate
}
if {$name in {CH IG}} {
tailcall DeclError PSEUDO_STATE $name initialstate
}
variable InitialState $name
return

<<error code formats>>=
PSEUDO_STATE {the transition action, "%s", is not wvalid as

Defaulttrans

<<assigner config commands>>=
proc defaulttrans {name} {
if {$name ni {CH IG}} {
tailcall DeclError EXPECTED_PSEUDO_STATE S$name

S

)

s}

Relation Oriented Software Execution Architecture 160 /295

}
variable DefaultTrans $name
return

<<error code formats>>=
EXPECTED_PSEUDO_STATE {expected CH or IG, got "%s"}

Identifyby

The identifyby command is used to indicate that the assigner being defined is a multiple assigner. The name of the class
used to partition and identify the assigner instances is given.

Implementation

<<assigner config commands>>=
proc identifyby {name args} {
if {[llength Sargs] % 2 != 0} {
tailcall DeclError ARG_FORMAT $args

variable multiClass S$name

foreach {option value} S$args {
switch -exact —-- $option {
—-id {
variable multiIdNum S$value
}
default {
tailcall DeclError UNKNOWN_OPTION identifyby S$Soption

return

Tests

<<config command tests>>=
test configure-7.0 {
Define assigner
} —setup {
} —cleanup {
cleanupConfigData
} -body {
rosea configure {
domain foo {
class Customer {
attribute Name string -id 1
}
class Clerk {
attribute Name string -id 1
attribute Customer string
reference R1 Customer —-link {Customer Name}

Relation Oriented Software Execution Architecture

161 /295

association R1 Clerk 0..1--0..1 Customer

assigner R1 {

state sl {a b} {
puts $a $b

}

transition sl - el -> s2

state s2 {} {

puts "in s2"
}
transition s2 - el -> sl
}
}
}
relation cardinality [relvar set ::rosea::Config::SingleAssigner]

} —result {1}

<<config command tests>>=
test configure-7.1 {
Define mulit assigner
} —setup {
} —cleanup {
cleanupConfigbData
} —body {
rosea configure ({
domain foo {

class Customer {

attribute

}

class Clerk {
attribute
attribute
attribute
reference
reference

}

Name string -id 1

Name string -id 1

Customer string

Department string

R1 Customer -link {Customer Name}

R2 Department —-link {Department Name}

class Department {

attribute
}

Name string —-id 1

association R1 Clerk 0..1--0..1 Customer
association R2 Clerk 1..%x——1 Department

assigner R1 {

identifyby Department

state sl

{a b} {

puts $a $b

}

transition sl - el —-> s2

state s2
puts
}

{r |

"in s2"

transition s2 - el -> sl

}
relation cardinality
} —result {1}

[relvar set ::rosea::Config::MultipleAssigner]

Relation Oriented Software Execution Architecture 162 /295

Defining Domain Operations

operation name params body

name
The name of the domain operation.

params
The params argument is a list of parameters to the operation and is specified in the same manner as for the : : proc
command.

body
A Tecl script that is executed when the operation is invoked.

<<domain config commands>>=
proc operation {name params body} {
if {$name eq {}} {
tailcall DeclError EMPTY_NAME operation
}

namespace upvar ::rosea::Config::DomainDef DomainName DomainName
try {
relvar insert ::rosea::Config::DomainElement [list\
Domain $DomainName\
Element Sname\

]
} trap {RAL relvar insert DUPLICATE_TUPLE} {result opts} {

tailcall DeclError DUP_ELEMENT_NAME S$name
}

relvar insert ::rosea::Config::DomainOperation [list\
Domain $DomainName\
Name $Sname\
Parameters $params\
Body Sbody\

Handling Configuration Errors

One of the design elements of the configuration DSL is the use of a set of relvar and relvar constraints as the data structures to hold
the configuration information. This design approach allows us to encode the rules for what is a valid domain configuration into
the constraints. Any attempt to define domain elements that violate those rules will be caught at the end of the relvar transaction
that end the configure command.

The problem with this approach is that the error messages the are returned refer to the relvars of the domain meta-model not
those of the domain we were attempting to define. For example, if a domain configuration script fails to define any identifiers
for a class, the error that is generated by TcIRAL describes the failure of the constraint on R4 between Class and Identifier. An
example of such as message is as follows:

for association ::rosea::Config::R4(::rosea::Config::Identifier [+] ==> [1] :: ¢«
rosea::Config::Class), in relvar ::rosea::Config::Class
tuple {Domain dl Name c2} is not referenced by any tuple

The first line describes the constraint violation and that is followed by one or more lines that name the tuple values and which
aspect of the constraint is violated. For our example, in domain, d1, there was a tuple in the Class class named, c2, which was
not referenced by any tuples in the in the Identifier class as is required by the R4 association. You can see this on the class
diagram for configuring classes.

Relation Oriented Software Execution Architecture 163 /295

All of these terms are meaningless to someone trying to run a configure script and finding out which class is lacking the
identifier means looking at the values of tuples of the Class relvar for the value of the Name attribute.

We will mitigate this problem by capturing the result returned by TcIRAL and turning it into error messages that are more
meaningful to the task of configuring a domain. Unfortunately, the messages produced by TcIRAL are intended to be human
readable, so we will have to parse them into a form that is easier to deal with programmatically. Fortunately, the messages are
very regular in structure so the parsing code need not be very sophisticated.

Our strategy is to extract only the essential information from the error message and then map the information onto a more
meaningful error message. Part of what we want to include in the error message is the values from the tuples failing the
constraint. These values contain information the user entered rather than the abstractions of the meta-model.

The essential information mapping is shown below. Naturally enough, we hold it in a relvar.

<<config data>>=
relvar create Config_DataError {

Relationship string
RefClass string
RefType string
Format string

} {Relationship RefClass RefType}

The Relationship attribute is the name of the relationship in the metamodel that failed the constraint check. The RefClass
attribute is the meta-model class that has the tuples that failed the constraint check. The RefType attribute defines the way in
which the constraint failed. The Format attribute is a string that contains the text of the error message that we want to display.
The text in the Format attribute may also contain variable references to attributes in the tuple of RefClass that failed. The
variable references in the Format will be substituted with the values from the failing tuples in order to give specifics of the error
back to the user.

Implementation

The design of the HandleConfigError procedure is shown below. It is a nested iteration over the lines of the error result,
pulling off the constraint violation details and then iterating over the tuples that were found in the violation.

<<config commands>>=

proc HandleConfigError {result} {
set lines [split [string trimright $result] \n]
set nlines [llength $lines]
set lineno 0
upvar #0 ::rosea::Config::errcount errcount
while {$lineno < S$nlines} {

<<HandleConfigError: examine one failure>>

return

The information in the TcIRAL error message is simple enough and well structured enough that a regular expression can be used
to match and extract the interesting parts.

<<HandleConfigError: examine one failure>>=
set line [lindex $lines $lineno]
incr lineno
if {[regexp {“for[~:]1+([*(1+)\(.+\), in relvar (.+)$} S$Sline\
match rnum refclass]} {
set rnum [namespace tail $rnum]
set refclass [namespace tail S$refclass]

Now iterate over the "tuple" lines that follow the constraint message.
while {$lineno < S$nlines} {
set tupline [lindex $lines $lineno]

Relation Oriented Software Execution Architecture 164 /295

if {[regexp {"tuple {(.+)} (.+)$} Stupline match tuple phrase]} {
incr lineno
incr errcount
<<HandleConfigError: examine one tuple>>
<<HandleConfigError: format error message>>
} else {
break

}
} else {
log::error "unknown configuration error, \"Sresult\""

‘We match the phrase in the tuple message to create an enumeration of the types of constraint violations. These are just a bit
simpler to handle and look up.

<<HandleConfigError: examine one tuple>>=

if {[string match {is not referenced*} Sphrase]} {
set reftype notrefed

} elseif {[string match {references nox} S$phrase]} {
set reftype refnone

} elseif {[string match {*to by multiplex} S$phrase]} {
set reftype multrefed

} else {
log::error "unknown constraint phrasing, \"S$phrase\""
continue

Finally, we look up the format information and generate an error message. Using the dict with command allows us to take
the tuple value from the error message, treat it like a dictionary and get the values into Tcl variable. The subst command then
will perform the variable substitutions in the format string.

<<HandleConfigError: format error message>>=
set cde [relvar restrictone Config DataError Relationship Srnum RefClass\
Srefclass RefType Sreftype]
if {[relation isnotempty S$cde]} {
dict with tuple {
log::error [subst —-nocommands [relation extract S$cde Format]]
}
} else {
log::error "S$line\nS$tupline"

We now need to enumerate all the meta-model constraints that can be violated and supply messages that provide less abstract
and more useful user error messages. Because of the way the configuration data is stored into the meta-model relvars, not all
violations are even possible.

<<config data>>=
relvar insert Config_DataError {

Relationship R3

RefClass Class

RefType notrefed

Format {in domain, \"S$Domain\", class, \"SName\",\

has no attributes}

Relationship R4

RefClass Class

RefType notrefed

Format {in domain, \"S$Domain\", class, \"SName\",\

has no identifiers}

Relation Oriented Software Execution Architecture 165 /295

Relationship
RefClass
RefType
Format

Relationship
RefClass
RefType
Format

Relationship
RefClass
RefType
Format

Relationship
RefClass
RefType
Format

Relationship
RefClass
RefType
Format

Relationship
RefClass
RefType
Format

Relationship
RefClass
RefType
Format

Relationship
RefClass
RefType
Format

Relationship

R11

ReferencedClass

notrefed

{in domain, \"$Domain\", for relationship,\
\"SRelationship\", no class has defined a reference\
to class, \"$Class\"}

R11

ReferencedIdAttribute

refnone

{in domain, \"$Domain\", relationship, \
\"S$Relationship\", references attribute, \
\"SAttribute\", in class, \"$Class\", which is\
not an identifying attribute, does not exist\
or \"SRelationship\" does not exist}

R12

AttributeReference

refnone

{in domain, \"S$Domain\", the attribute,\
\"$ReferringAttribute\", in class, \"S$ReferringClass\",\
refers to, \"SReferencedAttribute\", in class, \
\"SReferencedClass\", but the class, attribute or\
relationship does not exist}

R13

AttributeReference

refnone

{in domain, \"S$Domain\", the attribute,\
\"$ReferringAttribute\", in class, \"S$ReferringClass\",\
does not exist, but is used as a referential attribute}

R41

ClassRole

refnone

{in domain, \"$Domain\", relationship, \
\"$Relationship\", references class, \"$Class\",\
which does not exist}

R52

AssignerStateModel

refnone

{in domain, \"$Domain\", an assigner state model is\
defined on relationship, \"$Relationship\", which is\
not an association type relationship}

R72

StateTransition

refnone

{in domain, \"$Domain\", the state model for, \
\"SModel\", contains the transition, \

\"$State - SEvent -> S$NewState\",\

but state \"S$NewState\" does not exist}

R81

DeferredEvent

multrefed

{in domain, \"S$Domain\", in the state model for, \
\"$Model\", event, \"$Event\", is both an inherited\
polymorphic event and a locally defined one}

R86

Relation Oriented Software Execution Architecture 166 / 295

RefClass DeferredEvent
RefType notrefed
Format {in domain, \"$Domain\", in the state model for, \

\"SModel\", event, \"S$SEvent\", is defined as\
polymorphic but \"S$Model\" is not a superclass\
of a generalization}

Relationship R87

RefClass EffectiveEvent

RefType refnone

Format {in domain, \"$Domain\", event, \"SEvent\" has been\

inherited, but no state model exists for, \"S$Model\"}

Tests

<<config command tests>>=
test configure-8.0 {
configure error —-- no attributes defined for class
} —setup {
} —cleanup {
cleanupConfigData
} —body {
rosea configure {
domain foo {
class cl {

}

}
} —result {encountered 1 configuration script errors} —-returnCodes error\
-output {*in domain, "foo", class, "cl", has no attributesx} -match glob

<<config command tests>>=
test configure-8.1 ({
configure error -- no identifier defined for class
} —setup {
} —cleanup {
cleanupConfigData
} —body {
rosea configure ({
domain foo {
class cl {
attribute al string

}
} —result {encountered 1 configuration script errors} -returnCodes error\
-output {*in domain, "foo", class, "cl", has no identifiersx} -match glob

<<config command tests>>=
test configure-8.2 ({
configure error -- no reference
} —-setup {
} —cleanup {
cleanupConfigData
} —body {
rosea configure ({
domain foo {
class cl {

Relation Oriented Software Execution Architecture 167 /295

attribute al string -id 1
}
class c2 {

attribute a2 string -id 1
}

association R1 cl 1--1 c2

}

} —result {encountered 1 configuration script errors} -returnCodes error\

—output {*in domain, "foo", for relationship, "R1", no class has defined a reference to <+
class, "c2"x}\

-match glob

<<config command tests>>=
test configure-8.3 {
configure error —-- bad reference
} —setup {
} —cleanup {
cleanupConfigData
} —body {
rosea configure ({
domain foo {
class cl {
attribute al string -id 1
reference R1 ¢c3 —-link al
}
class c2 {
attribute a2 string -id 1
}

association R1 cl 1--1 c2

}

} —result {encountered 3 configuration script errors} -returnCodes error\

—-output {*in domain, "foo", relationship, "R1", references attribute, "al", in class, "c3", &
which is not an identifying attribute, does not exist or "R1" does not exist=}\

-match glob

<<config command tests>>=
test configure-8.4 {
configure error -- bad referential attribute linkage
} —setup {
} —cleanup {
cleanupConfigData
} -body {
rosea configure {
domain foo {
class cl {
attribute al string -id 1
reference R1 c2 -link {al a3}
}
class c2 {
attribute a2 string -id 1
}

association R1 cl 1--1 c2

}

} —result {encountered 1 configuration script errors} -returnCodes error\

—-output {*in domain, "foo", relationship, "R1", references attribute, "a3", in class, "c2", ¢
which is not an identifying attribute, does not exist or "R1" does not exist=}\

-match glob

Relation Oriented Software Execution Architecture 168 /295

<<config command tests>>=
test configure-8.5 {
configure error —-- transition refers to non-existent state
} —setup {
} —cleanup {
cleanupConfigData
} -body {
rosea configure {
domain foo {
class cl {
attribute al string -id 1
statemodel {
state s1 {} {
puts "in s1"
}

transition sl - el —-> s2

}

} —result {encountered 1 configuration script errors} —-returnCodes error\

—output {*in domain, "foo", the state model for, "cl", contains the transition, "sl - el -> <«
s2", but state "s2" does not existx}\
-match glob

<<config command tests>>=
test configure-8.6 ({
configure error —-- duplicated polymorphic events
} —setup {
} —cleanup {
cleanupConfigData
} —body {
rosea configure {
domain foo {
class super {
attribute al string -id 1
polymorphic el
}
class subl {
attribute al string -id 1
reference Rl super -link al

statemodel {
state sl {} {
puts "in s1"
}

transition sl - el -> sl

}

class sub2 {
attribute al string -id 1
reference Rl super -link al
polymorphic el

}

class ssubl {
attribute al string -id 1
reference R2 sub2 -link al

}

class ssub2 {
attribute al string -id 1
reference R2 sub2 -link al

Relation Oriented Software Execution Architecture 169 /295

}
generalization R1 super subl sub?2
generalization R2 sub2 ssubl ssub2

}

} —result {encountered 1 configuration script errors} —-returnCodes error\

—-output {*in domain, "foo", in the state model for, "sub2", event, "el", is both an <
inherited polymorphic event and a locally defined onex}\

-match glob

<<config command tests>>=
test configure-8.7 {
configure error —-- no leaf state models
} —setup {
} —cleanup {
cleanupConfigData
} —body {
rosea configure ({
domain foo {
class super {
attribute al string -id 1
polymorphic el
}
class subl {
attribute al string -id 1
reference Rl super -link al

statemodel {
state sl {} {
puts "in s1"
}

transition sl - el —-> sl

}
class sub2 {
attribute al string -id 1
reference R1 super —-link al
}
class ssubl {
attribute al string -id 1
reference R2 sub2 -link al
statemodel {
state s1 {} {
puts "in s1"

}
class ssub2 {
attribute al string -id 1
reference R2 sub2 -link al
}
generalization R1 super subl sub2
generalization R2 sub2 ssubl ssub2

}

} —result {encountered 1 configuration script errors} -returnCodes error\

—output {*in domain, "foo", event, "el" has been inherited, but no state model exists for, <+
"ssub2"x}\

-match glob

Relation Oriented Software Execution Architecture 170/ 295

Chapter 6

Generating Domains

After specifying the domain using the configuration DSL, the second step in translating a model is to generate all the architectural
data values and class and relationship ensemble commands.

Let’s take this opportunity to recap again our intent. The run time commands that map XUML concepts onto Tcl use a set of
data structures to accomplish that mapping. Part of what generating a domain implies is to populate those data structures. We
do that by querying data that was accumulated during the configuration phase for the domain. This data was inserted in to a set
of relvars by the configuration DSL commands. We used a set of relvars to hold the DSL command data because the integrity
constraints on those relvars enforce the rules required to properly specify the properties of the domain such as its classes and
relationships. As an added benefit, using relvars to hold the configuration data and placing that data in a transaction eliminates
most of the order dependencies in the DSL.

Another aspect of domain generation is to create the other structural mappings from the domain onto Tcl. This takes the form
of namespace ensemble commands for classes, relationships and assigners that provide a convenient mapping of the run time
procedures into ensembles that reference a particular class or relationship, efc.

Generating a domain should happen after all the configuration for the domain is complete. It is allowable to invoke the config
ure command multiple times and domain configurations are cumulative in the sense that a configuration script may refer to the
same domain many times and the additional configuration is simply added to any previous one.

But at some point configuration is finished and that must be followed by an invocation of generate. Although the generate
command may be invoked on a per domain basis (and this is useful during initial debugging of the configuration script), a
common workflow is to just invoke it once and generate everything for all the domains of a program in a single pass.

After generation is completed, there are still two more steps to complete the translation of the XUML model, namely population
and bridging. We will discuss those steps below.

Generation is a rather complicated undertaking so we will be dividing it up into many smaller parts to make clearer what we are
trying to accomplish. Given the relational schema used to accumulate the configuration script information, you can anticipate
that generating the domain involves a set of queries on that information. When generating code for conventional compiled
languages that are not as dynamic as Tcl, e.g. when pycca generates “C” source, the results of those queries are used to
generate programming language text files which are then handed over to a language compiler. But, since this is Tcl, we will
avoid all the unnecessary intermediate files and just directly execute the generated Tcl commands. This is much more in keeping
with the dynamic style of Tcl.

Relation Oriented Software Execution Architecture 171 /295

rosea generate pattern nsqual

pattern
A pattern of the form used by the : :string match command. All domains whose names match pattern are
generated. If the pattern argument is missing, then its default value is “*” which will match all domain names.

nsqual
A namespace qualifier that indicates the relative position where the domain commands and data will be placed. If
nsqual is not fully qualified, then it is qualified to the namespace of the caller. If the nsqual argument is missing or
the empty string, then the domain is placed in the global namespace (_i.e. “::”).

The generate command generates all the commands and data for the domains whose names match pattern. The domain is
located in the namespace given by nsqual::domainname.

Implementation

Although the implementation of generate is long, it is structurally straight forward. After some preliminaries to set up local
variables that reference the required data, we simply iterate over each domain that matches the pattern argument and perform the
generation for that domain.

<<rosea exports>>=
namespace export generate

<<rosea commands>>=

proc generate {{pattern *} {prefix {}}} {
<<generate: fix up prefix>>
<<generate: reference config data>>

set genDomain [relation restrict $Domain dom {
[string match $pattern [tuple extract S$dom Name]]
}]
relation foreach domain $genDomain {
<<generate: generate one domain>>

Fix Up Prefix

We have to examine the prefix argument to check if it is fully qualified. If not we find the namespace of the caller. In the end we
want a value for prefix that can be simply tacked on to the beginning of names to get to the correct namespace for things.

<<generate: fix up prefix>>=
if {$prefix ne {}} {
if {[string range $prefix 0 1] ne "::"} {
set prefix [uplevel 1 {namespace current}]::S$prefix
}
set prefix [string trimright S$prefix :]
} elseif {Sprefix eq "::"} {
set prefix {} ; # ©

6,0

(1] Since we intend to concatenate a *“::” to the prefix before adding the domain name, we need to treat the global namespace
differently so that we don’t end up with “::::” as the leading characters of a namespace.

Relation Oriented Software Execution Architecture 172 /295

Reference Config Data

Generating a domain involves querying the data that was stored away during the configuration of the domain. The relvars holding
the data are only read by this procedure. Since each relvar has a backing read-only Tcl variable, we bring them into scope so that
we can refer to the relvar contents using simple variable syntax. Turns out there are a lot of these relvars.

<<generate: reference config data>>=

namespace upvar Config\
Domain Domain\
DomainElement DomainElement\
Class Class\
Attribute Attribute\
DefaultValue DefaultValue\
ValueCheck ValueCheck\
Identifier Identifier\
IdentifyingAttribute IdentifyingAttribute\
Relationship Relationship\
Association Association\
SimpleAssociation SimpleAssociation\
SimpleReferringClass SimpleReferringClass\
SimpleReferencedClass SimpleReferencedClass\
ClassBasedAssociation ClassBasedAssociation\
AssociatorClass AssociatorClass\
SourceClass SourceClass\
TargetClass TargetClass\
Generalization Generalization\
Superclass Superclass\
Subclass Subclass\
AttributeReference AttributeReference\
ReferencedIdAttribute ReferencedIdAttribute\
ReferringClass ReferringClass\
ReferencedClass ReferencedClass\
DomainOperation DomainOperation\
SuppliedOperation SuppliedOperation\
UserClassOperation UserClassOperation\
SystemClassOperation SystemClassOperation\
UserInstanceOperation UserInstanceOperation\
SystemInstanceOperation SystemInstanceOperation\
InstanceStateModel InstanceStateModel\
StateModel StateModel\
StatePlace StatePlace\
State State\
EffectiveEvent EffectiveEvent\
DeferredEvent DeferredEvent\
TransitionPlace TransitionPlace\
StateTransition StateTransition\
NonStateTransition NonStateTransition\
AssignerStateModel AssignerStateModel\
SingleAssigner SingleAssigner\
MultipleAssigner MultipleAssigner\
PolymorphicEvent PolymorphicEvent

Generate One Domain

Generating the contents for one domain is decomposed into the sequence of generating the various elements that make up the
domain.

<<generate: generate one domain>>=
<<generate: create domain namespace>>
<<generate: create domain operations>>

Relation Oriented Software Execution Architecture 173 /295

<<generate: populate state model data>>

<<generate: create class data and commands>>
<<generate: create relationship data and commands>>
<<generate: create assigner data and commands>>

Create Domain Namespace

Each domain sits in a namespace given by the prefix argument concatenated to the domain name (with the required *“::” separator).
We update that prefix value into the Domain relvar as it will be needed later during the population phase. Some often used ral
package commands are imported into the domain namespace. Here we also create the empty relvars for the run time architecture
data that we are about to populate.

<<generate: create domain namespace>>=

set domainName [relation extract $domain Name]

relvar updateone Config::Domain dtup [list Name S$domainName] {
tuple update $dtup Location $prefix

set domns ${prefix}::$domainName
namespace eval S$domns {

<<tclral imports>>

<<arch relvar definitions>>

}

namespace eval $domns namespace path ::rosea::InstCmds

Create Domain Operations

Each domain operation is converted into an ordinary Tcl procedure. Those procedures are exported from the domain namespace
and accumulated into a namespace ensemble command that has the same name as the domain. Domain operations can be thought
of as the “API” for the domain and constitute the public invocable interface.

<<generate: create domain operations>>=
set domops [relation semijoin $domain $DomainOperation -using {Name Domain}]
relation foreach domop $domops {
relation assign $domop\
{Name name} {Parameters parameters} {Body body}
proc ${domns}::S$name S$parameters [list ::ral relvar eval S$body] ; # ©

namespace eval $domns [list)\
namespace export {x}[relation list S$domops Name]\

]

namespace eval $domns namespace ensemble create

o Note that all domain operations are run as a relvar transaction. This allows the operation to modify class model data
with impunity as long as it is left consistent by the end of the operation.

Populate State Model Data

To support event dispatch, the run time uses the relvars defined above. It may be helpful to refer back to that figure when reading
the code below. Now we query the configuration data to populate these relvars. We can do this for the domain as a whole since
there is nothing particularly class dependent in this data.

First we obtain all the state models for the domain. Then we simply populate one by one the relvars that are concerned with event
dispatch. Because there are constraints between the relvars, we have to create the instances in a transaction.

Relation Oriented Software Execution Architecture 174 / 295

<<generate: populate state model data>>=
set statemodels [relation semijoin $domain $StateModel\
-using {Name Domain}]

relvar eval {
<<generate: populate InitialState>>
<<generate: populate State>>
<<generate: populate TerminalState>>
<<generate: populate Event>>
<<generate: populate Transition>>
<<generate: populate PolymorphicEvent>>

Populate InitialState

The InitialState relvar is populated from the projection of attributes from the StateModel configuration and with some renaming.

<<generate: populate InitialState>>=

relvar set ${domns}::__Arch_TInitialState [pipe {
relation project $statemodels Model InitialState |
relation rename ~ Model Class InitialState State

H

Populate State

The State relvar data is contained in the StatePlace configuration relvar.

<<generate: populate State>>=
set states [relation semijoin $domain $StatePlace -using {Name Domain}]
relvar set ${domns}::__Arch_State [pipe {

relation project $states Model Name |

relation rename ~ Model Class Name State

H

Populate TerminalState

Terminal states are those that were marked as final during the configuration.

<<generate: populate TerminalState>>=
relvar set ${domns}::__Arch_TerminalState [pipe {
relation semijoin $domain $State -using {Name Domain} |
relation restrict ~ termtuple {[tuple extract $termtuple IsFinall} |
relation project ~ Model Name |
relation rename ~ Model Class Name State

Populate Event

The Event relvar is populated from the EffectiveEvent configuration relvar. This contains both the local event for the state model
as well as any inherited polymorphic events.

<<generate: populate Event>>=

set events [relation semijoin $domain $EffectiveEvent\
—-using {Name Domain}]

relvar set ${domns}::__ Arch_FEvent [pipe {

Relation Oriented Software Execution Architecture 175/ 295

relation project $events Model Event |
relation rename ~ Model Class

H

Populate Transition

The Transition relvar requires a bit more work. The instances of this relvar need to form the Cartesian product of the states
and events so that every state / event combination is represented. Any transitions not explicitly defined during the domain
configuration have to be set to the default transition.

The strategy is to compute all the transitions by joining the states and events. The transitions that were explicitly set during
the domain configuration are tuples in the TransitionPlace relvar. The difference between all the transitions and those in the
TransitionPlace are the ones to which we must assign the default transition. There are a few other twists along the way as we see
below.

First, we get all the transitions. The attribute renaming will make the header the same as the TransitionPlace header.

<<generate: populate Transition>>=
set alltrans [pipe {
relation join $states S$Sevents |
relation rename ~ Name State

11 + ©

o Recall that the relational join creates a new tuple where the commonly named attributes match in value. In this case the
common attribute names are Domain and Model. The net effect is to produce the Cartesian product of states and events
within the same domain and state model.

State transition are actually of two types. Those that actually transition to a new state or one of the non-transition actions of “IG”
or “CH”. We have to treat the two cases separately. First the transitions that take you to a new state.

<<generate: populate Transition>>=
set statetrans [relation semijoin $domain $StateTransition)\
-using {Name Domain}]

For the non-transitioning case, we need to do some attribute renaming to make the header match.

<<generate: populate Transition>>=

set nontrans [pipe {
relation semijoin $domain $NonStateTransition -using {Name Domain} |
relation rename ~ TransRule NewState

H

Computing the default transitions is a bit more involved.

<<generate: populate Transition>>=
set deftrans [pipe {
relation minus $alltrans S$STransitionPlace |
relation join ~ $StateModel |
relation eliminate ~ InitialState |
relation rename ~ DefaultTrans NewState |
relation update ~ dttup {[tuple extract S$dttup State] eqg "@"} {
tuple update $dttup NewState CH}
H]

We will discuss computing the default transition step by step.

1. The difference between all the transitions and the explicitly defined ones is the set of transitions where we need to supply
the default transition.

Relation Oriented Software Execution Architecture 176 /295

Join to the StateModel value since that is where the default transition is recorded.
We don’t want the InitialState attribute. It’s not in the header of the result we want.

We rename the DefaultTrans attribute, again to make the headings match what we are after.

A

Finally, we do some trickery with creation events. The “@” state is the pseudo initial state used used for creation events.
We insist that any events not explicitly specified as causing an outbound transition from the pseudo-initial state be “CH”
transitions. We want to avoid the circumstance where an instance is created asynchronously but using an event for which
no transition out of the pseudo-initial state was specified. If the default transition happens to be “IG”, we would end up
with an instance forever sitting in the pseudo-initial state and the semantics of asynchronous creation would be violated.
Asynchronous event creation must either cause a transition or create an error. So regardless of the default transition given
for the state model, unspecified creation events cause an error and we force that in this step.

Finally, if we union our three groups of transitions, discard the Domain attribute and juggle the attribute names, we get to the
Transition relvar population we are looking for.

<<generate: populate Transition>>=

relvar set ${domns}::___Arch_Transition [pipe {
relation union $statetrans $nontrans $deftrans |
relation eliminate ~ Domain |
relation rename ~ Model Class

H

<<generate command tests>>=
test generate-5.0 {
Classes with state models
} —setup {
rosea configure {
domain foo {
class Dog {
attribute Name string -id 1
attribute Breed string

statemodel {
state Born {} {
puts "In Born"
}
state Grown {} {
puts "In Grown"
delaysignal 200 S$self Time
}
state 01ld {} {
puts "In Old"
delaysignal 200 $self Time
}
state Dead {} {
puts "In Dead"
set ::done 1
}

terminal Dead

transition Born - Time -> Grown
transition Grown - Time -> 0Old
transition 0ld - Time -> Dead

}
rosea generate

} —cleanup {
cleanupConfigData

Relation Oriented Software Execution Architecture 177 /1 295

removeDomain ::foo
} —body {
testConditions\
{[relation cardinality [relvar set ::foo::__Arch Transition]] == 4}\
{[relation cardinality [relvar set ::foo::__ Arch_State]] == 4}\
{[relation cardinality [relvar set ::foo::__ Arch_Event]] == 1}\

} —result {1}

Populate PolymorphicEvent

Populating the PolymorphicEvent relvar is also straight forward. It is just the contents of the DeferredEvent configuration relvar
projected for this domain and renamed to match the attribute naming in the header. The hard work here was done during the
propagation of the polymorphic events that happens at the end of the domain configuration.

<<generate: populate PolymorphicEvent>>=
relvar set ${domns}::___Arch_PolymorphicEvent [pipe {
relation semijoin $domain $DeferredEvent\
—-using {Name Domain} |
relation project ~ Model Event |
relation rename ~ Model Class

H

Create Class Data and Commands

When we create the domain classes, we will iterate over each class to perform the queries. As before, we will factor out the
queries that are used inside the iteration loop to save the command rewriting that the pipe command would otherwise perform
on each iteration. We bring the variables containing the queries into scope but show the queries below, lexically close to the code
that uses them.

<<generate: create class data and commands>>=
<<class query variables>>

set classes [relation semijoin $domain $DomainElement -using {Name Domain}\
$Class -using {Domain Domain Element Name}]
relation foreach class $classes {
<<generate: create class namespace>>
<<generate: create class relvar>>
<<generate: create state model>>
<<generate: create class operations>>
<<generate: create instance operations>>

Create Class Namespace

For each class in the domain, we create a child namespace. That namespace is used to hold specifics of the class such as its class
based and instance based operations. For convenience, we set up a command resolution path to the instance commands and the
to the parent domain namespaces.

<<generate: create class namespace>>=
set className S${domns}::[relation extract S$class Name]
namespace eval $className {
<<tclral imports>>
}
namespace eval $className [list namespace path\
[list ::rosea::InstCmds $domns]]

Relation Oriented Software Execution Architecture 178 /295

Create Class Relvar

With the namespace defined, we can now create the relvar that holds the instance data. Each class of the domain has a relvar that
holds its instances. To create the relvar we need to know the heading and the identifiers.

The heading of a class consists of its attributes names and types. We will want that in the form of a dictionary which the
relation dict command conveniently provides.

<<rosea data>>=

pipe {
relation semijoin $class S$Attribute -using {Domain Domain Name Class} |
relation project ~ Name Type |
relation dict ~ Name Type

} headingQuery

<<class query variables>>=
variable headingQuery

The other thing you need when creating the relvar for a class is the set of identifiers and the attributes that make up those
identifiers. In the query below, the relation group command will create a relation valued attribute named Attributes
in this case. That relation valued attribute will have one tuple for each attribute of each identifier.

<<rosea data>>=
pipe {
relation semijoin $class $Identifier -using {Domain Domain Name Class}\
$IdentifyingAttribute |
relation group ~ Attributes Attribute
} idQuery

<<class query variables>>=
variable idQuery

The heading of the result of this query will be:

Table 6.1: Heading of Identifier Query

Domain Class Number Attributes

string string int Relation
Attribute
string

We need to transform the result of the idQuery into the set of identifying attributes lists that the relvar create command
requires. This is done by iterating across all the identifiers of the class, extracting the grouped attributes for the identifier and
then turning the attribute name tuples into a list. The required operations are all provided by ral. When dealing with these
meta-model situations, we often need to convert the rows of some relation value in a list.

<<generate: create class relvar>>=
set heading [eval $headingQuery]
set idset [list]
relation foreach id [eval $idQuery] -ascending Number {
lappend idset [relation list\
[relation extract $id Attributes] Attribute]

relvar create S$SclassName S$heading {x}$idset

+ O

Relation Oriented Software Execution Architecture 179/ 295

<<generate: setup value checks>>
<<generate: setup default values>>

o Order is important here. Since we will be using relvar tracing to implement value checks and default values, we want to
the default value trace to execute first. In TcIRAL, relvar traces are executed most recent trace done first.

Tests

As we test domain generation we will need something to clean up after ourselves and remove the domain that is generated by the
test case.

<<test utility procs>>=
proc removeDomain {domns} {
relvar constraint delete {*}[relvar constraint names S${domns}::=*]
relvar unset {*}[relvar names ${domns}::x]
namespace delete $domns
set ::rosea::Dispatch::event_queue [list]

<<generate command tests>>=
test generate-1.0 {
Generate domain relvars
} —setup {
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
rosea configure {
domain foo {
class X {
attribute x1 string -id 1
attribute x2 string -default 20
}
class Y {
attribute yl string -id 1

}

rosea generate

set rvnames [relvar names ::foo::x]

expr {"::foo::X" in $rvnames && "::foo::Y" in S$rvnames}
} —result {1}

<<generate command tests>>=
test generate-1.1 {
Generate domain relvars -- multiple identifiers
} —-setup {
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
rosea configure {
domain foo {
class X {
attribute x1 string -id 1
attribute yl string -id 1
attribute zl int -id 2
attribute x2 string

Relation Oriented Software Execution Architecture 180 /295

}

rosea generate

relvar identifiers ::foo::X
} —result {{x1 yl} zl}

Setup Default Values

We will support the concept of a default attribute value by creating a relvar trace that is triggered when a tuple is inserted into the
class relvar. Relvars support tracing in a manner analogous to Tcl variable tracing.

First, let’s examine the command that will be invoked as the trace. This command, DefValueTrace, is shown below. The op,
relvar and tuple arguments are added by the relvar tracing mechanism and are not interesting to us for this usage. The defheading
and defvalues arguments are part of the command prefix that we must generate when the relvar trace is added. The defheading
argument is a dictionary of attribute name / type pairs for those attributes that have defined default values. It is that subset of the
heading that contains attributes with defined defaults. The defvalues argument is a dictionary of attribute name / value pairs that
are the corresponding defined default values.

The return value of a relvar insert trace command must be a tuple value whose heading matches that of the relvar on which the
insert is performed. In the Insert Tuple procedure below, we construct a new tuple whose heading is the merge of the default
values heading and the heading of the tuple as it was inserted. Similarly, the value of the newly constructed tuple is the merge
of the default values and the tuple value as it was inserted. Note that dict merge does just what we want when we merge
the tuple onto the default heading and values. Any dictionary entries that are in the inserted tuple will take precedence over any
defaults. If the defaults are missing from what is inserted, then the merge will put them into place.

<<helper commands>>=
proc DefValueTrace {defheading defvalues op relvar tuple} {
tuple create\
[dict merge $defheading [tuple heading S$tuple]]\
[dict merge S$defvalues [tuple get Stuple]]

To insert the trace, we must find the attributes of the class that have been configured to have a default value. That query is shown
below. After finding all the attributes of the class, we join DefaultValue to obtain the set of attributes that have defined default
values.

<<rosea data>>=

pipe {
relation semijoin $class S$Attribute -using {Domain Domain Name Class} |
relation join ~ $DefaultValue -using {Domain Domain Class Class Name Attribute}

} defaultValuesQuery

<<class query variables>>=
variable defaultValuesQuery

We test to make sure that we need to add a trace at all. The relation dict command takes the default values relation
and extracts the needed columns and returns just the form we need to create the command prefix using the DefValueTrace
command.

<<generate: setup default values>>=
set defaultvalues [eval $defaultValuesQuery]

if {[relation isnotempty $defaultvalues]} {
relvar trace add variable S$className insert [list\
::rosea: :Helpers: :DefValueTrace\
[relation dict $defaultvalues Name Type]\
[relation dict S$Sdefaultvalues Name Value]\

Relation Oriented Software Execution Architecture 181 /295

Tests

<<generate command tests>>=
test generate-1.2 {
Generate domain relvars, default values
} —setup {
} —cleanup {
cleanupConfigbData
removeDomain ::foo
} —body {
rosea configure {
domain foo {
class X {
attribute x1 string -id 1
attribute yl string -id 1
attribute x2 string -default foo
attribute x3 int -default 20

}
rosea generate
set ref [::fo0::X create x1 red yl truck]
rosea tunnel S$ref readAttribute x2 x3
} —result {foo 20}

<<generate command tests>>=
test generate-1.3 {
Generate domain relvars, override default values
} —setup {
} —cleanup {
cleanupConfigbData
removeDomain ::foo
} -body {
rosea configure {
domain foo {
class X {
attribute x1 string -id 1
attribute yl string -id 1
attribute x2 string -default foo
attribute x3 int -default 20

}
rosea generate
set ref [::foo0::X create x1 red yl truck x2 bar x3 40]
rosea tunnel S$ref readAttribute x2 x3
} —result {bar 40}

Setup Value Checks

Attributes may have a value check expression associated with them. This allows an easy tuple-by-tuple check on attribute values
and is useful when an attribute can only assume a subset of values of its data type. For example, we might have an int attribute
but would like to insure that it always is in the range of 10 to 20.

Like default values, value checks are implemented using relvar tracing. We just want the trace to fail if the supplied expression is
false. We follow the same pattern that we used for default values. We will establish a helper command that does the expression
evaluation. If the expression fails, then an error is thrown. Otherwise the input tuple is returned unmodified.

<<helper commands>>=
proc CheckValueTrace {attrchecks op relvar args} {

Relation Oriented Software Execution Architecture 182 /295

if {Sop eq "insert"} {
set tuple [lindex S$args 0]
EvalAttrCheck S$attrchecks S$Stuple
return S$tuple
} elseif {Sop eq "update"} {
set tuple [lindex $args 1]
EvalAttrCheck $attrchecks Stuple
return S$tuple
} elseif {Sop eq "set"} {
set relvalue [lindex $args 0]
relation foreach inst $relvalue {
set tuple [relation tuple $inst]
EvalAttrCheck S$attrchecks S$tuple
}
return $relvalue
} else {
tailcall DeclError RELVAR_TRACE_OP S$op

We factor all the real work into another helper procedure.

<<helper commands>>=
proc EvalAttrCheck {attrchecks tuple} {
dict for {attrname checkexpr} S$attrchecks {
tuple assign S$tuple
set result [expr S$checkexpr]
if {!Sresult} {
tailcall DeclError ATTR_CHECK_FAILED $attrname [tuple get Stuple]\
Scheckexpr S$result

<<error code formats>>=

RELVAR_TRACE_OP {unexpected relvar trace operation, "%s"}
ATTR_CHECK_FAILED {check for attribute, "%s", failed:\
instance value was, "%s": "%$s" evaluated to "%s"}

The query for obtaining those attributes which have a check expression is very similar to that for default values.

<<rosea data>>=

pipe {
relation semijoin $class S$Attribute -using {Domain Domain Name Class} |
relation join ~ $ValueCheck -using {Domain Domain Class Class Name Attribute}

} checkValuesQuery

<<class query variables>>=
variable checkValuesQuery

And finally we set up the relvar trace for the checks. Note that the expressions to be run are passed in a dictionary along with the
attribute name. This gives us all the information we need to construct a reasonable error message if the check fails and allows us
to combine all the attribute check expression evaluation into a single trace callback.

<<generate: setup value checks>>=
set checkvalues [eval $checkValuesQuery]

if {[relation isnotempty S$checkvalues]} {
relvar trace add variable $className {insert update set} [list\
::rosea: :Helpers: :CheckValueTrace\
[relation dict $checkvalues Name Expression]\

Relation Oriented Software Execution Architecture 183 /295

Tests

<<generate command tests>>=
test generate-1.6 {
Generate domain relvars, check values on create
} —setup {
} —cleanup {
cleanupConfigData
removeDomain ::foo
} -body {
rosea configure {
domain foo {
class X {
attribute x1 string -id 1
attribute x2 int -check {$x2 > 1 && $x2 < 10}

}
rosea generate
set ref [::fo0::X create x1 red x2 5]
rosea tunnel S$ref readAttribute x2
} —result {5}

<<generate command tests>>=
test generate-1.7 {
Generate domain relvars, check values on update
} —setup {
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
rosea configure {
domain foo {
class X {
attribute x1 string —-id 1
attribute x2 int -check {$x2 > 1 && $x2 < 10}

}
rosea generate
set ref [::foo::X create x1 red x2 5]
rosea tunnel S$ref updateAttribute x2 7
rosea tunnel Sref readAttribute x2

} —result {7}

<<generate command tests>>=

test generate-1.8 {

Generate domain relvars, value check fails

} —setup {

} —cleanup {
cleanupConfigData
removeDomain ::foo

} —body {
rosea configure ({

domain foo {
class X {

Relation Oriented Software Execution Architecture 184 /295

attribute x1 string -id 1
attribute x2 int -check {$x2 > 1 && $x2 < 10}

}
rosea generate
set ref [::foo::X create x1 red x2 5]
rosea tunnel Sref updateAttribute x2 17
} —result {check for attribute, "x2", failed: instance value was, "xl red x2 17": "$x2 > 1 <+
&& Sx2 < 10" evaluated to "0"}\
-returnCodes error

<<generate command tests>>=
test generate-1.9 {
Generate domain relvars, default value and a check expression
} —setup {
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
rosea configure ({
domain foo {
class X {
attribute x1 string -id 1
attribute x2 int -default 5 —-check {$x2 > 1 && $x2 < 10}

}

rosea generate

set ref [::foo::X create x1 red]

rosea tunnel S$ref readAttribute x2
} —result {5}

Create State Model

To determine if a class has a state model, we use the following query.

<<rosea data>>=

pipe {
relation semijoin $class $StateModel -using {Domain Domain Name Model}
relation isnotempty

} hasSMQuery

<<class query variables>>=
variable hasSMQuery

For classes that have a state model, we must create a relvar to hold the current state of the instances. Further, we will create a
child namespace to hold the state activities and the procedures for the activities themselves.

<<generate: create state model>>=

set hasStateModel [eval $hasSMQuery]

if {$hasStateModel} {
<<generate: create current state relvar>>
<<generate: create activity namespace>>
<<generate: create activity procedures>>

Relation Oriented Software Execution Architecture 185/295

Create Current State Relvar

We store the current state for classes instances that have a state model in a separate relvar. This makes sure that the current
state is not accidentally tampered with during normal access to the class model. Since this is Tcl, nothing is really hidden or
inaccessible. If you know the name, you can get the data. However, separating the current state into its own relvar does prevent
the worst case accidents and abuses.

The heading for the relvar that holds the current state is different for each class. It is composed of the identifying attributes and
one other attribute named, ___State. We use the attributes of the lowest numbered identifier (i.e. 1) since that is the identifier
that is used to construct instance references. The relvar is named in the form, _ <class name>__ STATEINST to prevent
any name conflicts.

<<generate: create current state relvar>>=

set instid [lindex $idset 0]

set instheading [list]

foreach attr $instid {
lappend instheading $attr [dict get Sheading $attr] ; # ©

}

lappend instheading ___State string

relvar create ${domns}::__ [relation extract $class Name]__ STATEINST\
$instheading $instid

o In addition to the attribute name, we need the type information to construct the relvar header.

Create Activity Namespace

We want to keep the state activity procedures in their own namespace to avoid any naming conflicts with class operations. Also,
a separate namespace allows us to set the command resolution path to something convenient so that when the state activities
execute the common procedures they will use can be invoked using unqualified names.

<<generate: create activity namespace>>=
set actns S${className}::__Activity
namespace eval Sactns {
<<tclral imports>>
}
namespace eval $actns [list)\
namespace path [list\
::rosea: :InstCmds\
SclassName\
Sdomns\
N

Create Activity Procedures

The state activities are realized as ordinary procedures in the __ Activity namespace of the class. We obtain the state names
and code using the query below.

<<rosea data>>=

pipe {
relation semijoin $class $State -using {Domain Domain Name Model}
relation project ~ Name Parameters Action

} statesQuery

<<class query variables>>=
variable statesQuery

Iterating across the queried relation value, we invoke : : proc to create the state activity procedures. Note the insertion of self
as the first argument of the activity procedure.

Relation Oriented Software Execution Architecture 186 /295

<<generate: create activity procedures>>=
relation foreach state [eval S$statesQuery] {
relation assign S$state\
{Name stateName}\
{Parameters params}\
{Action stateAction}
proc ${actns}::$stateName [linsert S$params 0 self] S$stateAction

Create Class Operations

For each class in the domain, we will create an ensemble command that is the same name as the fully qualified name of the
class. There are two sources of class operations, those supplied by the system and those defined when the class was configured.
Further, some of the system supplied operations are only valid for classes that have a state model. It is also the case, that the
same considerations apply regarding instance based operations. Some are system supplied others are user supplied and some of
the system instance operations only make sense if there is a state model associated with the class. Consequently, we will factor
out some helper procedures to make these queries for us.

We start with a query to obtain system supplied operations. The procedure below obtains the system supplied operations, filters
out those that meet the criteria for a state model and then joins to select the desired type, either instance or class based.

<<helper commands>>=
proc QuerySystemOperations {which requiresSM} ({
return [pipe {

relvar set ::rosea::Config::SuppliedOperation |
relation restrictwith ~ {$RequiresStateModel == S$requiresSM} |
relation join [relvar set ::rosea::Config::S$which] ~

H]

We can specialize this query for class based operations by supplying the variable parts. Here we need to augment the Command
attribute by including the name of the class (it is fully qualified here). This supplies the first argument to all class based operations,
the name of the class itself. The return value is a dictionary that we will use in creating the ensemble command.

<<helper commands>>=
proc QuerySystemClassOperations {className requiresSM} ({
return [pipe {
QuerySystemOperations SystemClassOperation S$requiresSM |
relation update ~ sco 1 {
tuple update $sco Command\
[concat [tuple extract $sco Command]\
[1list $className]]
b
relation dict ~ Name Command

}H]

For instance based operations, the instance reference is supplied by the caller and so we can just return the dictionary we find.

<<helper commands>>=
proc QuerySystemInstanceOperations {requiresSM} {
return [pipe {
QuerySystemOperations SystemInstanceOperation S$requiresSM |
relation dict ~ Name Command

}]

To create the class based operations, we use the : : proc command to create the ones configured for the class. We keep track of
a mapping dictionary as we go along. This mapping dictionary is used when the class ensemble command is created to provide

Relation Oriented Software Execution Architecture 187 /295

for the mapping of ensemble subcommand onto the procedures that implement them. That mapping is an essential feature of
namespace ensemble commands and we make use of the feature here. The system supplied operations do depend upon whether
the class has a state model.

<<generate: create class operations>>=
set opmap [dict create]
set classops [relation semijoin S$class S$UserClassOperation)\
—-using {Domain Domain Name Class}]
relation foreach classop $classops {
relation assign Sclassop\
{Name opname}\
{Parameters params}\
{Body opbody}

proc ${className}::$opname S$params Sopbody
dict set opmap S$Sopname ${className}::Sopname

set sysmap [QuerySystemClassOperations S$SclassName false]
if {ShasStateModel} {
set sysmap [dict merge $sysmap [QuerySystemClassOperations $className true]]

namespace ensemble create\
—command S$className\
-map [dict merge $opmap $sysmap]

Tests

<<generate command tests>>=
test generate-1.4 {
generate class based operations
} —setup {
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
rosea configure ({
domain foo {
class cl {
attribute al string -id 1
attribute a2 string

classop echo {id} {
return $id

}
rosea generate
:foo::cl echo 27
} —result {27}

Create Instance Operations

Similar logic applies when creating the instance based operations for a class. It is somewhat simpler in that the instance reference
is a caller supplied

Relation Oriented Software Execution Architecture 188 /295

<<generate: create instance operations>>=
set opmap [dict create]
set instops [relation semijoin $class $UserInstanceOperation\
—-using {Domain Domain Name Class}]
relation foreach instop S$instops {
relation assign Sinstop\
{Name opname}\
{Parameters params}\
{Body opbody}

proc ${className}::Sopname [linsert S$params 0 self] Sopbody
dict set opmap S$opname ${className}::S$opname
}
set sysmap [QuerySystemInstanceOperations false]
set hasPolyEvents [relation isnotempty\
[relation semijoin $class $PolymorphicEvent\
—using {Domain Domain Name Model}]\
]
if {$ShasStateModel || S$hasPolyEvents} {
set sysmap [dict merge $sysmap [QuerySystemInstanceOperations true]]

namespace ensemble create\
—command ${className}::Instance\
-parameters instref\
-map [dict merge S$Sopmap $sysmap]

Tests

<<generate command tests>>=
test generate-1.5 {
generate instance based operations
} —setup {
} —cleanup {
cleanupConfigbData
removeDomain ::foo
} ~body {
rosea configure {
domain foo {
class cl {
attribute al string -id 1
attribute a2 string

instop echo {id} {
return $id

}
rosea generate
set ref [::foo::cl create al bar a2 baz]
rosea tunnel S$ref echo 27
} —result {27}

Create Relationship Data and Commands

For relationships, we need to similar work as for classes. We have to population the architecture relvars that drive the run time
processing of relationship traversal and linking. Each relationship has an ensemble command associated with it. There there is

Relation Oriented Software Execution Architecture 189 /295

the nuance of assigners that might be defined on the relationship.

We will categorize relationships as simple, class based or generalizations and the require processing will be different for each
category.

<<generate: create relationship data and commands>>=
set rships [relation semijoin $domain S$DomainElement -using {Name Domain}\
SRelationship -using {Domain Domain Element Name}]

<<generate: simple associations>>
<<generate: class based associations>>
<<generate: generalizations>>

Simple Associations

For simple associations, we traverse the R30 and R31 generalizations in the configuration model. Continuing on we can come
up with a set of SimpleReferringClass and SimpleReferencedClass instances.

<<generate: simple associations>>=

set sassocs [relation semijoin $rships $Association\
$SimpleAssociation]

set refing [relation semijoin $sassocs S$SimpleReferringClass)\
—using {Domain Domain Name Relationship}]

set refed [relation semijoin $sassocs $SimpleReferencedClass\
—using {Domain Domain Name Relationship}]

We now undertake a query on the configuration relvars to gather up all the information required for the later parts of the generation
of simple relationships. Gathering all the information in one query makes that query rather complicated. Much of the complexity
arises from needing the same information in slightly different forms in order to satisfy the interface requirements of the procedures
that create underlying ral entities. The main goal of the query is to obtain the class and attributes that play a referring role in
a relationship and the corresponding class and attributes that are referenced in the relationship. Setting up the correspondence
between referring and referenced is the basis for defining the relvar constraints and the run time data that is used for navigation
and linking. We present the entire query and then explain each step.

<<rosea data>>=
pipe {
relation join $AttributeReference $refing)\
—using {Domain Domain ReferringClass Class\
Relationship Relationship ReferringRole Role} |
relation rename ~ Conditionality ReferringCond\
Multiplicity ReferringMult |
relation join ~ S$Srefed -using {Domain Domain\
ReferencedClass Class Relationship)\
Relationship ReferencedRole Role} |
relation project ~ Domain Relationship\
ReferringClass ReferringAttribute\
ReferencedClass ReferencedAttribute\
ReferringCond ReferringMult Conditionality |
relation group ~ ReferringAttrs\
ReferringAttribute ReferencedAttribute |
relation extend ~ rfa\
TagReferringAttrs {Relation {RefOrder int ReferringAttribute string\
ReferencedAttribute string}} {
[relation tag [tuple extract S$rfa ReferringAttrs] RefOrder]
b
relation extend ~ wfa\
SrcAttrs list {
[relation list [tuple extract S$wfa TagReferringAttrs]\
ReferringAttribute -ascending RefOrder]
I\

Relation Oriented Software Execution Architecture 190/ 295

DstAttrs list {
[relation list [tuple extract $wfa TagReferringAttrs]\
ReferencedAttribute -ascending RefOrder]
o
relation extend ~ ram\
ForwAttrs list {
[Interleave [tuple extract S$ram SrcAttrs]\
[tuple extract $ram DstAttrs]]
N
RevAttrs list {
[Interleave [tuple extract Sram DstAttrs]\
[tuple extract $ram SrcAttrs]]
o

relation eliminate ~ TagReferringAttrs
} referencesQuery

<<generate: simple associations>>=
variable referencesQuery
set references [eval $referencesQuery]

Going command by command we can explain the query.

1. By joining the Simple Referring Class instances to the Attribute Reference, we can obtain the information on those at-
tributes that refer to the other class in the association and which attributes are referenced.

2. We need to rename some attributes to prevent any name conflicts that would occur in the next command.
3. Joining to the Simple Reference Class instances, we obtain the information about the Conditionality of the association.
4. We project out only the attributes that we intend to use.

5. By grouping the ReferringAttribute and ReferencedAttribute we create a relation valued attribute expressly shows the
correspondence between referring and referenced. Each tuple of the resulting ReferringAttrs attribute maps a referring
attribute to a referenced attribute. There will be as many tuples in the value as there are attribute in the identifier being
referenced. As it turns out, the ReferringAttrs value is what is needed to support run time linking of the association.

6. The form of correspondence we generated in the last step will need to be manipulated into different lists and alternating lists
for the benefit of some of the interfaces of procedures we will need to call. We must be careful to keep the correspondence
correct. To that end we will tag the ReferringAttrs value. A new attribute is created by extending the relationship with
yet another relation value attribute that has a tag value added as a new column. The relation tag command will put
sequential integers into this new tagging attribute.

7. In this step we generate the attribute representation that we need in order to create the relvar constraint. The relvar
association command need a list of referring attributes and a list of referenced attributes and expects the corresponding
items in each list to form the constraint reference. So in this query, we extend out two more attributes to be what is
needed by relvar association. Notice that we create the lists in ascending order of the tag, thereby insuring the
correspondence between the two lists.

8. The next we generate the attribute reference representation needed to support run time traversal of the association. Here
we need to supply a list of attributes for each direction of the traversal. Ultimately, these lists will be used as an argument
tothe relation semijoin command. The command expects a list consisting of alternating referring and referenced
attribute names. So we extend a couple of more attributes and set their values by interleaving the lists we created in the
previous step. The interleaving process forms a new list by taking an element from each list alternately.

9. Lastly, we discard the tagged attributes as they are no longer needed.

The Interleave procedure used above creates a list by alternating elements from two lists.

<<helper commands>>=
proc Interleave {11 12} {
set result [list]

Relation Oriented Software Execution Architecture 191 /295

foreach a $11 b $12 {
lappend result $a $b
}

return S$result

The results of the query, as held in the references variable, can now be projected out and placed into the architecture relvars
used at run time and can be used to create the relationship ensemble commands. The processing performed here is a good example
of why the the run time procedures were designed to operate on much simpler data structures. The data used by the run time is
the results of a rather complicated query, pulled apart for specific operations. This prevents having to perform such complicated
queries at run time. You can also think of the run time data as a simplified view of the configuration data that is accomplished by
pushing the computation of the view to the time when the domain is generated since class structure and relationships definitions
do not change during the running of the domain.

Continuing on, we need to populate the run time data that deals with simple associations.

<<generate: simple associations>>=

relvar eval ({
<<generate: populate Link for simple associations>>
<<generate: populate AssociationLink for simple associations>>
<<generate: populate ReflLink for simple associations>>

The Link and AssociationLink relvars hold the run time data for navigating the association relationships. We first take the
referring class information and associate it with the forward direction for navigation. The reverse direction, i.e. that direction
given by the ~RX notation originates at the referenced class. For simple associations, we add two tuples to Link,one for each
direction of traversal. The operations just project out the required attributes and then juggle the names to make the headers match.

<<generate: populate Link for simple associations>>=
set flink [pipe {
relation project $references Relationship ReferringClass |
relation rename ~ Relationship Name ReferringClass SrcClass
Hl
set blink [pipe {
relation project $references Relationship ReferencedClass |
relation rename % Relationship Name ReferencedClass SrcClass |
relation update % 1lnk {1} {
tuple update $1nk Name ~[tuple extract $1lnk Name] }
b4y 1sl ;4 @

relvar union ${domns}::_ Arch Link $flink S$blink

o For the reverse direction we need to tack on the tilde (~) character to the association name. It turns out that tilde has a
special meaning to the pipe command and so we have to ask pipe to use percent (%) as its special character to represent
where the previous command result is substituted.

The manipulations for populating the AssociationLink relvar are similar.

<<generate: populate AssociationLink for simple associations>>=
set flink [pipe {
relation project $references Relationship ReferringClass\
ReferencedClass ForwAttrs |
relation rename ~ Relationship Name ReferringClass SrcClass\
ReferencedClass DstClass ForwAttrs Attrs |
relation extend ~ al PrevSrcClass string {{}}
11+ ©
set blink [pipe {
relation project $references Relationship ReferringClass\
ReferencedClass RevAttrs |

)

relation rename % Relationship Name ReferencedClass SrcClass\

Relation Oriented Software Execution Architecture

192 /295

ReferringClass DstClass RevAttrs Attrs |
relation extend % al PrevSrcClass string {{}} |
relation update % 1lnk {1} {

tuple update $1lnk Name ~[tuple extract $1lnk Name]}

relvar union ${domns}::__ Arch_AssociationLink $flink $blink

We need to supply a PrevSrcClass attribute as the empty string and this is accomplished using relation extend.

For the case of RefLink, the ReferringAttrs attribute matches exactly and so a simple projection of attributes is all that is necessary.

<<generate: populate ReflLink for simple associations>>=
relvar union ${domns}::__Arch_ReflLink [relation project S$references\

Relationship ReferringClass ReferencedClass ReferringAttrs]

The last step for simple associations is to create the relvar constraint and relationship ensemble commands. For that we will
iterate across the references relation since we must invoke the necessary commands one by one. It is usually necessary to
iterate across relation values when needing to interface to scalar oriented procedures. Otherwise, we prefer to use the set-at-a-time
operations of relational algebra.

<<generate: simple associations>>=
relation foreach reference Sreferences {

relation assign S$reference\
{Relationship relationship}\
{ReferringClass referringClass}\
{ReferencedClass referencedClass}\
{ReferringCond referringCond}\
{ReferringMult referringMult}\
{Conditionality referencedCond}\
{SrcAttrs srcAttrs}\
{DstAttrs dstAttrs}

Create the relvar constraint.

relvar association ${domns}::$relationship\
${domns}::SreferringClass S$srcAttrs\
[MapCondMultToConstraint $referringCond S$referringMult]\
S{domns}::SreferencedClass S$dstAttrs\
[MapCondMultToConstraint $referencedCond false]

All simple associations get a link and unlink command in their ensemble.

set ensemblemap [dict create\
link [list ::rosea::RelCmds::linkSimple S$relationship]\
unlink [list ::rosea::RelCmds::unlinkSimple Srelationship]\

Determine if we have any assigners assocated with the relationship.
Single assigners get different commands from multiple assigners.
set rpath ${domns}::$relationship
set assigner [relation semijoin S$reference $SingleAssigner\
—using {Domain Domain Relationship Relationship}]
if {[relation isnotempty $assigner]} {
dict set ensemblemap signal\
[list ::rosea::RelCmds::signalAssigner S$Srpath]
} else {
set assigner [relation semijoin $reference SMultipleAssigner\
—using {Domain Domain Relationship Relationship}]
if {[relation isnotempty $assigner]} {
dict set ensemblemap signal [list)\
::rosea::RelCmds: :signalMultiAssigner $rpathl]

Relation Oriented Software Execution Architecture 193 /295

dict set ensemblemap create [list)\
::rosea::RelCmds: :createMultiAssigner Srpath]

}
Create the relationship ensemble command.
namespace ensemble create —-command $rpath -map $ensemblemap

The configuration data holds the conditionality and multiplicity of the associations as booleans. We need to translate that into the
regular expression like syntax that TcIRAL uses.

<<helper commands>>=
proc MapCondMultToConstraint {cond mult} {
if {Scond} {

return [expr {Smult 2 "«" : "2"}]
} else {
return [expr {$mult ? "+" : "1"}]

Tests

<<generate command tests>>=
test generate-2.0 {
generate constraints for simple associative relationship
} —setup {
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
rosea configure ({
domain foo {
class x {
attribute al string -id 1
attribute a2 string -default 20
}
class y {
attribute al string -id 1
reference R1 x —-link al
}

association R1 y 1--1 x

}
rosea generate
relvar constraint info ::foo::R1
} —result {association ::foo::R1 ::foo::y al 1 ::foo::x al 1}

<<test utility procs>>=
proc testConditions {args} {
set result 1
foreach exp Sargs {
set passed [uplevel 1 [list expr S$Sexp]]
if {!$passed} {
log::error "\"$exp\" failed"
set result 0

}

return $result

Relation Oriented Software Execution Architecture 194 /295

<<generate command tests>>=
test generate-2.1 {
association run time data
} —setup {
} —cleanup {
cleanupConfigbData
removeDomain ::foo
} —body {
rosea configure {
domain foo {
class X {
attribute x1 string -id 1
attribute x2 string -default 20
}
class Y {
attribute yl string -id 1
reference R1 X -link {yl x1}
}

association R1 Y 1--1 X

}

rosea generate

set forwattrs [pipe {
relvar restrictone ::foo::_ Arch_AssociationLink Name R1 SrcClass Y |
relation extract ~ Attrs

set revattrs [pipe {
relvar restrictone ::foo::_ Arch_AssociationLink Name ~R1 SrcClass X |

o

relation extract % Attrs
FoA4Y 18]

testConditions\
{[relation cardinality $::foo::__ Arch_Link] == 2}\
{[relation cardinality $::foo::__Arch_RefLink] == 1}\
{[1llength [info commands ::foo::R1]] == 1}\

{$forwattrs eq {yl x1}}\
{$revattrs eqg {xl yl}}

} —result {1}

<<generate command tests>>=
test generate-2.2 {
generate constraints for simple reflexive associative relationship
} —setup {
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
rosea configure ({
domain foo {
class x {
attribute al string -id 1
attribute prev string -id 2
attribute a2 string -default 20
reference R1 x —-link {prev al}
}

association Rl x 1--1 x

Relation Oriented Software Execution Architecture 195/295

rosea generate
relvar constraint info ::foo::R1
} —result {association ::foo::R1 ::foo::x prev 1 ::foo::x al 1}

<<generate command tests>>=
test generate-2.3 {
traversal for simple reflexive associative relationship
} —setup {
} —cleanup {
cleanupConfigData
removeDomain ::foo
} -body {
rosea configure ({
domain foo {
class x {
attribute al string -id 1
attribute prev string -id 2
attribute a2 string -default 20
reference R1 x —-link {prev al}
}

association R1 x ?--7? x

}

rosea generate

relvar eval {
set £ [::foo0::x create al fred prev {} a2 10]
set j [::foo::x create al john prev fred a2 20]

}

set r [rosea tunnel $f findRelated ~R1]

rosea tunnel S$r readAttribute a2

} —result {20}

<<generate command tests>>=
test generate-2.4 {
navigate associative relationship
} —setup {
} —cleanup {
cleanupConfigData
removeDomain ::meta
} —body {
rosea configure {
domain meta {
class Class {
attribute Domain string -id 1
attribute Name string -id 1

class Attribute {
attribute Domain string -id 1
attribute Class string -id 1
attribute Name string -id 1
attribute Type string

reference R3 Class —-link Domain -1link {Class Name}
}

association R3 Attribute 1..x——1 Class

operation showAttrs {class} {
set cl [Class findWhere\
{$Domain eqg "foo" && $Name eq S$class}]
set attrs [instop S$cl findRelated ~R3]

Relation Oriented Software Execution Architecture 196/ 295

return [instop $attrs deRef]

}
rosea generate
relvar eval {
meta::Class create Domain foo Name cl
meta::Attribute create Domain foo Class cl Name al Type string
meta::Attribute create Domain foo Class cl Name a2 Type string
}

meta::showAttrs cl
} —result {{Domain string Class string Name string Type string} {{Domain foo Class cl Name

al Type string} {Domain foo Class cl Name a2 Type string}}}\
-match relation

<o

<<generate command tests>>=
test generate-2.5 {
link instances across association
} —setup {
rosea configure {
domain meta {
class C1 {
attribute Id string -id 1
attribute Al int

class C2 {
attribute Id string -id 1
attribute ClId string
reference R1 Cl -link {ClId Id}

}
association R1 C2 1..x——1 C1

}
rosea generate
} —cleanup {

cleanupConfigData
removeDomain ::meta
} -body ({

relvar eval {
set cl [meta::Cl create Id foo Al 20]
meta::C2 create Id bar ClId {}
meta::C2 create Id baz Cl1lId {}
set c2 [meta::C2 create Id fub ClId {}]
meta::R1 link Scl [meta::C2 findAll]

}

rosea tunnel $c2 readAttribute C1Id

} —result {foo}

<<generate command tests>>=
test generate-2.6 {
unlink instances across association
} —setup {
rosea configure {
domain meta {
class C1 {
attribute Id string -id 1
attribute Al int

class C2 {

Relation Oriented Software Execution Architecture 197 /295

attribute Id string -id 1
attribute C1lId string
reference R1 Cl -link {ClId Id}

}
association R1 C2 0..%x—-0..1 C1

}
rosea generate
} —cleanup {
cleanupConfigData
removeDomain ::meta
} —body {
relvar eval {
set cl [meta::Cl create Id foo Al 20]

meta::C2 create Id bar ClId foo
meta::C2 create Id baz ClId foo
set c2 [meta::C2 create Id fub ClId foo]
}
set before [rosea::InstCmds::refMultiplicity\
[rosea::InstCmds: :findRelated $cl ~R1]]
meta::R1 unlink [meta::C2 findWhere {[string match bx $Id]}]
set after [rosea::InstCmds::refMultiplicity\
[rosea::InstCmds::findRelated $cl ~R1]]

testConditions\
{Sbefore == 3}\
{Safter == 1}

} —result {1}

<<generate command tests>>=
test generate-2.7 {
unlink using referred to instance
} —setup {
rosea configure ({
domain meta {
class C1 {
attribute Id string -id 1
attribute Al int

class C2 {
attribute Id string -id 1
attribute C1lId string
reference R1 Cl -link {ClId Id}

}
association R1 C2 0..%x——0..1 C1

}

rosea generate
} —cleanup {

cleanupConfigData
removeDomain ::meta
} -body {

relvar eval {
set cl [meta::Cl create Id foo Al 20]

meta::C2 create Id bar ClId foo
meta::C2 create Id baz ClId foo
meta::C2 create Id fub ClId foo
}
set before [rosea::InstCmds::refMultiplicity\
[rosea: :InstCmds: :findRelated $cl ~R1]]
meta::R1 unlink $cl
set after [rosea::InstCmds::refMultiplicity\

Relation Oriented Software Execution Architecture 198 /295

[rosea: :InstCmds: :findRelated $Scl ~R1]]

testConditions\
{Sbefore == 3}\
{Safter == 0}

} —result {1}

<<generate command tests>>=
test generate-2.8 {
unlink and violate referential integrity
} —setup {
rosea configure {
domain meta {
class C1 {
attribute Id string -id 1
attribute Al int

class C2 {
attribute Id string -id 1
attribute ClId string
reference R1 Cl -link {ClId Id}

}
association R1 C2 1..x—-0..1 C1

}
rosea generate
} —cleanup {
cleanupConfigbata
removeDomain ::meta
} —body {
catch {relvar eval {
set cl [meta::Cl create Id foo Al 20]
meta::C2 create Id bar ClId foo
meta::C2 create Id baz ClId foo
meta::C2 create Id fub ClId foo
meta::R1 unlink S$Scl}
} result
set result
} —result {for associationx*::meta::R1x} -match glob

Class Based Associations

For class based associations, we will follow a similar strategy as for simple associations. The use of an association class does
cause some additional complexity as we shall see.

We have to traverse the configuration model down the path to the Class Based Association relvar. From there we obtain the
source and target classes that participate in the association.

<<generate: class based associations>>=
set cassocs [relation semijoin $rships S$Association\
SClassBasedAssociation]

set sourceclass [relation semijoin S$cassocs $SourceClass\
-using {Domain Domain Name Relationship}]

set targetclass [relation semijoin $cassocs $TargetClass\
-using {Domain Domain Name Relationship}]

set bothclass [relation union $sourceclass $targetclass] ; # ©

o The headings of Source Class and Target Class are the same so this union is defined.

Relation Oriented Software Execution Architecture 199 /295

As with simple associations, we make one large query to accumulate the information we need. We present the query below,
followed by a step by step explanation.

<<rosea data>>=
pipe {
relation semijoin $cassocs $AssociatorClass\
-using {Domain Domain Name Relationship}\
SReferringClass $AttributeReference\
-using {Domain Domain Class ReferringClass\
Relationship Relationship Role ReferringRole} |
relation project ~ Domain Relationship ReferringClass ReferringAttribute\
ReferencedClass ReferencedAttribute ReferencedRole |
relation join ~ S$bothclass -using {Domain Domain Relationship Relationship\
ReferencedClass Class ReferencedRole Role} |
relation group ~ ReferringAttrs ReferringAttribute ReferencedAttribute |
relation extend ~ rfa\
TagReferringAttrs {Relation {RefOrder int ReferringAttribute string\
ReferencedAttribute string}} {
[relation tag [tuple extract S$rfa ReferringAttrs] RefOrder]
o
relation extend ~ wfa\
SrcAttrs list {
[relation list [tuple extract S$wfa TagReferringAttrs]\
ReferringAttribute -ascending RefOrder]
AN
DstAttrs list {
[relation list [tuple extract S$wfa TagReferringAttrs]\
ReferencedAttribute -ascending RefOrder]
b
relation extend ~ ram\
ForwAttrs list {
[Interleave [tuple extract S$ram SrcAttrs]\
[tuple extract $ram DstAttrs]]
AN
RevAttrs list {
[Interleave [tuple extract $ram DstAttrs]\
[tuple extract S$ram SrcAttrs]]
b
relation eliminate ~ TagReferringAttrs
} assocrefsQuery

<<generate: class based associations>>=
variable assocrefsQuery
set assocrefs [eval $SassocrefsQuery]

1. Traverse from the Associator Class to the Referring Class and on to the Attribute Reference class. This is like the query for
the simple associations but we take a different path from the Relationship class to get there. This query is really all about
working out the attribute references.

2. Project the attributes we find useful.

3. Joining the Source Class and Target Class tuples now gives us a relation with references that the associator class makes to
both the Source and Target Classes. The ReferencedRole attribute distinguishes the two cases.

4. The group operation gives a relation valued attribute that contains the correspondence between referential attributes in
the associator class and the referenced attributes in the source or target class.

5. Like in the simple associations case, we need to take the attribute references to be able to preserve the correspondence in
later operations.

6. Compute the form of the attribute references needed for creating the relvar constraint.

Relation Oriented Software Execution Architecture 200/ 295

7. Compute the form of the attribute references needed for relationship traversal.

8. The TagReferringAttrs attribute is no longer needed.

With the query done, we can now populate the run time data that is needed for class based associations. We have to populate
Link and AssociationLink to support relationship navigation and ASsocRef to support relationship linkage.

<<generate: class based associations>>=

relvar eval {
<<generate: populate Link for class based associations>>
<<generate: populate AssociationLink for class based associations>>
<<generate: populate AssocRef for class based associations>>

For class based association, the Link relvar contains tuples for the implied two traversals needed to go from the source to the
associator and then to the target and vice versa. For the associative class, there both a forward and reverse path that only differ
by the syntax convention of naming the reverse path with a tilde.

<<generate: populate Link for class based associations>>=
set aforw [pipe {
relation project $assocrefs Relationship ReferringClass |
relation rename ~ Relationship Name ReferringClass SrcClass
H]
set arev [relation update $aforw 1lnk {1} {
tuple update $1nk Name ~[tuple extract $1lnk Name]}]

For the classes that are sources, there is a forward path to the associative class.

<<generate: populate Link for class based associations>>=
set sources [pipe {
relation restrict S$assocrefs aref {
[tuple extract S$aref ReferencedRole] eq "source"} |
relation eliminate ~ ReferencedRole
H]
set sforw [pipe {
relation project $sources Relationship ReferencedClass |
relation rename ~ Relationship Name ReferencedClass SrcClass

H

And for classes that are targets, there is a reverse path from the target to the associative class.

<<generate: populate Link for class based associations>>=
set targets [pipe {
relation restrict S$assocrefs aref {
[tuple extract $aref ReferencedRole] eq "target"} |
relation eliminate ~ ReferencedRole
H]
set trev [pipe {
relation project $targets Relationship ReferencedClass |
relation rename % Relationship Name ReferencedClass SrcClass |
relation update % 1lnk {1} {
tuple update $1lnk Name ~[tuple extract $1lnk Name]}

The set of link instances that we need is then just the union of the four sets we just computed.

<<generate: populate Link for class based associations>>=
relvar union ${domns}::__ Arch_Link S$Saforw S$arev S$sforw S$trev

For each Link tuple we need a corresponding AssociationLink tuple. To describe the traversal from Source Class to Associator
to Target Class requires entries that chain together the individual steps and so will have a non-empty value for the PrevSrcClass
attribute. The start of the traversal from either end, i.e. forward from Source to Associator and reverse from Target to Associator,
has an empty value for the PrevSrcClass attribute. We compute those first.

Relation Oriented Software Execution Architecture 201 /295

<<generate: populate AssociationLink for class based associations>>=
set sforw [pipe {
relation project $sources Relationship ReferringClass ReferencedClass\
RevAttrs |
relation rename ~ Relationship Name ReferringClass DstClass\
ReferencedClass SrcClass RevAttrs Attrs |
relation extend ~ al PrevSrcClass string {{}}
H
set trev [pipe {
relation project $targets Relationship ReferringClass ReferencedClass\
RevAttrs |
relation rename % Relationship Name ReferringClass DstClass\
ReferencedClass SrcClass RevAttrs Attrs |
relation extend % al PrevSrcClass string {{}} |
relation update % 1lnk {1} {
tuple update $1lnk Name ~[tuple extract $1lnk Name]}

o)

To compute the other two tuples in AssociationLink, we need the correct value for the PrevSrcClass attribute. When traversing
from the associator class to target class that is the name of the source class and vice versa for the opposite direction. To get all
this information in one relation value we will join the sources to the targets. To do that, we need to rename the attributes (they
are the same name in both the sources and targets relations). We give the attributes associated with the SourceClass the
prefix One and the attributes associated with the TargetClass the prefix Ot her. This is just a naming convention to try to keep
things straight and minimize the confusion for something that is already difficult enough.

<<generate: populate AssociationLink for class based associations>>=

set onerefs [relation rename S$sources ReferencedClass OneClass\
Conditionality OneCond Multiplicity OneMult\
ReferringAttrs OneReferringAttrs SrcAttrs OneSrcAttrs\
DstAttrs OneDstAttrs ForwAttrs OneForwAttrs RevAttrs OneRevAttrs]

set otherrefs [relation rename S$targets ReferencedClass OtherClass\
Conditionality OtherCond Multiplicity OtherMult ReferringAttrs)\
OtherReferringAttrs SrcAttrs OtherSrcAttrs DstAttrs OtherDstAttrs\
ForwAttrs OtherForwAttrs RevAttrs OtherRevAttrs]

Now we can join the two relation and get one big relation that contains all the information needed determine the other two
tuples for the AssociationLink relvar.

<<generate: populate AssociationLink for class based associations>>=
set bothrefs [relation Jjoin $onerefs Sotherrefs\
-using {Domain Domain ReferringClass ReferringClass\
Relationship Relationship}]

So now we go back to the pattern of projecting out the needed data. The navigation from the associative class to the target (aka
OtherClass) is in the forward direction and preceded by the source (aka OneClass).

<<generate: populate AssociationLink for class based associations>>=
set aforw [pipe {
relation project $bothrefs Relationship ReferringClass OtherClass\
OtherForwAttrs OneClass |
relation rename ~ Relationship Name ReferringClass SrcClass\
OtherClass DstClass OtherForwAttrs Attrs OneClass PrevSrcClass
H]

The navigation from the association class to the source (aka OneClass) is in the reverse direction and preceded by the target (aka
OtherClass). And we have change the relationship name to include the tilde.

<<generate: populate AssociationLink for class based associations>>=
set arev [pipe {
relation project $bothrefs Relationship ReferringClass OneClass\

Relation Oriented Software Execution Architecture 202/ 295

OneForwAttrs OtherClass |
relation rename % Relationship Name ReferringClass SrcClass\
OneClass DstClass OneForwAttrs Attrs OtherClass PrevSrcClass |

relation update % lnk {1} {
tuple update $1nk Name ~[tuple extract $1nk Name] }

Finally, we can combine the four types of AssociationLink relations and install the result into the relvar.

<<generate: populate AssociationLink for class based associations>>=
relvar union ${domns}::_Arch AssociationLink S$sforw Strev $aforw Sarev

The AssocRef relvar holds the information needed to link and unlink class based association. All the information is present, we
need only project it out and juggle the naming. The relation value attribute shown in the graphic is obtained using relation
group.

<<generate: populate AssocRef for class based associations>>=
relvar union ${domns}::__ Arch_AssocRef [pipe ({
relation project $assocrefs Relationship ReferringClass\
ReferencedClass ReferencedRole ReferringAttrs |
relation rename ~ ReferringClass AssocClass ReferencedClass Participant\
ReferencedRole Role |
relation group ~ References Participant Role ReferringAttrs

H

Again, following the pattern from simple associations, we will need to iterate over the class based association so that we can
create the relvar correlation constraint and the relationship ensemble command. We will iterate over the tuples in the
bothrefs variable since it has all the information about the relationship in one place.

<<generate: class based associations>>=
relation foreach bothref $bothrefs {
relation assign $bothref\

{Relationship relationship}\
{ReferringClass associator}\
{OneClass sourceClass}\
{OneCond sourceCond}\
{OneMult sourceMult}\
{OneSrcAttrs sourceAssocAttrs}\
{OneDstAttrs sourceDstAttrs}\
{OtherClass targetClass}\
{OtherCond targetCond}\
{OtherMult targetMult}\
{OtherSrcAttrs targetAssocAttrs}\
{OtherDstAttrs targetDstAttrs}

Create the correlation constraint

relvar correlation ${domns}::$relationship ${domns}::$associator\
$sourceAssocAttrs [MapCondMultToConstraint S$targetCond S$targetMult]\
${domns}::$sourceClass $sourceDstAttrs\
StargetAssocAttrs [MapCondMultToConstraint S$sourceCond $sourceMult]\
${domns}::StargetClass S$targetDstAttrs ; # ©

set ensemblemap [dict create\
link [list ::rosea::RelCmds::linkAssoc $relationship]\
unlink [list ::rosea::RelCmds::unlinkAssoc S$relationship]\

1

Determine if we have any assigners

set rpath ${domns}::S$Srelationship

set assigner [relation semijoin $bothref $SingleAssigner\
—using {Domain Domain Relationship Relationship}]

if {[relation isnotempty S$assigner]} {
dict set ensemblemap signal\

Relation Oriented Software Execution Architecture

203 / 295

[list ::rosea::RelCmds::signalAssigner S$Srpath]
} else {

set assigner [relation semijoin $bothref SMultipleAssigner\

—-using {Domain Domain Relationship Relationship}]

if {[relation isnotempty S$assigner]} {

dict set ensemblemap signal [list\
::rosea::RelCmds: :signalMultiAssigner S$rpath]

dict set ensemblemap create [list)\
::rosea: :RelCmds: :createMultiAssigner S$rpathl]

}

namespace ensemble create -command S$rpath -map $ensemblemap

o How the conditionality and multiplicity are set needs some explanation. The configuration DSL uses syntax that mimics
the UML graphic. This specifies the multiplicity and conditionality from the point of view of the two participating classes.
However, the relvar correlation command specifies multiplicity and conditionality from the point of view of the
associative class. If you work through that difference in perspective, it means you have to invert the multiplicity and
conditionality from source and target for the benefit of TcIRAL. Both ways of specifying this work well in the respective

worlds, but when you cross the boundary you have to remember the switch.

Tests

<<generate command tests>>=
test generate-3.0 {
generate constraints for class based associative relationship
} —setup {
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
rosea configure {
domain foo {
class a {
attribute axl string -id 1
attribute ax2 string -id 1
attribute ayl string -id 1
attribute ay2 string -id 1
reference R1 x —-link {axl x1} -link {ax2 x2}
reference R1 y —-link {ayl yl} -link {ay2 y2}
}
class x {
attribute x1 string -id 1
attribute x2 string -id 1
attribute x3 string -default 20
}
class y {
attribute yl string -id 1
attribute y2 string -id 1
}

association R1 x 0..x—-1..%x y —associator a

}
rosea generate
relvar constraint info ::foo::R1

} —result {correlation ::foo::R1 ::foo::a {axl ax2} + ::foo::x {x1 x2} {ayl ay2}

{yl y2}}

*

8 3IE@O 3 3§

Relation Oriented Software Execution Architecture

204 / 295

<<generate command tests>>=
test generate-3.1 {
class based association when simple would do
} —setup {
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
rosea configure {
domain foo {
class a {
attribute x1 string -id 1
attribute yl string
reference R2 x —-link x1
reference R2 y —-link yl
}
class x {
attribute x1 string -id 1
attribute x2 int -default 20
}
class y {
attribute yl string -id 1
attribute y2 string -default bar
}

association R2 x 0..x—-1 y —-associator a

}
rosea generate
relvar constraint info ::foo::R2
} —result {correlation ::foo::R2 ::foo::a x1 1 ::foo::x x1 yl «*

<<generate command tests>>=
test generate-3.2 {

::foo::y yl}

generate constraints for reflexive class based associative relationship

} —-setup {
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
rosea configure {
domain foo {
class A {
attribute xid string -id 1
attribute next_xid string -id 1
reference R1 X -link xid -link {next_xid xid}
}
class X {
attribute xid string -id 1
attribute value string -default 20
}

association R1 X 0..x—-0..x X —associator A -path {xid next_xid}

}
rosea generate
relvar constraint info ::foo::R1

} —result {correlation ::foo::R1 ::foo::A xid » ::fo0::X xid next_xid =*

<<generate command tests>>=
test generate-3.3 {

traversal for reflexive class based associative relationship
} —setup {

:foo::X xid}

Relation Oriented Software Execution Architecture 205/ 295

} —cleanup {
cleanupConfigData
removeDomain ::foo
} -body {
rosea configure {
domain foo {
class Element {
attribute ElemId string -id 1
attribute ElemNumber int
}
class Group {
attribute PrevElem string —-id 1
attribute NextElem string -id 1
reference R1 Element)\
—link {PrevElem ElemId} -link {NextElem ElemId}
}
association R1 Element *——* Element)\
—associator Group\
-path {PrevElem NextElem}

}
rosea generate
relvar eval {
:foo::Element create ElemId fred ElemNumber 10
:foo::Element create ElemId john ElemNumber 20
set s [::foo::Element create ElemId sally ElemNumber 30]
::foo::Group create PrevElem fred NextElem john
::foo::Group create PrevElem fred NextElem sally
}
set r [rosea tunnel $s findRelated ~R1]
rosea tunnel $r readAttribute ElemNumber
} —result {10}

<<generate command tests>>=
test generate-3.4 {
link class bases association instances
} —setup {
rosea configure {
domain foo {
class A {
attribute axl string —-id 1
attribute ax2 string -id 1
attribute ayl string -id 1
attribute ay2 string -id 1
reference R1 X -link {axl x1} -link {ax2 x2}
reference R1 Y -link {ayl yl} -link {ay2 y2}
}
class X {
attribute x1 string -id 1
attribute x2 string -id 1
attribute x3 int
}
class Y {
attribute yl string -id 1
attribute y2 string -id 1
attribute y3 int
}

association R1 X 1..%——1..x Y —-associator A

}
rosea generate
} —cleanup {

Relation Oriented Software Execution Architecture 206 / 295

cleanupConfigData

removeDomain ::foo
} —body {

relvar eval {
::foo::X create x1 x1-1 x2 x2-1 x3 27
::foo::X create x1 x1-2 x2 x2-2 x3 47
::foo::Y create yl yl-1 y2 y2-1 y3 57
::foo::Y create yl y1-2 y2 y2-2 y3 67
set assoc [::foo::R1 link [::fo0::X findAll] [::foo::Y findAll]]

}
rosea tunnel S$assoc refMultiplicity
} —result {4}

<<generate command tests>>=
test generate-3.5 {
unlink class based association instances.
} —setup {
rosea configure {
domain foo {
class A {
attribute axl string -id 1
attribute ax2 string -id 1
attribute ayl string -id 1
attribute ay2 string -id 1
reference R1 X -link {axl x1} -link {ax2 x2}
reference R1 Y -link {ayl yl} -link {ay2 y2}
}
class X {
attribute x1 string -id 1
attribute x2 string -id 1
attribute x3 int
}
class Y {
attribute yl string -id 1
attribute y2 string -id 1
attribute y3 int
}

association R1 X 0..%—-0..x Y —associator A

}
rosea generate

} —cleanup {
cleanupConfigData

removeDomain ::foo
} —body {

relvar eval {
::foo::X create x1 x1-1 x2 x2-1 x3 27
::foo::X create x1 x1-2 x2 x2-2 x3 47
::foo::Y create yl yl-1 y2 y2-1 y3 57
::foo::Y create yl yl1-2 y2 y2-2 y3 67

}

set assoc [::foo::R1 link [::fo0::X findAll] [::foo::Y findAll]]

:foo::R1 unlink [::foo::X findAll]
relation cardinality [relvar set ::foo::A]

} —result {0}

Relation Oriented Software Execution Architecture 207 / 295

Generalizations

The last type of relationship we must generate data and commands for is generalization. We will following the same pattern as
earlier. We formulate a query to gather all the information we need and then proceed to parcel out the information into the run
time data structures and to create the needed relvar constraints and relationship commands.

<<rosea data>>=
pipe {
relation semijoin $rships $Generalization\
SSubclass -using {Domain Domain Name Relationship}\
SReferringClass $AttributeReference\
-using {Domain Domain Class ReferringClass\
Relationship Relationship Role ReferringRole} |
relation project ~ Domain Relationship ReferringClass ReferringAttribute\
ReferencedClass ReferencedAttribute
relation group ~ ReferringAttrs\
ReferringAttribute ReferencedAttribute |
relation extend ~ rfa\
TagReferringAttrs {Relation {RefOrder int ReferringAttribute string\
ReferencedAttribute string}} {
[relation tag [tuple extract $rfa ReferringAttrs] RefOrder]

o
relation extend ~ wfa\
SrcAttrs list {
[relation list [tuple extract S$wfa TagReferringAttrs]\
ReferringAttribute -ascending RefOrder]
N
DstAttrs list {
[relation list [tuple extract S$Swfa TagReferringAttrs]\
ReferencedAttribute —-ascending RefOrder]
o
relation extend ~ ram\
ForwAttrs list {
[Interleave [tuple extract $ram SrcAttrs]\
[tuple extract S$ram DstAttrs]]
N
RevAttrs list {
[Interleave [tuple extract $ram DstAttrs]\
[tuple extract S$ram SrcAttrs]]
o
relation eliminate ~ TagReferringAttrs
} subrefsQuery

<<generate: generalizations>>=
variable subrefsQuery
set subrefs [eval S$subrefsQuery]

Populating the run time data for generalization is a variation on what we have seen above. In addition to the Link and Associa-
tionLink relvars, generalizations bring in the PartitionLink and PartitionDst relvars.

<<generate: generalizations>>=

relvar eval {
<<generate: populate Link for generalizations>>
<<generate: populate AssociationLink for generalizations>>
<<generate: populate PartitionLink for generalizations>>
<<generate: populate PartitionDst for generalizations>>
<<generate: populate migrate data>>

For the Link relvar data, the references from the subclass to the superclass are in the forward direction. The references from
the superclass to the subclass are in the reverse direction. We separate those two cases with the necessary renaming of the

Relation Oriented Software Execution Architecture 208 /295

relationship in the reverse direction. We follow the established pattern of projecting out the information we need from the query
we performed and then juggling names to make the headings match.

<<generate: populate Link for generalizations>>=

set sublinks [pipe {
relation project $subrefs Relationship ReferringClass |
relation rename ~ Relationship Name ReferringClass SrcClass

1]

set superlinks [pipe {
relation project $subrefs Relationship ReferencedClass |
relation rename % Relationship Name ReferencedClass SrcClass |
relation update % lnk {1} {

tuple update $1lnk Name ~[tuple extract $1lnk Name] }

relvar union ${domns}::__ Arch_Link $sublinks S$superlinks

The traversal from the subclass to the superclass is treated as an ordinary association type traversal, so the subclass references
are used to populate the AssociationLink.

<<generate: populate AssociationLink for generalizations>>=

relvar union ${domns}::__Arch_AssociationLink [pipe {
relation project $subrefs Relationship ReferringClass ReferencedClass\
ForwAttrs |

relation rename ~ Relationship Name ReferringClass SrcClass\
ReferencedClass DstClass ForwAttrs Attrs |
relation extend ~ al PrevSrcClass string {{}}

H

The superclass references then wind up as PartitionLink tuples since they have to be dealt with differently.

<<generate: populate PartitionLink for generalizations>>=
relvar union ${domns}::__ Arch_PartitionLink $superlinks

We must also insert tuples into PartitionDst for each subclass giving the attribute references.

<<generate: populate PartitionDst for generalizations>>=
relvar union ${domns}::__ Arch_PartitionDst [pipe {
relation project $subrefs Relationship ReferencedClass\
ReferringClass RevAttrs |
relation rename % Relationship Name ReferencedClass SrcClass\
ReferringClass DstClass RevAttrs Attrs |
relation update % lnk {1} {

tuple update $1nk Name ~[tuple extract $1lnk Name] }

To support subclass migration, the SuperLink and SubLink relvars are populated.

<<generate: populate migrate data>>=
relvar union ${domns}::__ Arch_SuperLink [pipe {
relation project $subrefs Relationship ReferencedClass |
relation rename ~ ReferencedClass SuperClass
H]
relvar union ${domns}::__Arch_SubLink [pipe {
relation project $subrefs Relationship ReferringClass ReferringAttrs |
relation rename ~ ReferringClass SubClass

H

Generalization require creating relvar partition constraints and a relationship ensemble command. As before, we will
iterate across a relation value to handle invoking the needed commands.

One difficulty we have to deal with is the arguments to relation partition. You supply subclass names and referential
attribute lists as a variable number of arguments. To get the things into that form requires some additional processing on the
subrefs relation.

Relation Oriented Software Execution Architecture 209/ 295

<<generate: generalizations>>=
set partrefs [pipe {
relation project $subrefs Relationship ReferencedClass DstAttrs\
ReferringClass SrcAttrs |
relation extend ~ prs SubAttrMap list {[list)\
S{domns}:: [tuple extract S$prs ReferringClass]\
[tuple extract S$prs SrcAttrs]]} |
relation eliminate ~ ReferringClass SrcAttrs |
relation group ~ SubClassRefs SubAttrMap |
relation extend ~ spt SubParts list {
[concat {*}[relation list [tuple extract $spt SubClassRefs]]]} |
relation eliminate ~ SubClassRefs

H

relation foreach partref S$partrefs ({
relation assign S$partref\
{Relationship relationship}\
{ReferencedClass superclass}\
{DstAttrs superattrs}\
{SubParts subparts}

relvar partition ${domns}::Srelationship ${domns}::S$superclass\
Ssuperattrs {x}$subparts
namespace ensemble create\
—command ${domns}::$relationship\
—-map [dict create migrate [list ::rosea::RelCmds::migrate\
Srelationship]]

Tests

<<generate command tests>>=
test generate-4.0 {
generate constraints for generalization relationship
} —setup {
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
rosea configure ({
domain foo {
class super {
attribute sl string -id 1
attribute s2 string -id 1
attribute a2 string -default 20
}
class subl {
attribute sbl string -id 1
attribute sb2 string -id 1
reference R1 super -link {sbl sl} -link {sb2 s2}
}
class sub2 {
attribute sb3 string -id 1
attribute sb4 string -id 1
reference Rl super -link {sb3 sl} -link {sb4 s2}
}

generalization R1 super subl sub2

Relation Oriented Software Execution Architecture 210/ 295

rosea generate

relvar constraint info ::foo::R1
} —result {partition ::foo::R1 ::foo::super {sl s2} ::foo::sub2 {sb3 sb4} ::foo::subl {sbl <+
sb2}}

<<generate command tests>>=
test generate-4.1 {
migrate subclass
} —setup {
rosea configure ({
domain foo {
class S {
attribute sl string -id 1
attribute s2 string -id 1
attribute a2 int -default 20
}
class X {
attribute x1 string -id 1
attribute x2 string -id 1
reference R1 S -1link {x1 sl} -link {x2 s2}
}
class Y {
attribute yl string -id 1
attribute y2 string -id 1
reference R1 S —-link {yl sl} -link {y2 s2}
}
generalization R1 S X Y

}
rosea generate
} —cleanup {
cleanupConfigbData
removeDomain ::foo
} -body {
relvar eval {
foo::S create sl a s2 b
foo::X create x1 a x2 b
}
set ref [foo::X findWhere {$x1 eq "a"}]
foo::R1 migrate Sref Y
} —result {::foo::Y {{yl string y2 string} {{yl a y2 b}}}} —-match ref

<<generate command tests>>=
test generate—-4.2 {
repeated specialization
} —-setup {
} —cleanup {
cleanupConfigData
removeDomain ::grocer
} —body {
rosea configure {
domain grocer {
class Fruit {
attribute Name string -id 1
attribute Color string
}
class SeededFruit ({
attribute Name string -id 1
reference R1 Fruit -link Name
}

class UnseededFruit {

Relation Oriented Software Execution Architecture

211 /295

attribute Name string -id 1
reference R1 Fruit -1link Name

}

generalization R1 Fruit SeededFruit UnseededFruit

class StoneFruit {
attribute Name string -id 1
reference R2 SeededFruit -link Name
}
class PitFruit {
attribute Name string -id 1
attribute PitSize int -default 10
reference R2 SeededFruit -1link Name

}
generalization R2 SeededFruit StoneFruit PitFruit

}
rosea generate
relvar eval {
set ref [::grocer::Fruit create Name apple Color red]
::grocer: :SeededFruit create Name apple
::grocer: :PitFruit create Name apple PitSize 30
}
set pit [::rosea::InstCmds::findRelated Sref\
{~R1 SeededFruit} {~R2 PitFruit}]
::rosea::InstCmds: :readAttribute $pit PitSize
} —result {30}

<<generate command tests>>=
test generate—-4.3 {
compound generalization

} —setup {

} —cleanup {
cleanupConfigData
removeDomain ::grocer

} -body {

rosea configure {
domain grocer {

class Fruit {
attribute Name string -id 1
attribute Color string

}

class SeededFruit ({
attribute Name string -id 1
reference R1 Fruit -1link Name

}

class UnseededFruit {
attribute Name string -id 1
reference R1 Fruit -1link Name

}

generalization Rl Fruit SeededFruit UnseededFruit

class RedFruit {
attribute Name string -id 1
reference R2 Fruit -1link Name
}
class YellowFruit {
attribute Name string -id 1
reference R2 Fruit -1link Name

}

generalization R2 Fruit RedFruit YellowFruit

Relation Oriented Software Execution Architecture

}

rosea generate

relvar eval {
set aref [::grocer::Fruit create Name apple Color red]
::grocer: :SeededFruit create Name apple
::grocer: :RedFruit create Name apple

set bref [::grocer::Fruit create Name banana Color yellow]
::grocer: :UnseededFruit create Name banana
::grocer::YellowFruit create Name banana

}

set apple [rosea tunnel S$aref findRelated {~R1l SeededFruit}]

set banana [rosea tunnel Sbref findRelated {~R2 YellowFruit}]

testConditions\
{[rosea tunnel Sapple readAttribute Name] eqg "apple"}\
{[rosea tunnel S$banana readAttribute Name] eq "banana"}

} —result {1}

<<generate command tests>>=
test generate-4.4 {
signal a polymorphic event to a compound generalization
} —setup {
} —cleanup {
cleanupConfigData
removeDomain ::grocer
} —body {
rosea configure ({
domain grocer {
class Fruit {
attribute Name string -id 1
attribute Color string

polymorphic grow

}

class SeededFruit {
attribute Name string -id 1
reference R1 Fruit -link Name

statemodel {
state seed {} {
puts "In Seed"
}

transition seed - grow —-> sprouted

state sprouted {} {
puts "In SeededFruit"
lappend ::rosea::test::states SeededFruit

}

class UnseededFruit {
attribute Name string -id 1
reference R1 Fruit -1link Name

statemodel {
state seed {} {
puts "In Seed"
}

transition seed - grow —> sprouted

state sprouted {} {
puts "In UnseededFruit"

Relation Oriented Software Execution Architecture 213 /295

lappend ::rosea::test::states UnseededFruit

}

generalization Rl Fruit SeededFruit UnseededFruit

class RedFruit {
attribute Name string -id 1
reference R2 Fruit -1link Name

statemodel {
state seed {} {
puts "In Seed"
}

transition seed - grow —-> sprouted

state sprouted {} {
puts "In RedFruit"
lappend ::rosea::test::states RedFruit

}

class YellowFruit {
attribute Name string -id 1
reference R2 Fruit -1link Name

statemodel {
state seed {} {
puts "In Seed"
}

transition seed - grow —> sprouted

state sprouted {} {
puts "In YellowFruit"
lappend ::rosea::test::states YellowFruit

}
generalization R2 Fruit RedFruit YellowFruit

}
rosea generate
relvar eval {
set aref [::grocer::Fruit create Name apple Color red]
:grocer: :SeededFruit create Name apple
::grocer: :RedFruit create Name apple

set ::rosea::test::states [list]
rosea tunnel $aref signal grow
vwailt ::rosea::test::states

testConditions\
{"SeededFruit" in $::rosea::test::states}\
{"RedFruit" in $::rosea::test::states}
} —result {1}

Relation Oriented Software Execution Architecture 214 /295

Create Assigner Data and Commands

We did some of the generation work for assigners when we considered association relationships. There we included in the
relationship ensemble command any additional commands that perform assigner operations for those association that had defined
assigners.

Here, we complete the work on assigners. We must create the ___Activity namespace and the state action procedures. Also
we must create the instance relvars for the assigners.

<<generate: create assigner data and commands>>=
set assigners [relation semijoin $domain $AssignerStateModel\
—using {Name Domain}]
relation foreach assigner $assigners {
set asgnns\
${domns}::[relation extract Sassigner Relationship]::__Activity
namespace eval $asgnns {
<<tclral imports>>
}
namespace eval $asgnns [list\
namespace path [list\
::rosea::InstCmds\
Sdomns\
1N\
]
set states [pipe {
relation semijoin $assigner $State\
—-using {Domain Domain Relationship Model} |
relation project ~ Name Parameters Action
}]
relation foreach state $states {
relation assign S$state\
{Name stateName}\
{Parameters params}\
{Action stateAction}
set params [linsert S$params 0 self]
proc ${asgnns}::$stateName S$params S$SstateAction

single assigners have an instance relvar. We just make up an identifier for it.

<<generate: create assigner data and commands>>=
relation foreach sassigner\
[relation semijoin $domain $SingleAssigner\
—-using {Name Domain}] {
relation assign $sassigner {Relationship relationship}
relvar create ${domns}::__${relationship}__ STATEINST ({
Id int
__State string
} Id
CreateInInitialState $domns S$relationship {Id 0} ; # ©

Multiple assigners have an identifier that matches that of some class so we have to search down the proper identifying attributes.

<<generate: create assigner data and commands>>=
relation foreach massigner\
[relation semijoin $domain S$MultipleAssigner\
—using {Name Domain}] {
relation assign S$massigner {Relationship relationship}
set assignvar ${domns}::__${relationship}__ STATEINST

Relation Oriented Software Execution Architecture 215/ 295

set idattrs [pipe {
relation semijoin $massigner S$Identifier\
SIdentifyingAttribute\
SAttribute -using {Domain Domain Class Class\
Attribute Name} |
relation dict ~ Name Type
}]
relvar create $assignvar\
[concat $idattrs [list __ State string]]\
[dict keys $idattrs]

(1] For single assigners, we create the single instance as part of generation. For multiple assigners, we don’t know how many
there are so they must be created when the domain is populated or at run time.

Tests

<<generate command tests>>=
test generate-6.0 {
signal an assigner
} —-setup {
rosea configure ({
domain foo {
class Customer
attribute Name string -id 1
}
class Clerk {
attribute Name string -id 1
attribute Customer string
reference R1 Customer —-link {Customer Name}
}
association R1 Clerk 0..1--0..1 Customer
assigner R1 {
state sl {a b} {
puts $a S$b
}

transition sl - el —-> s2

state s2 {} {
puts "in s2"
set ::done 1

}

transition s2 - el —-> sl

}
rosea generate
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
::foo::R1 signal el
set timer [after 1000 set ::done TIMEOUT]
vwait ::done
after cancel S$timer
set ::done
} —result {1}

Relation Oriented Software Execution Architecture

216 /295

<<generate command tests>>=
test generate-6.1 {
signal a multi assigner
} —setup {
rosea configure {
domain foo {
class Customer
attribute Name string -id 1
}
class Clerk {
attribute Name string -id 1
attribute Customer string
attribute Department string
reference R1 Customer —-link {Customer Name}
reference R2 Department —-link {Department Name}
}
class Department {
attribute Name string -id 1
}
association R1 Clerk 0..1--0..1 Customer
association R2 Clerk 1..%——1 Department
assigner R1 {
identifyby Department
state sl {a b} {
puts $a $b
}

transition sl - el -> s2

state s2 {} {
puts "in s2"
set ::done 1
}

transition s2 - el —-> sl

}
rosea generate
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
::foo::R1 create Name Shoes
::foo::R1 signal {Name Shoes} el
set timer [after 1000 set ::done TIMEOUT]
vwait ::done
after cancel S$timer
set ::done
} —result {1}

Relation Oriented Software Execution Architecture 217 /295

Chapter 7

Initial Instance Population

The third important step in translating an XUML domain is to establish an initial population for the instances in a domain. If
you consider the evolution of the domain over time, the initial data population sets the values of attributes at time zero. This is
analogous to specifying the initial state of a state machine. Then at each transaction in the processing, the domain data moves
from one valid set of values to another as implied by the class attributes and relationships and enforced by the underlying relvar
constraints.

A significant benefit of using TcIRAL relvars as the basis of the data architecture is the instance population of the domain can be
established purely in data by specifying attribute values alone. Attributes values and relationship linkage is established by setting
values in a declarative way. It is possible to execute a series of create and 1ink commands to establish the initial instance
population in much the same way as class instances are dealt with at run-time. However, this implies writing potentially long
sequences of code. The populate command will allow you to specify attribute values and the implied relationship linkages in
data organized as tables that correspond exactly to the class diagram. It is not unusual to maintain many different populations for
a domain. Often testing will use a different initial population than the delivered system. Population scripts can be stored in files
and the system build mechanism can choose the desired initial instance population.

Following our pattern for evaluating DSL scripts, we establish a namespace where the population commands will reside so that
the population script may invoke commands without requiring additional qualification.

<<population commands namespace>>=
namespace eval Populate {
logger::initNamespace [namespace current]

<<tclral imports>>

namespace import ::ral::relvar
namespace import ::rosea::Config::ConfigEvaluate
namespace import ::rosea::Helpers::DeclError

<<populate commands>>
<<domain population namespace layout>>

rosea populate script

script
A Tcl script that is executed in an environment that will resolve population configuration commands that may be
used to define the initial instance population of a domain.

Implementation

<<rosea exports>>=
namespace export populate

Relation Oriented Software Execution Architecture 218 /295

<<rosea commands>>=

proc populate {script} {
namespace upvar Config errcount errcount configlineno configlineno
set errcount 0
set configlineno 1

ConfigEvaluate ::rosea::Populate S$script ; # @
if {$errcount > 0} {

tailcall DeclError CONFIG_ERRORS S$errcount
}

return $errcount

(1] It is important that population happen as a transaction.

Like the configure command, we supply variations to take the data from a channel or a file.

rosea populateFromChan channel

channel
A handle to a Tcl channel, e.g. as returned from : : open.

The populateFromChan command executes the populate command on the script that is obtained by reading the
contents of channel.

Implementation

<<rosea exports>>=
namespace export populateFromChan

<<rosea commands>>=
proc populateFromChan {chan} {
tailcall populate [::chan read -nonewline $chan]

rosea populateFromFile filename

filename
The name of a file containing a population script.

The populateFromFile command executes the populate command on the script that is contained in the file named,
filename.

Implementation

<<rosea exports>>=
namespace export populateFromFile

<<rosea commands>>=
proc populateFromFile {filename} {

Relation Oriented Software Execution Architecture 219/295

set £ [::open $filename r]
try {

populateFromChan $f
} finally {

::chan close S$f

Populating Domains

Just as we did when defining the DSL to configure a domain, we define a namespace in which the commands of populating a
domain will reside.

<<domain population namespace layout>>=
namespace eval DomainPop {
logger::initNamespace [namespace current]

<<tclral imports>>

namespace import ::ral::relvar
namespace path ::rosea::Helpers
<<domain populate commands>>

Domain

The domain command specifies the set of commands used to populate a particular domain. The domain name must have been
defined in the configuration phase of constructing the domain.

domain name body

name
The name of the domain. A domain name must be a non-empty string.

body
A Tcl script containing invocation of the domain population commands to specify the initial instance population of

the domain.

Implementation

<<populate commands>>=
proc domain {name body} {
set domain [relvar restrictone ::rosea::Config::Domain Name $name]
if {[relation isempty S$domain]} {
tailcall DeclError UNKNOWN_DOMAIN S$domain

namespace upvar DomainPop DomainName DomainName DomainLoc DomainLoc
relation assign $domain {Name DomainName} {Location DomainLoc}

try {
relvar eval {
ConfigEvaluate [namespace current]::DomainPop Sbody
}

} on error {result opts} {

Relation Oriented Software Execution Architecture 220/ 295

log::error S$result
upvar #0 ::rosea::Config::errcount errcount
incr errcount

Class

The class command is used to define the class context for supplying attribute values for the population. The intent here is to
allow the values to be specified in a tabular manner.

class name heading values ...

name
The name of the class for whom instances are to be created.

heading
A list of attributes of the class. Attributes that have been given default values need not be present. Otherwise, it is
necessary to supply a value for all attributes when an instance is created.

values
A single value or a variable number of values to be used for populating the attributes of the class. If there is only a
single value argument, it is treated as a list. This treatment is convenient when constant values are assigned to the
attributes. For a single value argument or if many values are given, the number of values must be a multiple of the
number of attributes in the heading. Values are assigned to the corresponding attributes. The number of instances
create is the total number of values supplied divided by the number of attributes in the heading. If the value given

an attribute is the literal string "-", then the attribute is not populated and will receive its default value. To give an
attribute a value of "-" it must be escaped as "\-".

Implementation

<<domain populate commands>>=
proc class {class heading args} {
Determine if we have one big list or a bunch of values.

set popvalues [expr {[llength $args] == 1 ? [lindex $args 0] : $args}]
set headlen [llength $heading]
if {[llength S$popvalues] % Sheadlen != 0} {

tailcall DeclError ARG_MISMATCH $headlen [llength S$popvalues]

Iterate over the attribute values taking them in chunks that are the same
size as the heading.
set body [list]
for {set vindex 0} {$vindex < [llength S$popvalues]} {incr vindex S$headlen} {
set values [lrange $popvalues $vindex [expr {S$vindex + Sheadlen - 1}]]
Create a tuple as a list of attribute name / value pairs.
set tuple [list]
foreach attr S$heading value $values {
Check if we are skipping a value to use a default. We must also
allow some way to specify the value as "-".
if {Svalue eq "-"} {
continue
} elseif {$value eq "\\-"} {
set value -
}
lappend tuple $attr S$value

Relation Oriented Software Execution Architecture 221 /295

}

Accumulate the tuples as a list to form the body that will be
inserted into the relvar.

lappend body $tuple

Insert the body into the relvar.
namespace upvar [namespace current]\
DomainName DomainName\
DomainLoc DomainLoc
set domns ${DomainLoc}::${DomainName }
set relvar ${domns}::S$class
set insts [relvar insert S$relvar {x}S$body]

Now we have to deal with any state model that might be present. We have

to set up the initial state properly if such a thing exists for this

class.

set idattrs [lindex [relvar identifiers S$relvar] 0]

relation foreach inst $insts {

CreateInInitialState $domns $class [pipe {

relation project $inst {x}$idattrs |
relation tuple ~
tuple get ~

H

return

<<error code formats>>=
ARG_MISMATCH {number of population values must be a multiple of %d, got %d}

Tests

<<populate command tests>>=
test populate-1.0 {
Populate a domain
} —-setup {
rosea configure ({
domain meta {
class C1 {
attribute Id string -id 1
attribute Al int

class C2 {
attribute Id string -id 1
attribute ClId string
reference R1 Cl -link {ClId Id}

}

association R1 C2 0..%x——0..1 C1

}
rosea generate
} —cleanup {
cleanupConfigData
removeDomain ::meta
} -body {
rosea populate {

Relation Oriented Software Execution Architecture 222 /295

domain meta {

class CI1\
{Id Al} |
foo 24
bar 42

}

class C2\
{Id Clid} {
f1l 24
f2 24

}
relation cardinality $::meta::Cl
} —result {2}

<<populate command tests>>=
test populate-1.1 {
Populate a domain —-- alternate syntax
} —setup {
rosea configure ({
domain meta {
class C1 {
attribute Id string -id 1
attribute Al int

class C2 {
attribute Id string -id 1
attribute ClId string
reference R1 Cl -link {ClId Id}

}
association R1 C2 0..*x——0..1 C1

}
rosea generate
} —cleanup {
cleanupConfigData
removeDomain ::meta
} —body {
rosea populate {
domain meta {

class C1\
{1d AL\
foo 24\
bar 42
class C2\
{Id ClId}i\
f1l 24\
£2 24

}
relation cardinality $::meta::C2
} —result {2}

<<populate command tests>>=
test populate-1.2 {
Populate a domain using default value syntax
} —setup {
rosea configure {
domain meta {

Relation Oriented Software Execution Architecture

223 /295

class C1 {
attribute Id string -id 1
attribute Al int -default 20

class C2 {
attribute Id string -id 1
attribute C1Id string
reference R1 Cl -1link {ClId Id}

}

association R1 C2 0..%x—-0..1 C1

}
rosea generate
} —cleanup {
cleanupConfigData
removeDomain ::meta
} —body {
rosea populate {
domain meta {

class C1\
{Id Al} |
foo 24
bar =
}
class C2\
{Id Cl1id} {
f1 24
£2 24
}
}
}
set ref [::meta::Cl findWhere {$Al == 20}]

::rosea::InstCmds: :readAttribute S$ref Id
} —result {bar}

<<populate command tests>>=
test populate-1.3 {
Populate a domain with initial states
} —setup {
rosea configure {
domain meta {
class C1 {
attribute Id string -id 1
attribute Al int

class C2 {
attribute Id string -id 1
attribute ClId string
reference R1 Cl -link {ClId Id}

statemodel {
state s1 {} {
puts "in s1"
}

transition sl - el —> sl

}
association R1 C2 0..%x——0..1 C1

Relation Oriented Software Execution Architecture

224 / 295

rosea generate x [namespace current]
} —cleanup {
cleanupConfigbData
removeDomain [namespace current]::meta
} -body {
rosea populate {
domain meta {

class C1\
{Id Al} {
foo 24
bar 42
}
class C2\
{Id Cl1id} {
fl 24
f£2 24
}
}
}
relation cardinality [relvar set [namespace current]::meta::

} —result {2}

Assigner

__C2__ _STATEINST]

In the context of populating a model, the assigner command is used to create instances for those assigners that are multiple
assigners. For singular assigners, the assigner instance is created during the generation of the domain. For multiple assigners,
it is necessary to create the various assigner instances and the assigner command can be used to create an initial instance

population for a multiple assigner.

assigner association heading values . ..

association

heading

values

The name of the association for which instances are to be created.

A list of attribute names. These names must match the identifying attributes of the assigner, i.e. they must match
those given by the ident i fyby command given when the assigner was specified.

A single value or a variable number of values to be used for populating the attributes of the class. If there is only a
single value argument, it is treated as a list. This treatment is convenient when constant values are assigned to the
attributes. For a single value argument or if many values are given, the number of values must be a multiple of the
number of attributes in the heading. Values are assigned to the corresponding attributes. The number of instances
create is the total number of values supplied divided by the number of attributes in the heading.

Implementation

<<domain populate commands>>=
proc assigner {rname heading args} {

Determine if we have one big list or a bunch of values.
set popvalues [expr {[llength $args] ==

set headlen [llength $heading]

if {[llength S$popvalues] % S$headlen != 0}
tailcall DeclError ARG_MISMATCH S$headlen

[lindex $args 0]

[llength $popvalues]

Relation Oriented Software Execution Architecture 225/ 295

namespace upvar [namespace current]\
DomainName DomainName\
DomainLoc DomainLoc
set domns ${DomainLoc}::${DomainName}
set relvar S${domns}::__S$S{rname}__STATEINST
set idattrs [lindex [relvar identifiers S$relvar] 0]
if {![struct::set equal $heading $idattrs]} {
tailcall DeclError NO_IDENTIFIER $heading $idattrs

Iterate over the attribute values taking them in chunks that are the same
size as the heading.
for {set vindex 0} {$vindex < [llength $popvalues]} {incr vindex S$headlen} {

set values [lrange S$popvalues S$vindex [expr {$vindex + Sheadlen - 1}]]
Create a tuple as a list of attribute name / value pairs. We assume
the values are in the same order as the heading —-- that is the point.

set tuple [list]

foreach attr $heading value $values {
lappend tuple $attr Svalue

}

CreateInInitialState $domns $rname Stuple

return

Tests

<<populate command tests>>=
test populate-2.0 {

}

populate a multi assigner

-setup {

rosea configure {
domain foo {
class Customer {
attribute Name string -id 1
}
class Clerk {
attribute Name string -id 1
attribute Customer string
attribute Department string
reference R1 Customer —-link {Customer Name}
reference R2 Department —-link {Department Name}
}
class Department {
attribute Name string -id 1
}
association R1 Clerk 0..1--0..1 Customer
association R2 Clerk 1..%--1 Department
assigner R1 {
identifyby Department
state sl {a b} {
puts $a S$b
}

transition sl - el —-> s2

state s2 {} {
puts "in s2"
set ::done 1

Relation Oriented Software Execution Architecture

226 / 295

transition s2 - el —-> sl

}
rosea generate
} —cleanup {
cleanupConfigData
removeDomain ::foo
} —body {
rosea populate {
domain foo {
assigner R1 Name Shoes
assigner R1 Name Clothes

::foo::R1 signal {Name Shoes} el

set timer [after 1000 set ::done TIMEOUT]

vwait ::done
after cancel Stimer
set ::done

} —result {1}

Relation Oriented Software Execution Architecture 227 / 295

Chapter 8

Serializing a Domain

Since all the data of a domain is held in relation variables, it is possible to save the entire state of a domain by using TcIRAL
to serialize the relvars of the domain. This will save not only the object instance data itself, but all the state information and the
architectural relvars. Deserializing the domain then restores it to its exact configuration. _

rosea save ?-tclrall-sqglite ? ?-async cmdprefix? domain filename

-tclral
If this option is present or if no serialization type is specified, the serialization is accomplished using the native

method of TcIRAL.

-sqlite
If -sglite is present, then serialization is done to a SQLite data base.

—async cmdprefix
The —async option allows a cmdprefix to be specified that will be invoked when the serialization is completed.
Because serialization may not happen in the middle of a transaction, after executing the save command, the seri-
alization action may not be completed. If supplied, cmdprefix is invoked with the domain and filename argument
values.

domain
The fully qualified path name to the domain to be saved.

filename
The name of the file to which the domain data is serialized.

The save command arranges for all the data for the given domain to be saved in the file given by, filename. Options
allow for the format of the saved file to be either native TcIRAL serialization (which is ASCII and very Tcl oriented) or
the domain may be saved in a SQLite database. In both cases, serializing a domain uses the ability of TcIRAL to serialize
a set of relation variables.

Implementation

The implementation strategy for the save command first parses the arguments for the various options. Then a script is built that
executes the serialization and, if specified, the completion command. The composed script is then executed as an idle callback.
This will insure that we are at a quiet time in the execution of a domain to make sure the serialization does not take place in the
middle of a transaction.

<<rosea exports>>=
namespace export save

<<rosea commands>>=

Relation Oriented Software Execution Architecture 228 /295

proc save {args} {
set savecmd ::ral::serializeToFile
set asynccmd {}

set options $args

while {1} {
if {[string index [lindex S$options 0] 0] eq "-"} {
set options [lassign S$options option]
switch -exact -- $option {
-sglite {
set savecmd ::ral::storeToSQLite
}
—-tclral {
set savecmd ::ral::serialize
}
—async {
set options [lassign S$Soptions asynccmd]
}
default {
tailcall DeclError UNKNOWN_OPTION save S$Soption
}
}
} else {
break
}
}
if {[llength S$Soptions] == 2} {
lassign S$options domain file
} else {

tailcall DeclError SAVE_ARG_ERROR $args

set script "try \{S$savecmd $file ${domain}*\}" ; # (1
if {$asynccmd ne {}} {
append script " finally \{S$asynccmd $domain S$file\}"

after idle [list ::apply [list {} S$script]] ; # (2

o Note that we append an asterisk to the domain name to make all the relvars of the domain match for the benefit of the
serialize and storeToSQLite commands.

(2] Using a lamda procedure is a very clean way to deal with scripts built on the fly.

<<error code formats>>=
SAVE_ARG_ERROR {wrong number of arguments: expected:\

"save ?-sqglite | -tclral? ?-async <cmdprefix>?\
<domain> <filename>", got: "%s"}

Tests

<<save command tests>>=
test save-1.0 {
Serialize a domain
} —setup {
rosea configure ({

Relation Oriented Software Execution Architecture 229 /295

domain serial {
class C1 {
attribute Id string -id 1
attribute Al int

class C2 {
attribute Id string -id 1
attribute ClId string
reference R1 Cl -link {ClId Id}

}
association R1 C2 0..%x——-0..1 C1

}

rosea generate

rosea populate {
domain serial {

class C1\
{Id Al} |
foo 24
bar 42

}

class C2\
{Id Cl1id} {
f1 bar
f2 foo

}
} —cleanup {
cleanupConfigData
removeDomain ::serial
removeDomain ::sertest
file delete serial.ral
} —body {
set asynccmd [lambda@ [namespace current] {domain file} {
syncToTest
]

rosea save -—async $asynccmd ::serial serial.ral

waitForSync
ral deserializeFromFile serial.ral ::sertest
ral relation cardinality [ral relvar set ::sertest::Cl]

} —result {2}

<<save command tests>>=
test save-2.0 {
Serialize a domain using SQLite
} —setup {
rosea configure {
domain serial {
class C1 {
attribute Id string -id 1
attribute Al int

class C2 {
attribute Id string -id 1
attribute ClId string
reference R1 Cl -link {ClId Id}

}
association R1 C2 0..%x——-0..1 C1

Relation Oriented Software Execution Architecture 230/ 295

}

rosea generate

rosea populate {
domain serial {

class C1\
{Id Al} |
foo 24
bar 42

}

class C2\
{Id Cclid} {
f1 foo
£2 {}

}
} —cleanup {
cleanupConfigData
removeDomain ::serial
removeDomain ::sertest
file delete serial.sqglite
} —-body {
set asynccmd [lambda@ [namespace current] {domain file} {
syncToTest
]

rosea save -sglite -async $asynccmd ::serial serial.sglite

waitForSync
ral loadFromSQLite serial.sglite ::sertest
ral relation cardinality [ral relvar set ::sertest::Cl]

} —result {2}

Relation Oriented Software Execution Architecture 231/295

Chapter 9

Bridging to Instance Operations

It is necessary to provide a means to break the encapsulation of a domain, albeit in a very controlled fashion. Consider, for
example, the problem of interfacing Tk events into a rosea domain. It is frequently the case that a Tk event needs to be signaled
as a state machine event to a particular object. To accomplish this, there must be a small piece of bridge code that is used to
map the Tk event semantics onto the object semantics. The bridge code may be simple enought to be the script bound to the Tk
event (using the bind command or a —command option on a widget). You could provide a domain operation to perform this
task, but such code adds significant clutter to the domain’s public interface and should that domain be reused in another context,
is unlikely to satisfy the needs for reuse. A much more robust technique is to have a general operation that can be used in the
bridge code that will need to be supplied when a particular domain is built into an overall software application.

In Tk, events are associated with windows. In Rosea, state machine events are signaled to class instances. So the bridge code will
have to map windows to instances in some manner. This can be done in a variety of ways, but one choice is to map the window
name to an identifier of an instance and use the £indById operation on a class to obtain a reference to the instance. We then
want to execute the signal operation on that instance and have that event appear to be signaled from outside of the domain, i.e.
we want to transform a Tk event into state machine event that starts a new thread of control. The tunnel command provides
this capability.

rosea tunnel instref operation ?argl arg2 ...?

instref
An instance reference of the instance to which the operation will be directed.

operation
The name of an operation to be applied to the instref.

argl arg2

The arguments of the operation.

The tunnel command invokes an instance based operation on an instance from outside of the domain’s implemenation.
The operation will be run as a transaction on the domain and will start a new thread of control.

Implementation

Note that the implementation of tunnel is almost the same as the implementation of instop. The difference is that the
operation is performed inside of a transaction. This allows operations to manipulate the data model in limited ways. However,
by providing a point of invocation that is outside of the domain, we will insure that any generated signals do not appear as if they
came from inside the domain.

In particular, users should not violate encapsulation by executing from within a state activity, a Tk widget command like:

.runbutton configure -command [namespace code [list instop $self signal Run]]

Relation Oriented Software Execution Architecture 232 /295

This has the effect on injecting code into the namespace of a state activity and should not be used as it can, under certain corner
cases, confuse the determination of the source of an event.

The better way directly to bridge a Tk widget event to a state machine event is:

.runbutton configure —-command [::rosea tunnel S$self signal Run]

The tunnel command can be viewed as a convenience procedure to break domain encapsulation in a controlled manner without
having to code a clumsy invocation of : : rosea: : InstCmds: : instop directly.

<<rosea exports>>=
namespace export tunnel

<<rosea commands>>=
proc tunnel {instref op args} {
relvar eval {
set result [[lindex $instref 0]::Instance $instref $op {x}S$args]

}

return S$result

Relation Oriented Software Execution Architecture 233 /295

Chapter 10

State Machine Trace

In this section we discuss the capabilities and design of tracing state machine event dispatch. We are immediately confronted
with a heavily overloaded term, trace. There are many kinds of traces in the Tcl world and we do not wish to confuse Tcl variable
and command tracing with ral package relvar tracing or with rosea package state machine tracing. Here we are discussing the
ability of the rosea package to produce a chronologically ordered sequence of the results of dispatching state machine events.

It’s hard to overemphasize the importance of the event dispatch trace for a set of state machines. Since the majority of the
processing in state machine based application is in the form of callbacks for dispatched events, it is difficult to read the code
base sequentially and have a good sense of what will happen during execution. Indeed, it is much easier to consult the graphical
representation to know what will happen during run time. Of course, a different sequence of events will order the code execution
differently. That is, after all, what we are trying to achieve with a state model.

The fact that the path of code execution does not easily correspond to the sequence of the code statements is objectionable enough
to some that they avoid a state model based approach. Others try to cast state behavior into more sequential appearing code by
using other techniques such as coroutines. All of these considerations lead to the conclusion that capturing a chronological trace
of the event dispatch of a state machine based applications is indispensable to understanding and testing.

In this section we discuss the design and implementation of the state machine tracing implemented by this package. First we lay
out some basic rules.

* Tracing can be controlled. It is necessary to be able to start and stop the trace capture and to clear out any accumulated traces.
 Tracing must capture all the semantics of event dispatch, including polymorphic and creation events.
* Itis only necessary to trace event dispatch. Signaling, i.e. when events are generated, is not captured.

* Common operations on the collected trace data must be supported including the ability to save the trace data into some persis-
tent form, (e.g. a file).

To meet these requirements, trace data is captured by the event dispatch methods and stored in appropriate data structures. The
following sections discuss the manner in which this is done. We divide the discussion into the these parts:

¢ The structure of the trace data.
* Procedures to gather the trace data.

* Procedures to query and format the trace data.

We define a namespace in which to place the trace specific code and data.

<<trace commands namespace>>=
namespace eval Trace {
logger::initNamespace [namespace current]

<<tclral imports>>

Relation Oriented Software Execution Architecture 234 /295

namespace import ::ral::relvar
namespace path [list\
[namespace parent]::Helpers\
[namespace parent]::InstCmds\
]
<<trace data>>
<<trace commands>>

Trace Data

The figure below shows a class diagram in UML notation of the state machine trace data.

Trace
Trace_Id {lI}
Timestamp
Source
Event
Target

R1

Creation Polymorphic Transition
Trace_Id {I,R1} Trace_Id {I,R1} Trace_Id {I,R1}
SuperClass CurrState
Linkage NewState
Params

Figure 10.1: Trace Data Class Model

A trace is identified by an arbitrary identifier. We will use a sequential integer. Each trace has a Timestamp. This needs to be
of relatively high resolution so we will use the return from the clock microseconds command. The Target of a trace is
the instance reference to which the event is directed.

The three types of event dispatch types are captured as by the R1 generalization. Creation events result in an instance being
created followed by an ordinary Transition event. So any creation event will eventually have two trace entries. Polymorphic
events map, at run time, an event directed at a superclass instance to a corresponding event in the related subclass instance. So

Relation Oriented Software Execution Architecture 235/ 295

each polymorphic event will have at least one ordinary transition associated with it as the polymorphic event is finally mapped
down to a leaf subclass and consumed there. Ordinary Transition events are most common and we record the parameters
associated with the event and the outcome of the transition.

Following our established pattern, the most direct implementation of this data schema is to use the Tc1RAL package.

<<trace data>>=
relvar create Trace {

Trace_Id int
Timestamp bignum
Source list
Event string
Target list

} Trace_Id
relvar create Creation {
Trace_1Id int

} Trace_Id

relvar create Polymorphic ({

Trace_Id int

SuperClass string

Linkage string
} Trace_Id

relvar create Transition {

Trace_Id int
CurrState string
NewState string
Params list

} Trace_Id

relvar partition R1 Trace Trace_Id\
Creation Trace_Id\
Polymorphic Trace_Id\
Transition Trace_Id

We will support two queries on trace data, selecting based on the class of the target of the event dispatch and selecting based on
the instances that are targets. We put together some procedures to perform those queries.

<<trace commands>>=
proc QueryClassTraces {classes} {
variable Trace
return [relation restrictwith $Trace ({

[lindex $Target 0] in $classes ||\
[namespace tail [lindex $Target 0]] in Sclasses
11+ 0
}
(1] Note that the classes can be either fully qualified relvar names or just the tail. If multiple domains are involved in the

application, using fully qualified names insures no unintended name conflict between domains.

To query specific instances as targets, we need to be able to compare the instances in the trace to an arbitrary list of instance
references. An easy way to accomplish that is to construct an anonymous function which is evaluated during a relation re
strictwith operation. We are forced to do something like this since the relation restrictwith command evaluates
expressions and not scripts. Since we need a little logic to iterate over all the instances references, an anonymous function that
can be invoked from the expression will work. To make coding the anonymous function easier, we will use the 1amda package
fromtcllib.

<<required packages>>=
package require lambda

Relation Oriented Software Execution Architecture 236 /295

We store the lambda in a variable for easy reference later.

<<trace data>>=
variable targetCmpFunc [lambda {instrefs target} {
lassign S$target trelvar tinst
foreach instref $instrefs {
lassign $instref crelvar cinst
if {S$trelvar eq Screlvar && [ral relation is $tinst subsetof $cinst]} {
return true

}

return false

}H
A few points to note here.

* We iterate over all the instance references in the argument list.
* We split out the instance reference components for the target only once.

* It is important to compare relvar names first so we can short circuit the relation comparison. If the instances refer to different
relvars then the headings of the instance relation values won’t match.

* We actually determine if the target is simply contained in an instance reference, i.e. we allow the instance reference arguments
to refer to multiple instances.

<<trace commands>>=
proc QueryTargetTraces {targets} {
variable Trace
variable targetCmpFunc
return [relation restrictwith S$Trace {[{*}S$StargetCmpFunc S$targets S$Target]}]

We need some ordinary variables to keep track of the state of trace capture, a counter for generating the Trace_Id attribute
values and details of trace logging.

<<trace data>>=

variable traceState off
variable traceNumber 0
variable tracelLogState off
variable tracelLogLevel info

We log to a service that is the same name as the package.

<<trace data>>=
variable tracelogCmd [::logger::init roseal

Trace Procedure

Control and access to the state machine event trace data is provided by a single command called, t race. This command uses a
series of subcommands and arguments to access the trace data.

Relation Oriented Software Execution Architecture 237 /295

rosea trace subcmd ?argl arg2...?

subcmd
The trace control command to be invoked. Trace control commands should be one of:

e control
¢ decode
e format
* diagram

argl arg2
The arguments to the trace control operation.

The t race command controls various aspects of state machine event dispatch tracing.

rosea trace control 2arglarg?...?
The control subcommand executes one of the following trace control operations:

* Oon
Turn on trace collection.

e off
Turn off trace collection.

* status
Returns the current status of tracing.

e clear
Discards all trace entries.

* logon
Log traces as they occur via the 1ogger package.

* logoff
Turn trace logging off.

* loglevel level
Set the logging level for traces to level.

* save filename
Save all traces to a SQLite database.

rosea trace decode Zargl arg?...?

The decode subcommand queries the set of collected state machine traces according to the value of its argument and
returns a list of dictionaries that contain the selected trace information. Valid trace selection arguments are:

e all
Decode all trace entries.

* class classl class2 ...
Decode only those trace entries for which the class of the receiving instance matches one of the classN arguments.

* target instrefl instref2 ...
Decode only those trace entries for which the receiving instance matches one of the inst re £N arguments.

Relation Oriented Software Execution Architecture 238 /295

rosea trace format traces

The format subcommand returns a human readable formatting of the traces given as an argument. The t races argument
is a list of dictionaries as returned from the rosea trace decode command.

rosea trace diagram which filename ?argl arg2...?

The diagram subcommand queries a set of collected state machine traces according to the value of its which argument
and writes to £ilename a script suitable to be used with the seqdiag program to produce a UML sequence diagram of
the traces. Valid arguments depend upon the value of which and are listed below:

* all filename
Diagram all trace entries.

* class filename classlist Zoptionvalue...?
Diagram only those trace entries for which the class of the receiving instance matches one of the class names in the
classlist list. Optional option value pairs are passed into the generated seqgdiag script.

* target filename targetrefs ?optionvalue...?
Diagram only those trace entries for which the receiving instance matches one of the instance references in the targe

trefs list. Optional option value pairs are passed into the generated segdiag script.

<<rosea exports>>=
namespace export trace

<<rosea commands>>=
proc trace {subcmd args} {
switch —exact —- $subcmd {
control {
tailcall traceControl {*}Sargs
}
decode {
switch —-exact —-- [lindex $args 0] {
all {
tailcall Trace::DecodeAllTraces
}
class {
tailcall Trace::DecodeClassTraces {*}[lrange $args 1 end]
}
target {
tailcall Trace::DecodeTargetTraces {x*}[lrange $args 1 end]
}
default {
tailcall DeclError UNKNOWN_TRACE_CMD [lindex $args 0]

}
format {
tailcall formatTraces {*}S$Sargs
}
diagram {
switch -exact —-- [lindex $args 0] {
all {
tailcall Trace::DiagAllTraces {x*}[lrange $args 1 end]
}
class {
tailcall Trace::DiagClassTraces {*}[lrange S$args 1 end]
}
target {
tailcall Trace::DiagTargetTraces {*}[lrange S$args 1 end]

http://blockdiag.com/en/seqdiag

Relation Oriented Software Execution Architecture 239 /295

default {
tailcall DeclError UNKNOWN_TRACE_CMD [lindex S$args 0]

}
default {
tailcall DeclError UNKNOWN_TRACE_CMD $subcmd

<<error code formats>>=
UNKNOWN__TRACE_CMD {unknown trace subcomand, "%s"}

Trace Control

The traceControl procedure provides the interface necessary to control the aspects of state machine tracing.

<<rosea commands>>=
proc traceControl {op args} {
switch —-exact —-- S$Sop {
on {
namespace upvar Trace traceState traceState
set traceState on
}
off {
namespace upvar Trace traceState traceState
set traceState off
}
status {
namespace upvar Trace traceState traceState
return S$traceState
}
clear {
relvar eval {
foreach rvar {Trace Creation Polymorphic Transition} {
relvar set Trace::S$rvar\
[relation emptyof [relvar set Trace::S$rvar]]

}

namespace upvar Trace traceNumber traceNumber
set traceNumber 0

}

logon {
namespace upvar Trace tracelogState tracelogState
set tracelogState on

}

logoff {
namespace upvar Trace tracelogState tracelogState
set tracelogState off

}

loglevel {
namespace upvar Trace traceloglevel tracelogLevel
if {[llength S$args] != 0} {

set tracelLogLevel [lindex $args 0]
}
return S$traceLoglLevel
}
save {
if {[llength S$args] == 0} {

Relation Oriented Software Execution Architecture 240/ 295

DeclError NO_SAVEFILE
}
ral storeToSQLite [lindex $args 0] ::rosea::Trace::=*
}
default {
DeclError BAD_TRACEOP $op

<<error code formats>>=
BAD_TRACEOP {unknown trace operation, "%s"}
NO_SAVEFILE {no save file name provided}

Trace Population

Each of the event dispatch procedures that is involved with dispatching events into a state machine invokes a procedure to
capture the dispatch data. There are three such procedures corresponding to the three types of event dispatch. Each as the same
basic structure, namely determining if tracing is enabled, inserting the trace data to the appropriate relvars and logging the trace
instance.

<<trace commands>>=
proc TraceCreation {source event target} {
variable traceState
if {$traceState} {
relvar eval {
set trace [NewTrace $source S$Sevent S$target]
relvar insert Creation [list)\
Trace_Id [relation extract Strace Trace_Id]\

}

LogTrace S$trace

<<trace commands>>=
proc TracePolymorphic {source event target super link} {
variable traceState
if {$traceState} {
relvar eval {
set trace [NewTrace $source S$Sevent S$target]
relvar insert Polymorphic [list)\

Trace_Id [relation extract Strace Trace_Id]\
SuperClass $super\
Linkage $1link\

}

LogTrace S$trace

<<trace commands>>=
proc TraceTransition {source event target curr new params} {
variable traceState
if {StraceState} {
relvar eval {
set trace [NewTrace $source $event S$target]
relvar insert Transition [list\
Trace_Id [relation extract S$trace Trace_Id]\

Relation Oriented Software Execution Architecture 241 /295

CurrState Scurr\
NewState Snew\
Params Sparams\

}

LogTrace S$trace

Code to number the trace and insert it into the Trace relvar is factored to a separate procedure.

<<trace commands>>=

proc NewTrace {src event target} {
variable traceNumber
return [relvar insert Trace [list)\

Trace_Id [incr traceNumber]\
Timestamp [clock microseconds]\
Source Ssrc\

Event Sevent\

Target Starget\

Each of the above three procedures that inserts a particular type of trace data into the data store also logs the trace. Trace logging
first checks the state of the logging and then formats an appropriate string for the log.

<<trace commands>>=
proc LogTrace {trace} {
variable traceLogState
if {S$traceLogState} {
set rec [FormatTraceRec [lindex [TracesToRecords S$trace] 0]] ; # ©

variable traceLogCmd
variable tracelLogLevel
${traceLogCmd}::${traceLoglLevel} Srec

(1] The TracesToRecords procedure returns a list and knowing that the list contains only one element, we extract that
element to format.

<<trace command tests>>=
test LogTrace-1.0 {
log trace data
} —setup {
rosea configure ({
domain foo {
class cl {
attribute Id int -id 1
attribute Count int -default 0
attribute Max int -default 2
statemodel {
state s1 {} {
updateAttribute $self Count\
[expr {[readAttribute $self Count] + 1}]
fputs [relformat [deRef $self] self]
lassign [readAttribute $self Count Max] count max
if {Scount >= Smax} {
::rosea::test::syncToTest S$count

Relation Oriented Software Execution Architecture 242 /295

}

transition sl - el —-> s2

state s2 {} {
updateAttribute $self Count\
[expr {[readAttribute $self Count] + 1}]
signal $self e2
}

transition s2 - e2 -> sl

}
rosea generate
turnOnTracelLog

} —cleanup {
cleanupConfigbData

removeDomain ::foo
turnOffTracelog

} —body {
set ref [::foo0::cl create Id 1]
::rosea::InstCmds: :signal Sref el
waitForSync

} —result {2}

<<test utility procs>>=
proc syncToTest {{value {}}} {
set [namespace current]::testDone $value

proc waitForSync {{timeout 1000}} {
set varname [namespace current]::testDone
set tid [::after S$timeout set S$Svarname TIMEOUT]
vwait $varname
after cancel $tid
set $varname

<<trace command tests>>=
test LogTrace-2.0 {

log trace data for a polymorphic event
} —setup {

rosea configure {

domain foo {
class 1t2 {
attribute Id int -id 1

polymorphic xel xe2

}
generalization R1 1t2 1lt2-subl 1lt2-sub2

class 1lt2-subl {
attribute Id int -id 1
reference R1 1t2 -link Id

statemodel {
state subl-sl {} {
t:rosea::test::syncToTest true

}

transition subl-sl - xel —-> subl-s2

Relation Oriented Software Execution Architecture 243/ 295

state subl-s2 {} {
delaysignal 50 S$self *e2
}

transition subl-s2 - xe2 -> subl-sl

class 1lt2-sub2 {
attribute Id int -id 1
reference R1 1t2 -1link Id

statemodel {
state subl-sl {} {
r:rosea::test::syncToTest true

}

transition subl-sl - xel -> subl-s2

state subl-s2 {} {
delaysignal 50 $self xe2
}

transition subl-s2 - xe2 —-> subl-sl

rosea generate

rosea populate {
domain foo {
class 1t2 Id 1
class 1lt2-subl Id 1

turnOnTracelLog
} —cleanup {
cleanupConfigbData

removeDomain ::foo
turnOffTracelog

} —body {
set superref [::foo::1t2 findWhere {$Id == 1}]
::rosea::InstCmds::signal $superref xel
waitForSync

} —result {true}

<<trace command tests>>=
test LogTrace-3.0 {
log trace data for a creation event
} —-setup {
rosea configure {
domain foo {
class 1t3 {
attribute Id int -id 1
statemodel {
transition @ - el -> sl

state sl {value} {
::rosea::test::syncToTest $value

Relation Oriented Software Execution Architecture 244/ 295

rosea generate

turnOnTracelLog

} —cleanup {
cleanupConfigData
removeDomain ::foo
turnOffTracelog

} -body {
::foo::1t3 createasync el 10 Id 1
waitForSync

} —result {10}

<<test utility procs>>=
proc turnOnTracelLog {} {
variable prevloglevel

::rosea trace control clear
::rosea trace control on

set logcmd [::logger::servicecmd rosea]
set prevloglevel [${logcmd}::currentloglevel]
${logcmd}::setlevel [::rosea trace control loglevel]

::rosea trace control logon

proc turnOffTracelog {} {
variable prevloglevel

set logcmd [::logger::servicecmd rosea]
$S{logcmd}::setlevel Sprevloglevel
::rosea trace control logoff

::rosea trace control off

::rosea trace control clear

Trace Operations

It is difficult to provide all the conceivable operations that one may wish to perform on the captured state machine trace data. In
this package we will provide some common operations, but special cases can be handled by constructing appropriate queries on
the relvar data of the package and passing the result to be formatted. The required primitive operations are here to support a
wider range of custom trace queries.

We divide the decoding of the trace data into two parts:

* Casting the relvar data into an ordered list of dictionaries.

» Formatting trace dictionary data into human readable form.

This separation makes handling data programmatically via the dictionaries much easier yet still allows the production of human
readable output. There are many ways that a program can use the state machine trace data. For example, the trace data can be
used to compute the coverage of states and transitions for testing purposes. This is much easier to accomplish if the data is not in
string form but rather with known named fields.

In this section we will cover the layout of the trace record dictionaries and then a set of query functions to produce sets of records.
Afterward, we will discuss procedures to format trace dictionaries into human readable strings.

Relation Oriented Software Execution Architecture 245/ 295

Trace Dictionary Structure

Although the relvars defined above contain all the trace data in a form that is easy to query, transforming relational data into a
dictionary provides a convenient interface for handling sets of trace data. Here we discuss the keys that the trace data dictionary
have and the procedures which produce them.

The trace data dictionary has to account for the three different types of dispatched events. We will have common keys that apply
to all types of events and a t ype key that can be used to determine the event type specific keys. The common keys are:

id
An integer number that identifies the sequence of the trace entry.

time
The time since the epoch, in microseconds, that the trace was captured.

source
The instance reference of the instance that signaled the event. If the source of the event is outside of an object, then this

will be the nil reference.

event
The name of the event.

target
The instance reference of the target of the event.

class
The fully qualified relvar name for the class that corresponds to target.

type
The type of the dispatched event: one of creation, polymorphic, or transition.

For creation type events, there are no additional keys. The target value is interpreted as the object command name of the
newly created instance and the class value is the command name of the instance creator (which is, necessarily, also the class
of the target).

For polymorphic type events, the following additional keys are available:

super
The class name of the superclass instance mapping the event.

link
The name of the partition linkage across which the event is mapped.

For polymorphic type events, the target value is the class name of the subclass instance onto which the polymorphic event is
mapped.

For transition type events, the following additional keys are available:

current
The name of the state of target when the event was received.

new
The name of the state of target after the transition happened.

params
A list of values giving the parametric data passed with the event to the state activity.

The procedure, TracesToRecords, takes a relation value that is a subset (proper or improper) of the value contained in the
Trace relvar and converts it into a list of trace records. Each trace record is a dictionary of the form described above.

As we will see below, this procedure is used by all the query oriented procedures to convert the trace data into lists of dictionaries.
One difficulty of this transformation is to account for the three different types of event traces. This is done by joining the Trace
relation values against each of the three relvars that participate in R1. This join is done in such a way that three new relation
valued attributes are created and, given the disjoint union implied by the partition constraint, only one of the new attributes will
contain any tuples.

Relation Oriented Software Execution Architecture 246 / 295

<<trace commands>>=
proc TracesToRecords {traces} {
foreach rvname {Creation Polymorphic Transition} { # ©@
set traces [::ralutil::rvajoin S$traces [relvar set $rvname] S$Srvname]

set result [list]
relation foreach trace $traces -ascending Trace_Id { # (2

relation assign S$trace

set labeled [dict create\
id STrace_Id\
time $Timestamp\
source S$Source\
event SEvent\
target S$Target\
class [lindex $Target 0]\

1; #©

if {[relation isnotempty $Transition]} { # @
relation assign $Transition
dict set labeled type transition
dict set labeled current S$CurrState
dict set labeled new $NewState
dict set labeled params S$Params

} elseif {[relation isnotempty S$Polymorphic]} {
relation assign $Polymorphic
dict set labeled type polymorphic
dict set labeled super $SuperClass
dict set labeled link $Linkage

} elseif {[relation isnotempty $Creation]} {
dict set labeled type creation

lappend result $labeled
}

return S$result

o Perform a relation valued join of the traces against the three different types of trace data. Each rvajoin produces a
new attribute whose name we choose to be the same as the relvar from which it came and whose value is a relation
value containing those tuples whose value of Trace_Id match. Because the R1 partition represents a disjoint union and
Trace_Id is an identifier, only one of the three new attributes will have any tuples and the non-empty one will contain
exactly one tuple.

2] We can now iterate across the joined trace data in the order that it was generated (i.e. by —ascending Trace_Id)so
that the resulting list of dictionaries is in the same order. This was the primary reason for performing all the rvajoin
operations, i.e. to make it more convenient to preserve the event dispatch order into the resulting list.

(3] Add all the common keys, except type.

(4] Add the keys that are specific to the event type.

Decode All Traces

The first of the query functions simple decodes all available trace data.

<<trace commands>>=
proc DecodeAllTraces {} {
variable Trace
tailcall TracesToRecords S$Trace

Relation Oriented Software Execution Architecture 247 / 295

Decode All Traces Tests

<<trace command tests>>=
test DecodeAllTraces-1.0 {
display trace data
} —setup {
rosea configure ({
domain foo {
class cl {
attribute Id int -id 1
attribute Count int -default 0
attribute Max int -default 2
statemodel {
state s1 {} {
updateAttribute $self Count\

[expr {[readAttribute $self Count] + 1}]
lassign [readAttribute $self Count Max] count max
if {$count >= Smax} {

::rosea: :test::syncToTest Scount

}

transition sl - el —-> s2

state s2 {} {
updateAttribute $self Count\
[expr {[readAttribute $self Count] + 1}]
}

transition s2 - e2 —-> sl

}
rosea generate

} —cleanup {
cleanupConfigbata
removeDomain ::foo
::rosea trace control off
::rosea trace control clear

} —body {
::rosea trace control on
set ref [::foo0::cl create Id 1]

::rosea::InstCmds::signal S$Sref el
::rosea::InstCmds: :signal Sref e2
waitForSync
set traces [::rosea::Trace::DecodeAllTraces]
dict get [lindex S$traces 0] event

} —result {el}

Decode Class Traces

<<trace commands>>=
proc DecodeClassTraces {args} {
return [TracesToRecords [QueryClassTraces S$args]]

Decode Class Traces Tests

Relation Oriented Software Execution Architecture

248 / 295

<<trace command tests>>=
test DecodeClassTraces-1.0 {
display trace data for specific class

}

}

}

—-setup {

rosea configure {
domain foo {

class dctl {
attribute Id string -id 1
attribute Power int -default 20
reference R1 dct2 -link Id
statemodel {
state Off {} {
signal [findRelated $self R1] Lower
}

transition Off - TurnOn -> On

state On {power} {
updateAttribute $self Power S$power
signal [findRelated $self R1] Raise

}
transition On - TurnOff -> Off

association R1 dctl 1--1 dct2

class dct2 {
attribute Id string -id 1
statemodel {
state Down {} {
::rosea: :test::syncToTest\
[readAttribute [findRelated $self ~R1] Power]
}

transition Down - Raise -> Up

state Up {} {
delaysignal 50 [findRelated $self ~R1] TurnOff

}

transition Up - Lower —> Down

rosea generate

rosea populate {
domain foo {

class dctl Id first
class dct2 Id first

rosea trace control clear

rosea trace control on
—cleanup {

cleanupConfigData

removeDomain ::foo

rosea trace control off

rosea trace control clear

~body {

Relation Oriented Software Execution Architecture

249 / 295

::rosea::InstCmds::signal [::foo::dctl findWhere {$Id eq "first"}]
waitForSync
puts [::rosea trace format [::rosea trace decode all]]
set traces [::rosea::Trace::DecodeClassTraces ::foo::dct2]
expr {[llength S$Straces] == 2 &&\
[dict get [lindex Straces 1] event] eq "Lower"}
} —result {1}

Decode Target Traces

<<trace commands>>=
proc DecodeTargetTraces {args} {
tailcall TracesToRecords [QueryTargetTraces $args]

<<trace command tests>>=
test DecodeTargetTraces-1.0 {
display trace data for specific instances
} —setup {
rosea configure {
domain foo {
class cl {
attribute Id string -id 1
statemodel {
state S1 {} {
}
transition S1 - E1 -> S1
transition S1 - E2 —-> S2

state S2 {} {
::rosea::test::syncToTest S2

rosea generate

rosea populate {
domain foo {
class cl Id first
class cl Id second
class cl Id third

rosea trace control clear
rosea trace control on
} —cleanup {
cleanupConfigData
removeDomain ::foo
rosea trace control off
rosea trace control clear
} —body {
set 11 [foo::cl findById Id first]
set 12 [foo::cl findById Id second]
set i3 [foo::cl findById Id third]
rosea tunnel $il signal E1
rosea tunnel $i2 signal E1

TurnOn 30

Relation Oriented Software Execution Architecture 250/ 295

rosea tunnel $i3 signal E1
rosea tunnel $il signal E1
rosea tunnel $il signal E1

rosea tunnel $il signal E2
rosea tunnel $i2 signal E2
rosea tunnel $i3 signal E2

waitForSync
set traces [::rosea::Trace::DecodeTargetTraces $il $i2]
#puts [rosea::formatTraces S$traces]
llength S$traces
} —result {6}

Format Traces

Human readable output for state machine traces can be obtain via the format Traces procedure. This procedure takes a list of
trace records, as defined above and as returned from the various trace decode procedures, and returns a string that has a human
readable representation of the trace records. Each trace record is separated by a line terminator character. The returned string
may be written on any channel the caller wishes.

<<rosea commands>>=
proc formatTraces {tracerecs} {
if {[llength S$tracerecs] == 0} {
return {}
}
set prevtime [dict get [lindex Stracerecs 0] time]
foreach rec $tracerecs {
dict with rec {

append result "[Trace::FormatTimestamp $time]: "
append result "[Trace::FormatTimeAsSec\
[expr {$time - S$prevtime}]]: "

set prevtime S$time
append result [Trace::FormatTraceRec S$rec] \n

}

return [string trimright S$result]

Format Traces Tests

<<trace command tests>>=
test formatTraces-1.0 {
display human readable trace data
} —setup {
rosea configure {
domain foo {
class cl {
attribute Id int -id 1
attribute Count int —-default 0
attribute Max int -default 2
statemodel {
state s1 {} {
updateAttribute $self Count\

[expr {[readAttribute $self Count] + 1}]
lassign [readAttribute $self Count Max] count max
if {Scount >= Smax} {

::rosea::test::syncToTest $count

Relation Oriented Software Execution Architecture 251 /295

}

transition sl - el —-> s2

state s2 {} {
updateAttribute $self Count\
[expr {[readAttribute $self Count] + 1}]
}

transition s2 - e2 -> sl

}
rosea generate
} —cleanup {
rosea trace control off
rosea trace control clear

} —body {
rosea trace control on
set one [::foo::cl create Id 1]

::rosea::InstCmds::signal S$Sone el
::rosea::InstCmds: :signal Sone e2
waitForSync
set traces [rosea trace format [rosea trace decode alll]
puts S$traces
llength [split Straces \n]
} —result {2}

Format Trace Record

An individual trace record may be formatted with the Format TraceRec procedure.

<<trace commands>>=
proc FormatTraceRec {rec} {
dict with rec {
switch -exact —-- S$type {
transition {
append result\

"Transition: "\
"[FormatInstRef S$source] - Sevent"\
[expr {[llength S$params] != 0 2\

"\ ([join S$params {, }I\)" : {}}I\
" —> [FormatInstRef S$target] ==> "\

"Scurrent -> Snew"
}
polymorphic {
append result\
"Polymorphic : "\
"[FormatInstRef S$source] - S$event —-> Ssuper ==> "\
"$link -> [FormatInstRef S$target]"
}
creation {
append result\
"Creation: "\
"[FormatInstRef S$source] - S$event —-> S$class ==>\
[FormatInstRef S$target]"
}
default {
DeclError BAD_TRACETYPE S$type

Relation Oriented Software Execution Architecture

252 / 295

}

return S$result

<<trace commands>>=
proc FormatInstRef {instref} ({
lassign $instref relvar inst
if {Srelvar eq {}} {
return {{}}
} else {

return "S$relvar\{[tuple get [relation tuple

<<error code formats>>=
BAD_TRACETYPE {unknown trace type, "

Format Time Stamp

<<trace commands>>=
proc FormatTimestamp {time} {

set sec [clock format [expr {S$time / 1000000}]

set time [expr {S$time % 1000000}]
set msec [expr {$time / 1000}]
set usec [expr {$time % 1000}]

return [format %s.%031d.%031d $sec Smsec Susec]

o We assume time in units of microseconds.

Format Time As Seconds

<<trace commands>>=

proc FormatTimeAsSec {time} {
set sec [expr {S$time / 1000000}]
set time [expr {$time % 1000000}]
set msec [expr {$time / 1000}]
set usec [expr {$time % 1000}]

$inst]I\}"

—format

return [format %$31d.%031d.%031d S$sec $msec Susec]

Sequence Diagrams

%T]

’

+ O

Another way to view trace information is in the form of a sequence diagram. The seqdiag program can layout and render
UML sequence diagrams from a simple textual specification of the diagram’s components. The syntax of the sequence diagram
is similar to that of dot. Using the captured state machine trace information, we can view the interactions of state models. We

present several procedures in this group.

http://blockdiag.com/en/seqdiag/index.html
http://www.graphviz.org

Relation Oriented Software Execution Architecture 253 /295

Diagram Traces

<<trace commands>>=

proc DiagTraces {traces args} {
set result {}
append result "segdiag \{\n"

append result " activation = none;\n"
foreach {option value} $args {
append result " $option = Svalue;\n"

foreach rvname {Creation Polymorphic Transition} {
set traces [::ralutil::rvajoin S$Straces [relvar set $rvname] Srvname]

relation foreach trace $traces —-ascending Trace_Id {
relation assign S$trace
if {[isEmptyRef $Sourcel]} {
set Source EXTERNAL
} else {
set Source [namespace tail [lindex $Source 0]]
}
set Target [namespace tail [lindex $Target 0]]
if {[relation isnotempty $Transition]} {
relation assign $Transition Params
set evtlabel S$Event[expr {[llength $Params] != 0 2\
"\ ([join S$Params {, }I\)" : {}}]
} elseif {[relation isnotempty S$Polymorphic]} {
relation assign $Transition Linkage
set evtlabel "S$Event <<Polymorphic S$Linkage>>"
} elseif {[relation isnotempty $Creation]} {
set evtlabel "S$Event <<Creation>>"
}
append result " $Source ->> $Target \[label=\"S$evtlabel\"\];\n"

append result "\}\n"

return S$result

Diagram All Traces

<<trace commands>>=
proc DiagAllTraces {filename args} {
set chan [open $filename w]
variable Trace
try {
chan puts $chan [DiagTraces $Trace {=*}$args]
} finally {
chan close S$chan
}

return

Diagram Class Traces

Relation Oriented Software Execution Architecture 254 /295

<<trace commands>>=
proc DiagClassTraces {filename classes args} {

set chan [open $filename w]

try {
chan puts $chan [DiagTraces [QueryClassTraces $classes] {x}Sargs]
} finally {

chan close $chan

}

return

Diagram Target Traces

<<trace commands>>=
proc DiagTargetTraces {filename targets args} {

set chan [open $filename w]

try {
chan puts S$chan [DiagTraces [QueryTargetTraces S$Stargets]

} finally {
chan close $chan

{*x}$args]

}

return

Relation Oriented Software Execution Architecture 255 /295

Chapter 11

An Example

In this section, we discuss an example that illustrates the usage of rosea. Unfortunately, there is rather a lot of background
material that we will not cover here. We do not explain how to create an XUML model nor will we spend much time explaining
why the example model was designed the way it was. There are many good books that explain XUML in detail and will teach you
the basics of modeling!. We suggest you read at least one of them. It is also the case that this package represents one particular
piece of a larger workflow and this means that readers who may not be completely familiar with model-driven translation oriented
development may have many questions that remain.

Requirements Program
(Population \’

rosea

Figure 11.1: Simplified Translation Workflow

In the above figure, we will cover those portions that are colored. Specifically, we will not deal with how one creates models
from Requirements. We will start with the Model and show how that becomes Code via translation. By combining the code with
a population and the rosea package, we will produce a running example program.

The subject matter of our example is an automatic clothes washer. This is a very simple washing machine, especially compared to
modern commercially available washers. The intent is to select a subject that most people would be familiar with from ordinary
experience so that we don’t have to devote too much time explaining the problem. One word of caution. This model is an
example for pedagogical purposes and probably has little correspondence with the way real washing machines operate or are
designed to operate. You will also notice a lack of any attention paid to what can go wrong. For industrial strength programs,
handling probable failure cases is very important but we have dispensed with those considerations here to focus on how the model
is translated into the implementation code using rosea.

! Mellor and Balcer, Chris Raistrick et.al and Leon Starr all are worthy of a close reading.

Relation Oriented Software Execution Architecture 256 / 295

Domain Data

The figure below shows a class diagram for the washing machine control domain in UML graphical notation.

Washing Cycle (WC)
Cycle Type {I}
Wash Water Temp

Washing Machine (WM) g Rinse Water_ Temp
Machine 1D {1} operates according to» Wash Duration

0..* R4 1 |Rinse Duration
Cycle Type {R4} «prescribes the operation of Spin Duration
Agitation Speed
1 Spin Speed

holds clothes for
R1
washes clothes in

1

Water Valve (WV)
Valve 1D (1} | f ‘ Clothes Tub (CT)) | | with Water Level Sensor (WLS)
controls water flow for » - monitors water level with» -
Machine ID {I,R3}[7 » R3 1 Machine ID {I,R1} 1 RS 1 Machine ID {I,R5}
<controls wash water via «is the water level monitor for

1

is used by

R2

uses

1.*

Washing Machine Control Domain
Motor (MTR) Class Diagram
Motor ID {1} Version 1.0.5

Machine ID {I,R2}

Figure 11.2: Washing Machine Class Diagram

In our world, a Washing Machine operates according to some Washing Cycle. The Washing Cycle is a set of parameters that
specifies aspects of the washing that will turn dirty clothes into clean ones. The Washing Machine itself has a Clothes Tub into
which the dirty laundry is placed. There are also Water Valves to control the flow of water into and out of the Clothes Tub and
Motors to run a water pump, agitate the Clothes Tub and rotate the Clothes Tub to spin excess water out of the clean laundry.
Rounding out the machinery, there is a Water Level Sensor that will tell us when the Clothes Tub is filled with water or empty of
water.

For a well engineered model, the class diagram must also have a set of descriptions of what the attributes and relationship actually
mean, what the value domains of the attributes are and many other aspects that describe how the problem is represented in the
model. These descriptions are vital to understanding a class diagram. Here again, in the interests of space, we will have to
suffice ourselves with more casual descriptions included along with the example as it translated into the implementation and an
admonition that writing the model descriptions is an essential aspect of a well engineered solution.

The class diagram shows the static aspects of our domain and is always the first aspect of the model that must be considered
when deriving the implementation. The class diagram facet of the model is static in the sense that at any point in time, the logical
predicates you can infer from the diagram will be true. The classes hold the parameters of the domain and the relationships state
how the components are associated with respect to each other. Later, we visit the dynamic and algorithmic facets of the domain
but, for now, we will endeavor to represent the classes and relationships in terms of the rosea package constructs.

Washing Machine Class
By examining the graphics of the model we can see that the Washing Machine class has attributes, makes references and has a
state model.

<<WM class>>=
class WashingMachine {

Relation Oriented Software Execution Architecture 257/ 295

<<WM attributes>>
<<WM references>>
statemodel {

<<WM statemodel>>

Looking at the Washing Machine class on the class diagram, we see that there are two attributes. The MachinelD attribute is an
identifier and we make its data type a simple string. The CycleType attribute is also a simple string.

<<WM attributes>>=
attribute MachineID string -id 1
attribute CycleType string

The Washing Machine class makes a reference to realize the R4 relationship. The class diagram tells us that the CycleType
attribute is involved in that reference (i.e. it has the R4 annotation). It must refer to the identifier of the other participant in R4
namely, the Washing Cycle class. So we can define the reference from Washing Machine to Washing Cycle that is used to realize
R4.

<<WM references>>=
reference R4 WashingCycle —-link CycleType

As it happens, the referring attribute in the Washing Machine class, CycleType, has the same name as the identifying attribute
in the Washing Cycle class. This means that the —1ink option need only specify the one name, i.e. —1ink CycleType is
shorthand for -1ink {CycleType CycleType}

While we are discussing R4, we can define its characteristics. We can represent the participating classes, multiplicity and
conditionality as presented in the class diagram by the following domain configuration statement.

<<wmctrl relationships>>=
association R4 WashingMachine 0..%--1 WashingCycle

Washing Cycle Class

Examining the class diagram and other graphics for the domain shows that the Washing Cycle class is a simple class consisting
entirely of descriptive attributes.

<<WC class>>=
class WashingCycle {
<<WC attributes>>

We need only specify the attributes and their data types, marking the CycleType as the identifier (as was shown in the graphic).
In order to determine the proper data types of the attributes we would need to consult the descriptive text associated with the
class diagram. As we have no such text in this example, we will infer a set of data types based on how the attribute values will
be used in the processing.

<<WC attributes>>=

attribute CycleType string -id 1

attribute WashWaterTemp string —-check {$WashWaterTemp in {Hot Warm Cold}}
attribute RinseWaterTemp string -check {$RinseWaterTemp in {Hot Warm Cold}}
attribute WashDuration int

attribute RinseDuration int

attribute SpinDuration int

attribute AgitationSpeed string -check {$AgitationSpeed in {Low Medium High}}
attribute SpinSpeed string -check {$SpinSpeed in {Low Medium High}}

Relation Oriented Software Execution Architecture 258 / 295

Clothes Tub Class

By now the pattern of examining the model graphics to determine the class characteristics is established. The Clothes Tub class
is an active class with a state model.

<<CT class>>=
class ClothesTub {
<<CT attributes>>
<<CT references>>
statemodel {
<<CT statemodel>>

A Clothes Tub is identified by the MachinelD attribute:

<<CT attributes>>=
attribute MachineID string -id 1

and the MachinelD also serves as the reference required to realize R1. It is not uncommon for attributes to serve both roles.

<<CT references>>=
reference R1 WashingMachine -link MachineID

The R1 association itself can be transcribed from the graphic as follows.

<<wmctrl relationships>>=
association R1 ClothesTub 1--1 WashingMachine

Water Valve Class

The Water Valve class represents the means to move water into and out of a Clothes Tub.

<<WV class>>=

class WaterValve {
<<WV attributes>>
<<WV references>>
<<WV operations>>

It takes two attributes to identify a Water Valve. The Valveld attribute is a string from among the set {Hot Cold Drain} and here
we see a referential attribute being used as an identifying attribute again.

<<WV attributes>>=
attribute ValveID string —-id 1 -check {$ValveID in {Hot Cold Drain}}
attribute MachineID string -id 1

<<WV references>>=
reference R3 ClothesTub -1link MachineID

The R3 relationship represents the design of the washing machine hardware that includes three valves on each machine. Notice
the we don’t concern ourselves here with whether a washing machine has three or three thousand valves on it. That is dealt with
when we populate the class instances. The important point here is that there is one or more valves associated with each tub.

<<wmctrl relationships>>=
association R3 WaterValve 1..x——1 ClothesTub

Relation Oriented Software Execution Architecture 259 / 295

Motor Class

The Motor class is similar to the Water Valve class.

<<MTR class>>=

class Motor {
<<MTR attributes>>
<<MTR references>>
<<MTR operations>>

The class diagram graphic shows the two identifying attributes.

<<MTR attributes>>=
attribute MotorID string -id 1 -check {$MotorID in {Pump Agitator Spin}}
attribute MachineID string -id 1

Like the Water Valve class, the MachinelD attributes is also referential.

<<MTR references>>=
reference R2 ClothesTub -1link MachineID

The R2 relationships states the hardware design of using one or more motors to operation a clothes tub.

<<wmctrl relationships>>=
association R2 Motor 1..x——-1 ClothesTub

Water Level Sensor

The Water Level Sensor class is also simple.

<<WLS class>>=

class WaterLevelSensor
<<WLS attributes>>
<<WLS references>>
<<WLS operations>>

Because there is only one Water Level Sensor per washing machine, we do not need another identifying attribute.

<<WLS attributes>>=
attribute MachineID string -id 1

<<WLS references>>=
reference R5 ClothesTub -1link MachineID

It is RS that sets the rule about one Water Level Sensor per Clothes Tub.

<<wmctrl relationships>>=
association R5 WaterLevelSensor 1--1 ClothesTub

Domain Dynamics

The second facet of the model that is considered during translation is the dynamics. The model encodes the sequences of domain
execution as state models attached to classes. In this model, there are two classes for which state models are defined, Washing
Machine and Clothes Tub. The control is partitioned by the model between these classes. The Washing Machine class is given the
responsibility for coordinating the actions needed to clean clothes according to the particulars specified by the Washing Cycle.

Relation Oriented Software Execution Architecture 260 /295

In this example that coordination primarily involves timing the various components of the washing cycle. The Clothes Tub class
deals with sequencing the mechanics of the washer to perform a specific activity.

For each state model we will present a graphical representation of the state model. We also show the state transition table. It is
important to have both representations. In the graphic, it is conventional not to show ignored or error transitions. However, in the
transition table all possible transitions and their outcomes are exposed.

Washing Machine State Model

The state model for the Washing Machine class is shown below. You will notice that in the graphic the states contain action
language statements that specify the processing to be performed when the state is entered. We will say more about the actions
when we take up the domain processing below. For now, it is convenient to have the actions present on the diagram in order to
better understand exactly what the washing machine will do as it responds to events and thereby better understand how the state
machines achieve the overall result of producing clean clothes.

Relation Oriented Software Execution Architecture 261 /295

(Filling To Wash A 4 Stopped \
Fill the tub with wash water. # Stop spinning -- wash complete
select one wc related by self->R4[WC] Start select one ct related by self->R1[CT]
select one ct related by self->R1[CT] signal Stop to ct
signal Fill(wc.WashWaterTemp) to ct 9

Full Dgne

4 Washing R 4 Spinning R
Agitate the tub to wash. # Spin out excess water.
select one ct related by self->R1[CT] select one ct related by self->R1[CT]
signal Agitate to ct signal Spin to ct
select one wc related by self->R4[WC] select one wc related by self->R4[WC]
signal Done to self at wc.WashDuration signal Done to self at wc.SpinDuration

- J - J

Dgne Empty
Draining Wash w (Draining Rinse
Stop washing and drain # Stop rinsing and drain
the dirty wash water. # the rinse water.
select one ct related by self->R1[CT] select one ct related by self->R1[CT]
signal Drain to ct signal Drain to ct
Emlpty Dane
4 o I
Rinsin
(Filling To Rinse A g

Fill the tub with rinse water # Agitate the tub to rinse.

: select one ct related by self->R1[CT
select one wc related by self->R4[WC] Full y [CT]

signal Agitate to ct
select one wc related by self->R4[WC]
sighal Done to self at wc.RinseDuration

- J

select one ct related by self->R1[CT]
signal Fill(wc.RinseWaterTemp) to ct

Washing Machin
State Model
Version 1.0.1

Figure 11.3: Washing Machine State Model Diagram

From the diagram we can see how the washing machine cycles in a rather simple circular form filling, washing, draining, rinsing
and spinning to convert dirty clothes into clean ones. The state activities are primarily concerned with obtaining the particular
details of the next step and requesting the Clothes Tub to carry out that step. The various durations are handled by signaling
delayed events to march things along to the next step in the cleaning.

The transition table corresponding to the diagram is shown next.

Relation Oriented Software Execution Architecture 262 /295

Table 11.1: Washing Machine Transition Table

Start Full Done Empty

Stopped Filling To Wash CH CH CH
Filling To Wash CH Washing CH CH
Washing CH CH Draining Wash CH
Draining Wash CH CH CH Filling To Rinse
Filling To Rinse CH Rinsing CH CH
Rinsing CH CH Draining Rinse CH
Draining Rinse CH CH CH Spinning
Spinning CH CH Stopped CH

The transition table may be directly translated into the required rosea configuration statements. Below, we have not shown
the Tcl code that executes for each state activity. We will return to the processing below. For now, we use a set of literate
program chunks to represent the state activity code in order to get a clearer view of how the transition table is represented as
statemodel configuration statements.

<<WM statemodel>>=
initialstate Stopped
defaulttrans CH

state Stopped {} {
<<WM stopped activity>>

}
transition Stopped - Start -> FillingToWash

state FillingToWash {} {
<<WM filling to wash activity>>

}
transition FillingToWash - Full —-> Washing

state Washing {} {
<<WM washing activity>>
}

transition Washing - Done -> DrainingWash

state DrainingWash {} {
<<WM draining wash activity>>
}

transition DrainingWash - Empty —-> FillingToRinse

state FillingToRinse {} {
<<WM filling to rinse activity>>
}

transition FillingToRinse - Full -> Rinsing

state Rinsing {} {
<<WM rinsing activity>>
}

transition Rinsing - Done -> DrainingRinse

state DrainingRinse {} {
<<WM draining rinse activity>>
}

transition DrainingRinse - Empty —-> Spinning

state Spinning {} {
<<WM spinning activity>>

Relation Oriented Software Execution Architecture 263 /295

}

transition Spinning - Done -> Stopped

Clothes Tub State Model

The diagram below shows the state model for the Clothes Tub class. This model is nof circular like that of the Washing Machine
class. There are two paths through the states. One corresponds to agitating the tub for the purposes of either washing or rinsing.
The other path corresponds to spinning the tub to remove excess water from the clean clothes. Both paths start at the Empty state.

264 / 295

Relation Oriented Software Execution Architecture

-
e R (Oueis nuw
()algeuz sim (401e11BY, = Ql41010N) Blaym
1°0°T UOISIBA [sTIMmIgH<-}Ios Aq paje|as s|m U0 }03|9S urelqa [9LN]zY<-}18s Agq pale|al J1Ww SUO 129|9S
[9pON d3elS J0suss syl sjqeus # Jjol0w JojelBe Byl 1els #
ani sayio|d Quels iw Bunend
(,dwngd, = @lio10|A) aiaym L nenby L
[Y1W]zd<-}18s Ag pale|al ;1w BuO 199|8S
dwnd ayl 1ei1s #
(Juado'Am a1e)ify
(,urel@, = @laAleA) alaym
[AM]cH<-}18s AgQ pale|as Am Buo 109|8S Ve ™\
aAleA ulelp ayl uado # wMm o1 ||n4 [eubis
()dois 1w [WMITY<-}18S AQ pare|as wm duo 199|8S
(,101116Y, = Q|1010|A) @laym aulyoew Bulysem ayl wiou| #
o:Sm.:E/ [Y1W]zd<-}18s Ag pale|al ;1w BuO 199|8S 104pus
(uids, = QLIOIOW) 215uMm Jlojow ay) dois # ()aso|o Am
Et\,:NW_A-:mw_ Aq _“_szm_m: J1W auo 1038|9S Burfidwz SAM UL AN L9104
Jojow uids oy LEIS # - / (.p10D, = AI8AIBA HO JOH, = AIBA[BA) Blaym
! Ortore [AM]Ed<-118s Aq pale|al sam Auew 109|8s
(duwng, = q11010W) 2154M SBAJBA I3JEM || 3S0|D #
[41N]zY<-418s Aq paie|al Jiw duo 109|3S Adwgany A Oaiqesiasim
dwnd oy 1eIS # [sTIMm]sd<-419s Ag pale|al s|m auo 199|3S
Ouado am losuas ayy ajgesiq #
(.ureiq, = @lanfen) aiaym ‘ wm 03 Aidw3 _mcm_m/ S 1n4)
[AM]zH<-}I8s Aq pare|al Am duo 108|8S o [WMm]TH<-118s Ag palejal wm auo 199|8s
aAleA urelp 8yl uado # 1as aulyosew Buiysem ayl wioju| #
Buiuuids (aigesiasim In4pn.t
J [STMm]Gsd<-}18s Aq pale|al S|m auo 108|8S
Josuas ayl ajgesiq #
ddhs ()es010"AM 4 4 pua)
(,urei@, = @lanjeA) alaym lojpua
N [Amled<-}1as Aq pare|al Am duo 103|9s Ouado'am
()950[5°AM SAJBA UlRIp 3Y) 8S0|D # SAM Ul AM (28310}
(,urea@, = QlanjeA) 219ym (.d MEEm.:E (PI0Q. = QISNEA HO 10H, = AlanlEA) o1um
o = .awnd, = @l1010A) alaym [AM]cd<-}18s Aq perejal sam Auew 199]8s
(nmled<iies >M>wa,m,__w_>;mm”_whwm_om [4LIN]ZH<-319S Aq pare|as nw suo jsjes | (dWeY) IIHd (wiem, = dway) 41 as|d
| leip N_VQOHW_.M_UH_H dwnd ayj; dois # (Quado'am
(.dwnd, = @1010) a18ym L fdw3) nlen<- mM_wnwoo_MM%J_,M@%mmuwwm
[d1W]zd<-}19s Ag pale|as 11w 8uo 199|9S AMIET<-}I q pale| 109]
dwnd sy dois # (,p10D, = dwal) Ji 8s|e
()dois sw (10H, = Qloe %Mw%o\,\%;
(,uids, = @li010|) alaym A0H. = QISAIEA Y
(dwal)a [AM]Ed<-}|9s Aq pole|al AM dUO }09|8S

[d1W]zd<-418s Ag pale|al J1w auo 199|9s
Jolow ayy dois #

uids b6uiddols)

(JOH, = dway) y

(s)anjen 18jul uado #

(al1qeuzsim

[sTm]sd<-}19s Aq pale|al S|m auo 123|3S
losuas ay) a|jqeuy #

Bul

/

Figure 11.4: Clothes Tub State Model Diagram

Relation Oriented Software Execution Architecture 265 /295
The transition table follows immediately from the diagram.
Table 11.2: Clothes Tub Transition Table
Fill TubFull Agitate Drain TubEmpty Spin Stop
Empty Filling CH CH CH CH Spinning CH
Filling CH Full CH CH 1IGO CH CH
Full CH CH Agitating CH CH CH CH
Agitating CH CH CH Emptying CH CH CH
Emptying CH IGO CH CH Empty CH CH
Spinning CH CH CH CH CH CH Stopping
Spin
Stopping Filling CH CH CH CH CH CH
Spin

O For the Filling and Emptying states, we allow for the fact that when the water level sensor is enabled it may send events that
reflect its current state. So we simply ignore those sensor events in which we are not currently interested.

The rosea configuration statements follow directly from the transition table.

<<CT statemodel>>=
initialstate Empty
defaulttrans CH

state Empty {} {
<<CT empty activity>>
}
transition Empty - Fill -> Filling
transition Empty - Spin -> Spinning

state Filling {temp} {
<<CT filling activity>>
}
transition Filling - TubFull -> Full
transition Filling - TubEmpty -> IG

state Full {} {
<<CT full activity>>

}
transition Full - Agitate —-> Agitating

state Agitating {} {
<<CT agitating activity>>
}

transition Agitating - Drain —-> Emptying

state Emptying {} {
<<CT emptying activity>>
}
transition Emptying - TubEmpty -> Empty
transition Emptying - TubFull -> IG

state Spinning {} {
<<CT spinning activity>>
}
transition Spinning - Stop —> StoppingSpin

state StoppingSpin {} {

Relation Oriented Software Execution Architecture 266 / 295

<<CT stopping spin activity>>
}
transition StoppingSpin - Fill -> Filling

Domain Processing

The third facet of the model that must be translated is the processing. Processing is executed in state activities or the various
operations of the domain or classes. We represent the processing as action language. There are several different action languages
that are in use. In the example, we follow an established syntax for the actions. All the action languages allow for writing
expressions and for performing model level processing. Since we are not parsing the action language in this context, we are not
particular about the syntax as long as the action statements convey the required processing unambiguously.

For state activities, the diagrams above show the action language that is to be executed when the state is entered. In the translations
below, we duplicate the action language from the state and write the translation to Tcl code immediately following. In most cases,
the translation is one statement to another.

The model level actions performed by the state activities, such as access to attribute values, navigating the class diagram or
signaling events is accomplished by invoking the procedures that we discussed as part of the rosea package.

Washing Machine State Activities

Below is the processing for the Washing Machine state activities. For the first few states, we will make several comments on the
correspondence between the action language statements and the Tcl code. After the translation pattern is established, we present
the remaining state with minimal explanation. In the interest of clarity, no attempt has been made to shorten or optimize the Tcl
code. There will be cases where some variable assignments will seem superfluous and command nesting might seem a more
natural way to express the logic. Here we are trying to emphasize the relationships between the action language statements and
the Tcl code. In delivered code, we might be more succinct.

Stopped Activity

Stop spinning -- wash complete
select one ct related by self->R1[CT]
signal Stop to ct

The Stopped state of the Washing Machine is entered when the cycle is complete and we must signal the Clothes Tub to stop
spinning. The action consists of finding the related Clothes Tub instance and signaling the Stop event to it.

Stopped Implementation

<<WM stopped activity>>=
set ct [findRelated $self ~R1]
signal $ct Stop

The corresponding Tcl code invokes the findRelated instance command on the self instance. Recall that all state activities
have an implicit self argument defined for them. With the Clothes Tub instance in hand, it is then signaled to Stop using the
signal instance command that we have already seen. There are a couple things to note here.

1. The use of the direction syntax, i.e. ~R1, obviates the need to say that we are navigating to an instance of the CT class
in the manner that the action language statement does. Because of the syntax convention and the manner in which the
association was defined, the system knows the destination class.

2. The question arises whether the instance reference returned from findRelated in the above traversal across ~R1 can
ever be the empty reference or ever reference multiple instances. The answer is no! The R1 association, as shown in the
class diagram, is singular and unconditional on the Clothes Tub side. Every traversal from Washing Machine to Clothes
Tub along ~R1 is guaranteed to return exactly one instance. Any operation in the domain that would perturb that state of
affairs is rejected as violating the referential integrity of the class diagram. Consequently, no test of the multiplicity of the
returned reference is necessary as it would be strictly redundant. In general, traversing unconditional relationships never

Relation Oriented Software Execution Architecture 267 / 295

requires a test to determine if we obtained an instance reference and traversing a conditional relationship should always be
followed by a test of the returned reference to see if it is empty. The fact that a relationship is conditional implies that there
is to be conditional processing associated with traversing the relationship.

Filling To Wash Activity

Fill the tub with wash water.
select one wc related by self->R4[WC]
select one ct related by self->R1[CT]
signal Fill (wc.WashWaterTemp) to ct

Filling To Wash Implementation

<<WM filling to wash activity>>=

set wc [findRelated $self R4]

set ct [findRelated $self ~R1]

signal $ct Fill [readAttribute $wc WashWaterTemp]

Washing Activity

Agitate the tub to wash.

select one ct related by self->R1[CT]
signal Agitate to ct

select one wc related by self->R4[WC]
signal Done to self at wc.WashDuration

While in the Washing state, clothes are being agitated in the tub. The state uses a delayed event to determine when the washing
part of the cycle is finished. Note that the delay time of the signal is an attribute value obtained from the Washing Cycle
class. Here Washing Cycle serves a role of holding attributes that just specify conditions for another class This is a common
arrangement.

Washing Implementation

<<WM washing activity>>=

set ct [findRelated $self ~R1]

signal $ct Agitate

set wc [findRelated $self R4]

delaysignal [expr {[readAttribute $wc WashDuration] % 1000}] S$self Done ; # ©

] We are implicitly assuming the units of WashDuration are seconds. In truth, the units are minutes, but we are not patient
enough to wait that long for a run of the example to finish.

The delayed signal is accomplished by using the delaysignal procedure. Notice that the event is self directed, albeit delayed
by the washing cycle time. So this state sends two signals, one to the Clothes Tub to tell it to start agitating the clothes and a
delayed signal to itself so it when know when the clothes have been washing long enough.

Draining Wash Activity

Stop washing and drain

the dirty wash water.

select one ct related by self->R1[CT]
signal Drain to ct

Relation Oriented Software Execution Architecture

268 / 295

Draining Wash Implementation

<<WM draining wash activity>>=

set ct
signal

[findRelated $self ~R1]
Sct Drain

Filling To Rinse Activity

Fill
select
select
signal

the tub with rinse water.

one wc related by self->R4[WC]
one ct related by self->R1[CT]
Fill (wc.RinseWaterTemp) to ct

Filling To Rinse Implementation

<<WM filling to rinse activity>>=

set wc
set ct
signal

[findRelated $self R4]
[findRelated $self ~R1]

$Sct Fill [readAttribute $wc RinseWaterTemp]

Rinsing Activity

Agitate the tub to rinse.

select
signal
select
signal

one ct related by self->R1[CT]

Agitate to ct

one wc related by self->R4[WC]

Done to self at wc.RinseDuration

Rinsing Implementation

<<WM rinsing activity>>=

set ct
signal
set wc

delaysignal

[findRelated $self ~R1]
Sct Agitate
[findRelated $self R4]

[expr {[readAttribute $wc RinseDuration] Sself Done

Draining Rinse Activity

Stop rinsing and drain

the rinse water.

select one ct related by self->R1[CT]
signal Drain to ct

Draining Rinse Implementation

<<WM draining rinse activity>>=

set ct

[findRelated $self ~R1]

signal $ct Drain

Relation Oriented Software Execution Architecture

269 / 295

Spinning Activity

Spin out excess water.

select one ct related by self->R1[CT]
signal Spin to ct

select one wc related by self->R4[WC]
signal Done to self at wc.SpinDuration

Spinning Implementation

<<WM spinning activity>>=

set ct [findRelated $self ~R1]

signal $ct Spin

set wc [findRelated $self R4]

delaysignal [expr {[readAttribute $wc SpinDuration] = 1000}] $self Done

Clothes Tub State Activities

The other state model in our example is for the Clothes Tub class
Empty Activity

Stop the pump

select one mtr related by self->R2[MTR]
where (MotorID = ’'Pump’)

mtr.Stop ()

Close the drain valve

select one wv related by self->R3[WV]
where (ValveID = ’'Drain’)

wv.Close ()

Disable the sensor

select one wls related by self->R5[WLS]

wls.Disable ()

Inform the washing machine

select one wm related by self->R1[WM]

signal Empty to wm

Empty Implementation

<<CT empty activity>>=
set mtr [findRelatedWhere $self ~R2 {S$MotorID eq "Pump"}]
instop $mtr Stop

set wv [findRelatedWhere $self ~R3 {$ValvelID eq "Drain"}]
instop $wv Close

set wls [findRelated $self ~R5]
instop $wls Disable

set wm [findRelated $self R1]
signal S$Swm Empty

Filling Activity

Enable the sensor

select one wls related by self->R5[WLS]
wls.Enable ()

Open inlet valve (s)

Relation Oriented Software Execution Architecture

270/ 295

if (temp = ’"Hot')
select one wv related by self->R3[WV]
where (ValveID = ’'Hot')
wv.Open ()
else if (temp = ’Cold’)
select one wv related by self->R3[WV]
where (ValveID = "Cold’)
wv.Open ()
else if (temp = ’"Warm’)
select many wvs related by self->R3[WV]
where (ValvelID = ’'Hot’ OR ValvelID = ’Cold’)
foreach wv in wvs
wv.Open ()
endfor
end if

Filling Implementation

<<CT filling activity>>=
set wls [findRelated $self ~R5]
instop $wls Enable
if {$Stemp eqg "Hot"} {
set wv [findRelatedWhere $self ~R3 {$ValvelID eq "Hot"}]
instop Swv Open
} elseif {Stemp eq "Cold"} {
set wv [findRelatedWhere $self ~R3 {$ValveID eq "Cold"}]
instop S$Swv Open
} elseif {Stemp eq "Warm"} {
set wvs [findRelatedWhere $self ~R3 {$ValveID eq "Hot" ||\
SValveID eq "Cold"}]
forAllRefs wv Swvs {
instop $wv Open

Full Activity

Disable the sensor
select one wls related by self->R5[WLS]
wls.Disable ()
Close all water valves
select many wvs related by self->R3[WV]
where (ValvelID = ’'Hot’ OR ValvelD = ’'Cold’)
foreach wv in wvs
wv.Close ()
endfor
Inform the washing machine
select one wm related by self->R1[WM]
signal Full to wm

Full Implementation

<<CT full activity>>=
set wls [findRelated $self ~R5]
instop $wls Disable

set wvs [findRelatedWhere $self ~R3 {$ValveID eq "Hot" || $ValveID eq "Cold"}]

forAllRefs wv Swvs {
instop $wv Close

Relation Oriented Software Execution Architecture 271/ 295

set wm [findRelated $self R1]
signal $wm Full

Agitating Activity

Start the agitator motor

select one mtr related by self->R2[MTR]
where (MotorID = ’'Agitator’)

mtr.Start ()

Agitating Implementation

<<CT agitating activity>>=
set mtr [findRelatedWhere S$self ~R2 {S$MotorID eq "Agitator"}]
instop $mtr Start

Emptying Activity

Stop the motor

select one mtr related by self->R2[MTR]
where (MotorID = ’'Agitator’)

mtr.Stop ()

Open the drain valve

select one wv related by self->R3[WV]
where (ValveID = ’'Drain’)

wv.Open ()

Start the pump

select one mtr related by self->R2[MTR]
where (MotorID = 'Pump’)

mtr.Start ()

Enable the sensor

select one wls related by self->R5[WLS]

wls.Enable ()

Emptying Implementation

<<CT emptying activity>>=
set mtr [findRelatedWhere $self ~R2 {S$SMotorID eq "Agitator"}]
instop $mtr Stop

set wv [findRelatedWhere $self ~R3 {$ValvelID eq "Drain"}]
instop $wv Open

set mtr [findRelatedWhere $self ~R2 {$MotorID eq "Pump"}]
instop $mtr Start

set wls [findRelated $self ~R5]
instop $wls Enable

Spinning Activity

Relation Oriented Software Execution Architecture 272/ 295

Open the drain valve

select one wv related by self->R2[WV]
where (ValveID = ’'Drain’)

wv.Open ()

Start the pump

select one mtr related by self->R2[MTR]
where (MotorID = ’'Pump’)

mtr.Start ()

Start the spin motor

select one mtr related by self->R2[MTR]
where (MotorID = ’'Spin’)

mtr.Start ()

Spinning Implementation

<<CT spinning activity>>=
set wv [findRelatedWhere $self ~R3 {$ValvelD eq "Drain"}]
instop $wv Open

set mtr [findRelatedWhere $self ~R2 {$MotorID eq "Pump"}]
instop $mtr Start

set mtr [findRelatedWhere $self ~R2 {$MotorID eq "Spin"}]
instop $mtr Start

Stopping Spin Activity

Stop the motor

select one mtr related by self->R2[MTR]
where (MotorID = ’'Spin’)

mtr.Stop ()

Stop the pump

select one mtr related by self->R2[MTR]
where (MotorID = 'Pump’)

mtr.Stop ()

Close the drain valve

select one wv related by self->R3[WV]

where (ValveID = ’'Drain’)
wv.Close ()

Stopping Spin Implementation

<<CT stopping spin activity>>=
set mtr [findRelatedWhere $self ~R2 {$MotorID eq "Spin"}]
instop $mtr Stop

set mtr [findRelatedWhere $self ~R2 {$MotorID eq "Pump"}]
instop $mtr Stop

set wv [findRelatedWhere $self ~R3 {$ValveID eq "Drain"}]
instop $wv Close

Class Instance Operations

The Water Valve, Motor and Water Level Sensor classes have instance based operations that serve as an interface to external
operations that are intended to perform the physical actions associated with the hardware. The external operations that are
invoked detail the dependencies this domain assumes will be performed by some other domain.

Relation Oriented Software Execution Architecture

273 /295

Water Valve Operations
<<WV operations>>=

instop Open {} {
tailcall VALVE::open [readAttribute $self ValvelID]

instop Close {} {
tailcall VALVE: :close [readAttribute $self ValvelID]

Motor Class Operations

<<MTR operations>>=
instop Start {} {
tailcall MOTOR: :start [readAttribute $self MotorID]

instop Stop {} {
tailcall MOTOR::stop [readAttribute $self MotorID]

Water Level Sensor Operations

<<WLS operations>>=
instop Enable {} {

tailcall SENSOR::enable [readAttribute $self MachinelID]

instop Disable {} {

tailcall SENSOR::disable [readAttribute $self MachineID]

Domain Operations

In this section we show the code for the domain operations. We assume that there is some entity in our overall system that will
invoke these operations. To make our example run, we will contrive to make that happen even though we do not intend to supply

a user interface, per se.

Create Washer

Since there several classes involved in creating a functioning washer, a domain operation can make that simpler.

<<wmctrl operations>>=
operation createWasher {washer} {

set wm [WashingMachine create MachineID $washer CycleType Normal]

ClothesTub create MachineID S$washer

WaterValve create ValveID Hot MachineID $washer
WaterValve create ValveID Cold MachineID S$washer
WaterValve create ValveID Drain MachineID S$washer
Motor create MotorID Pump MachineID S$washer

Motor create MotorID Agitator MachineID S$washer
Motor create MotorID Spin MachineID S$washer
WaterLevelSensor create MachineID S$washer

Relation Oriented Software Execution Architecture 274/ 295

return Swm

Delete Washer

If we can create a washer, it is also necessary to be able to delete one. Here we must be careful to leave the data model referentially
consistent.

<<wmctrl operations>>=
operation deleteWasher {washer} {
set wm [WashingMachine findById MachineID $washer]
if {[isNotEmptyRef S$wm]} {
set ct [findRelated $wm ~R1]
delete\
[findRelated $ct ~R3]\
[findRelated $ct ~R2]\
[findRelated $ct ~R5]
delete S$ct Swm
}

return

Start Washer

To start a washing machine we must supply the identifier of the washer so we can know which one is to be started. Although our
instance population only included a single WashingMachine instance, as we stated before, the models will run with an arbitrary
number of washing machine instances.

The implementation of the operation first searches all the instances of WashingMachine to find the correct one to start. It is
possible to request an unknown washer to start. After finding the correct instance, the Start event will kick things off.

<<wmctrl operations>>=
operation startWasher {washer} {
set wm [WashingMachine findWhere {$MachineID eq S$washer}]
if {[isEmptyRef Swm]} {
error "unknown washer, \"$washer\""

signal S$wm Start

return

Select Cycle

On the class diagram, relationship R1 determines which Washing Cycle will be used to control the operations. Selecting a wash
cycle means we must reform the R1 relationship, i.e. unlink the existing cycle and link in a different one. The implementation of
the selectCycle domain operation does just that.

<<wmctrl operations>>=
operation selectCycle {washer cycle} {
set wm [WashingMachine findWhere {$MachineID eq S$washer}]
if {[isEmptyRef S$wm]} {
error "unknown washer, \"$washer\""

set wc [WashingCycle findWhere {$CycleType eq S$Scycle}l]

Relation Oriented Software Execution Architecture

275/ 295

if {[isEmptyRef S$wc]} {
error "unknown cycle, \"S$Scycle\""

R4 link Swm S$wc

return

Initial Instance Population

In this section we populate the data of the domain model.

<<initial instance population>>=
class WashingCycle\
{CycleType WashWaterTemp RinseWaterTemp WashDuration RinseDuration\
SpinDuration AgitationSpeed SpinSpeed} {

Normal Cold Cold 20 10 10 Medium Medium
Whites Hot Cold 20 10 20 High High
PermPress Warm Cold 15 10 15 Medium Medium
Delicate Cold Cold 15 10 10 Low Low

We intend to have only a single WashingMachine instance and have chosen to populate it directly rather than invoke createWa
sher in order to show how that might happen. Note that the model will run correctly regardless of how many washing machines

we are trying to control even though we are creating only a single instance here.

<<initial instance population>>=
class WashingMachine {MachineID CycleType} {WasherOne Normal}

The class model dictates that each washer have exactly one ClothesTub.

<<initial instance population>>=
class ClothesTub MachineID WasherOne

<<initial instance population>>=
class Motor\

{MotorID MachineID} {
Pump WasherOne
Agitator WasherOne
Spin WasherOne

Each washing machine, also by design, has three valves to control hot and cold water and draining.

<<initial instance population>>=
class WaterValve\

{ValvelID MachineID}
Hot WasherOne
Cold WasherOne
Drain WasherOne

Finally, each washing machine has a sensor that can determine whether the tub is full or empty.

<<initial instance population>>=
class WaterLevelSensor MachineID WasherOne

Relation Oriented Software Execution Architecture 276/ 295

Stubbing the External Operations

External operations invoked by the domain must be resolved. In this section we stub out those operations with sufficient code to
be able to run our example program.

For the MOTOR and VALVE operations we will content ourselves to simply log the fact that they were invoked. The control that
is implied by the operation is “open loop” and no feed back is assumed. So when we say “Open a Valve” we will assume that the
value does what it is told. This leads us to the following implementation.

<<external operation stubs>>=
namespace eval ::wmctrl::Motor::MOTOR ({
::logger: :initNamespace [namespace current] info
proc start {motor} {
log::info "starting motor, \"Smotor\""
}
proc stop {motor} {
log::info "stopping motor, \"Smotor\""

namespace eval ::wmctrl::WaterValve::VALVE ({
::logger::initNamespace [namespace current] info
proc open {valve}l {
log::info "opening valve, \"S$valve\""
}
proc close {valve} {
log::info "closing valve, \"S$valve\""

The SENSOR operations present a bit more difficulty to stub. In this case, there is feedback from the interaction. We must
signal back the state of tub as being full or empty. So in some sense we must simulate the action of the sensor. To accomplish
simulating the sensor, we will record data in a relvar identified by the washing machine id. This will allow us to simulate an
arbitrary number of washing machines. We will delay the announcement of the new state for some time to simulate the water
filling or draining. To make the example run in reasonable times, we assume the tub will fill or empty in 3 seconds. That’s quick!

<<external operation stubs>>=

namespace eval ::wmctrl::WaterLevelSensor::SENSOR {
namespace import ::ral::=
namespace import ::ralutil::x

::logger::initNamespace [namespace current] debug

relvar create SensorState {

MachineID string
State string
TimerID string

} MachinelID

proc enable {machine} {
log: :debug "enable sensor on machine, \"S$machine\""

set ss [relvar restrictone SensorState MachineID S$machine]
if {[relation isempty $ss]} {
set ss [relvar insert SensorState [list\
MachineID $machine State TubEmpty TimerID None]]
}
set sensorState [relation extract $ss State]

set newState\
[expr {S$sensorState eq "TubEmpty" ? "TubFull" : "TubEmpty"}]

Relation Oriented Software Execution Architecture 277 /] 295

set tid [after 3000 [namespace code [list trigger $machine S$newState]]]
relvar updateone SensorState sstate [list MachineID S$machine] {
tuple update $sstate State $newState TimerID $tid

proc disable {machine} {
log::debug "disable sensor on machine, \"S$machine\""
set ss [relvar restrictone SensorState MachineID S$machine]
if {[relation isnotempty $ss]} {
after cancel [relation extract $ss TimerID]

Delivering the indication that the Water Level Sensor has detected a change in the water level really means we want to send the
appropriate ClothesTub instance either the TubFull or TubEmpty event. Conveniently, we have been keeping track of the sensor
state using string named the same as the event we intend to deliver. So all we have to do is search for the correct Clothes Tub that
matches the sensor and signal an event. We also update our notion of the current status of the sensor.

<<external operation stubs>>=
proc trigger {machine value} ({
set ct [::wmctrl::ClothesTub findWhere {
SMachineID eqg $machine

}]

rosea tunnel $ct signal S$value

relvar updateone SensorState sstate [list MachineID S$machine] {
tuple update $sstate State S$value

Running the Example

Before we can start the example running, we have to figure out how we are going to stop it. Recall that to dispatch state machine
events we must enter the Tcl event loop. We will use the vwait command to do that. But we need some way to break out of the
event loop so that we can look at the results of the run. To do that, we will set a global variable named : : done and invoke : :
vwait on that variable.

To actually set the : : done variable, we will install a command trace on the Stopping Spin state activity of the Clothes Tub class.
This state is entered when the cycle is done and it is our intent to regain control of the execution flow after each washing cycle.
Since state activities are turned into ordinary Tcl procs, we can use a command execution trace to assign a value to : : done and
thereby resume execution after our call to : : vwait. Note that we are adding this synchronization solely to be able to run one
washing cycle in our example and gain control after that cycle has completed. Once we come out of the event loop, we will want
to do some other processing to show the execution results of the example. An actual application would most likely run forever
or invoke : :exit based on some other condition or circumstance.

<<running the example>>=
proc syncToStop {cmd code result op} {
set ::done 1

trace add execution ::wmctrl::ClothesTub::__Activity::StoppingSpin\
leave syncToStop

Finally, yes truly finally, we are in a position to drive the domain operations to select a cycle and run the washer through the
cycle. We will turn on tracing so we can see what happened.

<<running the example>>=
rosea trace control on

Relation Oriented Software Execution Architecture 278/ 295

wmctrl selectCycle WasherOne PermPress
puts "x*x*xx Start Run"
wnctrl startWasher WasherOne

vwait ::done ; # ©

puts "xxxx Finish Run"
rosea trace control off

puts "xx%x% Trace Begin"
puts [rosea trace format [rosea trace decode alll]]
puts "xxxx Trace End"

rosea trace diagram all images/wmctrl-seqdiag.diag span_height 7 ; # ©

rosea trace control save wmctrl-trace.sqlite ; # ©

o Enter the Tcl event loop. State machine events will then be dispatched and the washer will operate.

2] Draw a sequence diagram of the example run. This will allow us to compare the textual log with a graphic containing the
same information.

(3] We save the traces to demonstrate that the trace data can be made available for future analysis.

Example Run Results

After running the example we obtain the following output.
Output From Running the Example

*xxx Start Run

[Wed Sep 30 16:25:55 PDT 2015] [wmctrl::WaterLevelSensor::SENSOR] [debug] ’'enable <+
sensor on machine, "WasherOne"’

[Wed Sep 30 16:25:55 PDT 2015] [wmctrl::WaterValve::VALVE] [info] ’'opening valve, <=

"Hot nwr
[Wed Sep 30 16:25:55 PDT 2015] [wmctrl::WaterValve::VALVE] [info] ’'opening valve, <>
"cold"I

[Wed Sep 30 16:25:58 PDT 2015] [wmctrl::WaterLevelSensor::SENSOR] [debug] ’'disable <«
sensor on machine, "WasherOne"’
[Wed Sep 30 16:25:58 PDT 2015] [wmctrl::WaterValve::VALVE] [info] 'closing valve, <=

"Hot mwr
[Wed Sep 30 16:25:58 PDT 2015] [wmctrl::WaterValve::VALVE] [info] ’'closing valve, >
llcold"/

[Wed Sep 30 16:25:58 PDT 2015] [wmctrl::Motor::MOTOR] [info] ’starting motor, "
Agitator"’
[Wed Sep 30 16:26:13 PDT 2015] [wmctrl::Motor::MOTOR] [info] ’stopping motor, " <

Agitator"’

[Wed Sep 30 16:26:13 PDT 2015] [wmctrl::WaterValve::VALVE] [info] ’opening valve, —
"Drain"’

[Wed Sep 30 16:26:13 PDT 2015] [wmctrl::Motor::MOTOR] [info] ’starting motor, " <
Pump"’

[Wed Sep 30 16:26:13 PDT 2015] [wmctrl::WaterLevelSensor::SENSOR] [debug] ’enable <>
sensor on machine, "WasherOne"’

[Wed Sep 30 16:26:16 PDT 2015] [wmctrl::Motor::MOTOR] [info] ’stopping motor, " <
Pumpl'l

[Wed Sep 30 16:26:16 PDT 2015] [wmctrl::WaterValve::VALVE] [info] 'closing valve, <=
"Drainlll

Relation Oriented Software Execution Architecture 279 /295
[Wed Sep 30 16:26:16 PDT 2015] [wmctrl::WaterLevelSensor::SENSOR] [debug] ’‘disable <>
sensor on machine, "WasherOne"’

[Wed Sep 30 16:26:16 PDT 2015] [wmctrl::WaterLevelSensor::SENSOR] [debug] ’'enable <«
sensor on machine, "WasherOne"’

[Wed Sep 30 16:26:16 PDT 2015] [wmctrl::WaterValve::VALVE] [info] ’'opening valve, <=
"Cold"’

[Wed Sep 30 16:26:19 PDT 2015] [wmctrl::WaterLevelSensor::SENSOR] [debug] ’'disable <«

sensor on machine, "WasherOne"’

[Wed Sep 30 16:26:19 PDT 2015] [wmctrl::WaterValve::VALVE] [info] ’'closing valve, —
"Hot"’

[Wed Sep 30 16:26:19 PDT 2015] [wmctrl::WaterValve::VALVE] [info] 'closing valve, <>
"Cold"’

[Wed Sep 30 16:26:19 PDT 2015] [wmctrl::Motor::MOTOR] [info] ’'starting motor, " <
Agitator"’

[Wed Sep 30 16:26:29 PDT 2015] [wmctrl::Motor::MOTOR] [info] ’stopping motor, " <
Agitator"’

[Wed Sep 30 16:26:29 PDT 2015] [wmctrl::WaterValve::VALVE] [info] ’'opening valve, —
" D ra l n nwrs

[Wed Sep 30 16:26:29 PDT 2015] [wmctrl::Motor::MOTOR] [info] ’starting motor, "
Pump"’

[Wed Sep 30 16:26:29 PDT 2015] [wmctrl::WaterLevelSensor::SENSOR] [debug] ’enable <=

sensor on machine, "WasherOne"’

[Wed Sep 30 16:26:32 PDT 2015] [wmctrl::Motor::MOTOR] [info] ’stopping motor, " <
Pump"’

[Wed Sep 30 16:26:32 PDT 2015] [wmctrl::WaterValve::VALVE] [info] ’'closing valve, —
"Drain"’

[Wed Sep 30 16:26:32 PDT 2015] [wmctrl::WaterLevelSensor::SENSOR] [debug] ’'disable <>
sensor on machine, "WasherOne"’

[Wed Sep 30 16:26:32 PDT 2015] [wmctrl::WaterValve::VALVE] [info] ’opening valve, —
"Drain"’

[Wed Sep 30 16:26:32 PDT 2015] [wmctrl::Motor::MOTOR] [info] ’starting motor, " <
Pump"’

[Wed Sep 30 16:26:32 PDT 2015] [wmctrl::Motor::MOTOR] [info] ’starting motor, "
Spin"’

[Wed Sep 30 16:26:47 PDT 2015] [wmctrl::Motor::MOTOR] [info] ’stopping motor, " <
Spin"’

[Wed Sep 30 16:26:47 PDT 2015] [wmctrl::Motor::MOTOR] [info] ’stopping motor, " <
Pump"’

[Wed Sep 30 16:26:47 PDT 2015] [wmctrl::WaterValve::VALVE] [info] ’closing valve, <
"Drain"’

*x*x Finish Run

**xx% Trace Begin

16:25:55.284.520: 0.000.000: Transition: {} - Start -> ::wmctrl::WashingMachine{

MachineID WasherOne} ==> Stopped -> FillingToWash

16:25:55.285.302: 0.000.782: Transition: ::wmctrl::WashingMachine{MachineID <>
WasherOne} - Fill (Warm) -> ::wmctrl::ClothesTub{MachineID WasherOne} ==> Empty <
-> Filling

16:25:58.336.666: 3.051.364: Transition: {} — TubFull -> ::wmctrl::ClothesTub{ <«

MachineID WasherOne} ==> Filling -> Full

16:25:58.337.889: 0.001.223: Transition:
WasherOne} - Full -> ::wmctrl::WashingMachine{MachineID WasherOne}
FillingToWash -> Washing

16:25:58.338.832: 0.000.943: Transition: ::wmctrl::WashingMachine{MachineID <>
WasherOne} - Agitate —-> ::wmctrl::ClothesTub{MachineID WasherOne} ==> Full -> <>
Agitating

16:26:13.338.998:
WasherOne} - Done ->

c:wmctrl::ClothesTub{MachineID <>
==> P

15.000.166: Transition:
::wmctrl::WashingMachine{MachineID WasherOne}

::wmctrl::WashingMachine{MachineID <>
==> Washing <+

Relation Oriented Software Execution Architecture 280/ 295

—> DrainingWash

16:26:13.339.504: 0.000.506: Transition: ::wmctrl::WashingMachine{MachineID <>
WasherOne} - Drain -> ::wmctrl::ClothesTub{MachineID WasherOne} ==> Agitating <>
-> Emptying

16:26:16.341.182: 3.001.678: Transition: {} - TubEmpty -> ::wmctrl::ClothesTub{ ¢
MachineID WasherOne} ==> Emptying -> Empty
16:26:16.342.459: 0.001.277: Transition: ::wmctrl::ClothesTub{MachineID <>

WasherOne} - Empty —-> ::wmctrl::WashingMachine{MachineID WasherOne} ==> <>
DrainingWash -> FillingToRinse

16:26:16.342.989: 0.000.530: Transition: ::wmctrl::WashingMachine{MachineID <>
WasherOne} - Fill(Cold) -> ::wmctrl::ClothesTub{MachineID WasherOne} ==> Empty <>
-> Filling

16:26:19.343.817: 3.000.828: Transition: {} - TubFull -> ::wmctrl::ClothesTub{ <«
MachineID WasherOne} ==> Filling -> Full

16:26:19.344.901: 0.001.084: Transition: ::wmctrl::ClothesTub{MachineID <>
WasherOne} - Full -> ::wmctrl::WashingMachine{MachineID WasherOne} ==> <>
FillingToRinse —> Rinsing

16:26:19.345.585: 0.000.684: Transition: ::wmctrl::WashingMachine{MachineID <>
WasherOne} - Agitate —-> ::wmctrl::ClothesTub{MachineID WasherOne} ==> Full -> <>
Agitating

16:26:29.345.702: 10.000.117: Transition: ::wmctrl::WashingMachine{MachineID <>
WasherOne} — Done —-> ::wmctrl::WashingMachine{MachineID WasherOne} ==> Rinsing <>
-> DrainingRinse

16:26:29.346.212: 0.000.510: Transition: ::wmctrl::WashingMachine{MachineID <>

WasherOne} - Drain -> ::wmctrl::ClothesTub{MachineID WasherOne} ==> Agitating <>
-> Emptying

16:26:32.347.835: 3.001.623: Transition: {} - TubEmpty -> ::wmctrl::ClothesTub{ ¢
MachineID WasherOne} ==> Emptying —-> Empty
16:26:32.349.037: 0.001.202: Transition: ::wmctrl::ClothesTub{MachineID <>

WasherOne} - Empty -> ::wmctrl::WashingMachine{MachineID WasherOne} ==> <
DrainingRinse -> Spinning

16:26:32.349.713: 0.000.676: Transition: ::wmctrl::WashingMachine{MachineID <>
WasherOne} - Spin -> ::wmctrl::ClothesTub{MachineID WasherOne} ==> Empty -> <
Spinning

16:26:47.349.830: 15.000.117: Transition: ::wmctrl::WashingMachine{MachineID <
WasherOne} - Done -> ::wmctrl::WashingMachine{MachineID WasherOne} ==> Spinning <>

-> Stopped

16:26:47.350.366: 0.000.536: Transition: ::wmctrl::WashingMachine{MachineID <>
WasherOne} - Stop —-> ::wmctrl::ClothesTub{MachineID WasherOne} ==> Spinning -> <
StoppingSpin

*x*x Trace End

The first section is the set of log messages that show the interaction with the motors, values and sensors. This amounts to a
trace of the external side effects that the domain produces on the washing machine hardware. The second portion shows the
chronological trace of the state machine event dispatch. The first column of the trace is the time of day and the second column is
the time difference between the last trace entry (in the form of s.ms.us). The remainder of the trace show the details of the event
dispatch. The first portion of the Transition trace shows the event being dispatched from a source instance to a target instance.
The state machine transition of the target instance, from current state to new state, is shown after the “==-" symbol. Instances
are shown with the set of attribute name / value pairs that form the identifier contained in the instance reference.

The figure below shows the trace information in sequence diagram form. This diagram was produced using rosea diagram
all to generate a file suitable for the segdiag program to render a graphic.

281 /295

Relation Oriented Software Execution Architecture

o
=
T
0
<
3 E Z > g
© = £ = £
w w
I —
ey ©
© (O] — [O]
g = I c S © c
—_ =] - (O] — et — () - C (0] (@]
< = = c © = = c © = c o
[e] = O] o — = O o) — (@] o -
© L < A @] [< a) n) a n
s @ _ ____ - - M-l -——————_—_————
o
£
<
n
=
> >
4t -
— [e] _ fe]
= € > S
+ s w s w
_ © Qo re) o) Qo
s S > > >
= n ~ = [-
o0 e e e e e e e o
|
T
>
L

Figure 11.5: Example Sequence Diagram

Relation Oriented Software Execution Architecture 282 /295

The track labeled EXTERNAL shows events that originate outside of the domain. The example begins with a Start event
being sent to an instance of the WashingMachine class. The other external events arise from the Water Level Sensor detecting
the status of the Clothes Tub. The clothes are cleaned by a sequence of events exchanged between the WashingMachine and
ClothesTub instances to coordinate the steps of the washing cycle to clean clothes. Although the sequence diagram does not tell
the whole story of the program execution (e.g. the side effects caused by the state activities are often very important), it does go
a long way to showing the chronological unfolding of the example’s execution.

Relation Oriented Software Execution Architecture

283 /295

Chapter 12

Code Organization

In this section we show the organization of the files that can be tangled from the literate source.

First, this software is copyrighted. It is licensed in the same manner as Tcl itself.

<<copyright info>>=

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

DO NOT EDIT THIS FILE!
THIS FILE IS AUTOMATICALLY GENERATED FROM A LITERATE PROGRAM SOURCE FILE.

This software is copyrighted 2014-2015 by G. Andrew Mangogna.

The following terms apply to all files associated with the software unless

explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute,

and license this software and its documentation for any purpose, provided
that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement,
license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and
need not follow the licensing terms described here, provided that the

new terms are clearly indicated on the first page of each file where

they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES
THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON—-INFRINGEMENT. THIS SOFTWARE
IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,

OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the
U.S. government, the Government shall have only "Restricted Rights"
in the software and related documentation as defined in the Federal
Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you
are acquiring the software on behalf of the Department of Defense,
the software shall be classified as "Commercial Computer Software"
and the Government shall have only "Restricted Rights" as defined in
Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing,
the authors grant the U.S. Government and others acting in its behalf
permission to use and distribute the software in accordance with the

Relation Oriented Software Execution Architecture 284 /295

terms specified in this license.

Each root chunk is described in a section below.

Source Code

<<rosea.tcl>>=
<<copyright info>>

package require Tcl 8.6

package require logger
<<required packages>>

proc ::K {x y} {set x}

namespace eval ::rosea {
<<rosea exports>>
namespace ensemble create
variable version 1.0
logger::initNamespace [namespace current]
<<tclral imports>>
namespace import ::ral::relvar
<<rosea data>>
<<rosea commands>>
<<rosea namespace layout>>
namespace path ::rosea::Helpers

namespace import ::rosea::Config::ConfigEvaluate

package provide rosea $::rosea::version

Package Index

We also provide a root chunk to extract a package index file.

<<pkgIndex.tcl>>=
package ifneeded rosea 1.0 [list source [file join $dir rosea.tcl]]

Unit Tests

<<rosea.test>>=
<<copyright info>>

package require Tcl 8.6
package require cmdline

package require logger

<<required packages>>

Relation Oriented Software Execution Architecture 285 /295

Add custom arguments here.
set optlist {

{level.arg warn {Log debug level}}
}

array set options [::cmdline::getKnownOptions argv S$Soptlist]
logger: :setlevel S$options(level)

source ../src/rosea.tcl
chan puts "testing rosea version: [package require roseal"

package require tcltest
eval tcltest::configure S$argv

namespace eval ::rosea::test {
namespace import ::tcltest::x
::logger::initNamespace [namespace current]

<<tclral imports>>
namespace import ::ral::relvar

<<test utility procs>>
<<helper command tests>>
<<class command tests>>
<<instance command tests>>
<<dispatch command tests>>
<<config command tests>>
<<generate command tests>>
<<populate command tests>>
<<save command tests>>
<<trace command tests>>

cleanupTests

Example Domain

<<wmctrl.tcl>>=
<<copyright info>>

package require Tcl 8.6
package require logger

source rosea.tcl

rosea configure {
domain wmctrl {

<<wmctrl operations>>
<<WM class>>
<<WC class>>
<<CT class>>
<<WV class>>
<<MTR class>>
<<WLS class>>
<<wmctrl relationships>>

rosea generate

Relation Oriented Software Execution Architecture

286 / 295

rosea populate {
domain wmctrl {
<<initial instance population>>

Example Program

<<runwm.tcl>>=
<<wmctrl.tcl>>

<<external operation stubs>>
<<running the example>>

Reference Documentation

<<rosea.man>>=

[manpage_begin rosea n 1.0]

[comment {

<<copyright info>>

H]

[moddesc "XUML Data and Execution Architecture"]
[titledesc "Relation Oriented Software Execution Architecture"]
[copyright "2014-2015 by G. Andrew Mangogna"]
[require rosea [opt 1.01]]

[description]

<<manual description>>

[section "Package Commands"]

The commands in this section are part of the ensemble command [cmd ::rosea].

Their use is to configure, generate and populate domains

and to control state machine tracing during run time.

[list_begin definitions]

[usage "Package Commands"]

<<manual package commands>>

[list_end]

[section "Configuration Commands"]

The commands in this section is used are intended to be invoked as part
of the [arg body] script of the [cmd configure] command.

There is only one command, [cmd domain], and it is used to define

the elements of a domain.

[list_begin definitions]

[usage "Configuration Commands"]

<<manual configuration commands>>

[list_end]

[subsection "Domain Configuration Commands"]

The commands in this section are intended to be invoked as part of the
[arg body] of the [cmd domain] command.

These commands specify the details of the various elements that

are part of a domain.

[list_begin definitions]

[usage "Domain Configuration Commands"]

<<manual domain configuration commands>>

[list_end]

[subsection "Class Configuration Commands"]

The commands in this section are intended to be invoked as part of the
[arg body] script of the [cmd class] command.

Relation Oriented Software Execution Architecture 287 /295

These command define the characteristics a class such as its attributes.
[list_begin definitions]

[usage "Class Configuration Commands"]

<<manual class configuration commands>>

[list_end]

[subsection "State Model Configuration Commands"]

The commands in this section are intended to be invoked as part of

the [arg body] script of the [cmd statemodel] command.

These command define the states, transitions, _etc._ of the state model that is
bound to the enclosing [cmd class].

[usage "State Model Configuration Commands"]

[list_begin definitions]

<<manual statemodel configuration commands>>

[list_end]

[subsection "Assigner Configuration Commands"]

The commands in this section are intended to be invoked as part of the
[arg body] script of the [cmd assigner] command.

These commands define the state model of the assigner and are similar
to the

State Model Configuration Commands

[sectref "State Model Configuration Commands" above].

[list_begin definitions]

[usage "Assigner Configuration Commands"]

<<manual assigner configuration commands>>

[list_end]

[subsection "Population Commands"]

The commands in this section are intended to be invoked as part of the
[arg body] script of the [cmd "::rosea populate"] command.

These commands define class instance values that are to be part of the
initial instance population for the domain.

Population commands should only be invoked after the domain

has been generated.

It is only at that time that the data storage has been create to

hold the class instances.

[list_begin definitions]

[usage "Population Commands"]

<<manual populate commands>>

[list_end]

[subsection "Domain Population Commands"]

The commands in this section are intended to be invoked as part of the
[arg body] script of the [cmd domain] command which is, in turn,

part of a script for defining an initial instance population.
[list_begin definitions]

[usage "Domain Population Commands"]

<<manual domain populate commands>>

[list_end]

[section "Architecture Commands"]

The commands in this section are supplied by [cmd rosea].

They are intended to be invoked by state activities and

operations and provide the means to access model level

semantics in the implementation.

[paral

Many of the commands below accept as an argument

or return as a value an [emph "instance reference"].

An instance reference or [arg instref],

is an ordinary Tcl value whose internals should be considered opaque.
An instance reference provides a means to refer to zero or more

class instances.

The primary purpose of the instance reference is to specify which
class instances are to be subject to an operation or

to specify the results of some operation on the class model as a whole,
[emph e.g.] finding a set of instances based on some attribute value.

Relation Oriented Software Execution Architecture

288 /295

[subsection "Class Commands"]

Each class in a domain will have a class command defined for it.
The class command has the same name as the class and is an ensemble
command whose subcommands are given below.

The subcommands listed below are included in the class ensemble command
for all classes in the domain.

In addition,

any class based operations defined for the class will also

appear as additional subcommands in the class command ensemble.
[list_begin definitions]

[usage "Class Commands"]

<<manual architecture class commands>>

[list_end]

[subsection "Relationship Commands"]

Each relationship in a domain will have a relationship command defined
for it.

The relationship command has the same name as the relationship

and is an ensemble command whose subcommands are given below.

The subcommands of a relationship ensemble command will depend upon
the type of the relationship and not all of the subcommands below
are available to all relationships.

How each command applies to a relationship is described below.
[list_begin definitions]

[usage "Relationship Commands"]

<<manual architecture relationship commands>>

[list_end]

[subsection "Instance Commands"]

The commands below define operations on class instances.

They are intended to be invoked as part of state activities and operations

to access the data model and signal events.

The context in which a state activity runs is such that these
commands will resolve using unqualified command names.
[list_begin definitions]

[usage "Instance Commands"]

<<manual architecture instance commands>>

[list_end]

[manpage_end]

Relation Oriented Software Execution Architecture 289 /295

Bibliography

Books

Articles

[1] [mb-xuml] Stephen J. Mellor and Marc J. Balcer, Executable UML: a foundation for model-driven architecture,
Addison-Wesley (2002), ISBN 0-201-74804-5.

[2] [rs-xuml] Chris Raistrick, Paul Francis, John Wright, Colin Carter and Ian Wilkie, Model Driven Architecture
with Executable UML, Cambridge University Press (2004), ISBN 0-521-53771-1.

[3] [Is-build], Leon Starr, How to Build Shlaer-Mellor Object Models, Yourdon Press (1996), ISBN 0-13-207663-2.

[4] [sm-data] Sally Shlaer and Stephen J. Mellor, Object Oriented Systems Analysis: Modeling the World in Data,
Prentice-Hall (1988), ISBN 0-13-629023-X.

[5] [sm-states] Sally Shlaer and Stephen J. Mellor, Object Oriented Systems Analysis: Modeling the World in
States, Prentice-Hall (1992), ISBN 0-13-629940-7.

[6] [Is-articulate] Leon Starr, How to Build Articulate UML Class Models, 2008, http://www.modelint.com/how-
to-build-articulate-uml-class-models/

[7] [Is-time] Leon Starr, Time and Synchronization in Executable UML, 2008, http://www.modelint.com/time-and-
synchronization-in-executable-uml/

http://www.modelint.com/how-to-build-articulate-uml-class-models/
http://www.modelint.com/how-to-build-articulate-uml-class-models/
http://www.modelint.com/time-and-synchronization-in-executable-uml/
http://www.modelint.com/time-and-synchronization-in-executable-uml/

Relation Oriented Software Execution Architecture 290/ 295

Appendix A

Literate Programming

The source for this document conforms to asciidoc syntax. This document is also a literate program. The source code for the
implementation is included directly in the document source and the build process extracts the source that is then given to the Tcl
interpreter. This process is known as tangleing. The program, at angle, is available to extract source code from the document
source and the asciidoc tool chain can be used to produce a variety of different output formats, although PDF is the intended
choice.

The goal of a literate program is to explain the logic of the program in an order and fashion that facilitates human understanding
of the program and then fangle the document source to obtain the Tcl code in an order suitable for the Tcl interpreter. Briefly,
code is extracted from the literate source by defining a series of chunks that contain the source. A chunk is defined by including
its name as:

<<chunk name>>=

The trailing = sign denotes a definition. A chunk definition ends at the end of the source block or at the beginning of another
chunk definition. A chunk may be referenced from within a chunk definition by using its name without the trailing = sign, as in:

<<chunk definition>>=
<<chunk reference>>

Chunk names are arbitrary strings. Multiple definitions with the same name are simply concatenated in the order they are
encountered. There are one or more root chunks which form the conceptual tree for the source files that are contained in the
literate source. By convention, root chunks are named the same as the file name to which they will be tangled. Tangling is then
the operation of starting at a root chunk and recursively substituting the definition for the chunk references that are encountered.

For readers that are not familiar with the literate style and who are adept at reading source code directly, the chunks definitions
and reordering provided by the tangle operation can be a bit disconcerting at first. You can, of course, examine the tangled source
output, but if you read the program as a document, you will have to trust that the author managed to arrange the chunk definitions
and references in a manner so that the tangled output is acceptable to the Tcl interpreter.

http://www.methods.co.nz/asciidoc/
http://www.literateprogramming.com/
http://repos.modelrealization.com/cgi-bin/fossil/tcl-cm3/

Relation Oriented Software Execution Architecture

291 /295

Index

A

AMBIGUOUS_UNLINK, 43
ARG_ERROR, 58
ARG_FORMAT, 108
ARG_MISMATCH, 221
assignAttribute, 64

assigner, 157, 224
association, 123
ATTR_CHECK_FAILED, 182
ATTR_VAR_SPEC, 61
attribute, 104

B

BAD_CREATION_TARGET, 145
BAD_RELATIONSHIP_SPEC, 125
BAD_TRACEOP, 240
BAD_TRACETYPE, 252

C

canceldelayed, 69

CancelDelayedSignal, 82

CheckValueTrace, 181

class, 101, 220

ClassCmds
create, 30
createasync, 33
createin, 31
findAll, 26
findByld, 27
findWhere, 28
update, 34

classop, 111

Config
assigner, 157
association, 123
attribute, 104
class, 101
classop, 111
ConfigEvaluate, 90
defaulttrans, 146
domain, 95
generalization, 131
HandleConfigError, 163
initialstate, 145
instop, 114
polymorphic, 147
reference, 107

state, 137

statemodel, 133

terminal, 146

transition, 144
CONFIG_ERRORS, 91
ConfigEvaluate, 90
configure, 91, 232
configureFromChan, 92
configureFromFile, 92
create, 30
createasync, 33
createin, 31
CreatelnlnitialState, 32
CreatelnlnitialStateFromRef, 32
createMultiAssigner, 48
CreateStatelnstance, 32
CreateStateInstanceFromRef, 32
createWasher, 273

D

DeclError, 87

DecodeAllTraces, 246

DecodeClassTraces, 247

DecodeTargetTraces, 249

defaulttrans, 146

DefValueTrace, 180

delayremaining, 69

delaysignal, 68

delete, 65

DeleteDelayedSignal, 80

deleteWasher, 274

deRef, 15

DiagAllTraces, 253

DiagClassTraces, 253

DiagTargetTraces, 254

DiagTraces, 253

Dispatch
CancelDelayedSignal, 82
DeleteDelayedSignal, 80
DispatchDelayedEvent, 81
DispatchEvent, 75
FindDelayedSignal, 79
MapPolymorphicEvent, 84
SignalDelayedEvent, 80
SignalEvent, 73
SignalTimeRemaining, 83
TransitionError, 77

Relation Oriented Software Execution Architecture

DispatchDelayedEvent, 81

DispatchEvent, 75

domain, 95, 219

domain operation
createWasher, 273
deleteWasher, 274
selectCycle, 274
startWasher, 274

DUP_ELEMENT_NAME, 102

DUP_OP_NAME, 112

E

EMPTY_NAME, 96

error code
AMBIGUOUS_UNLINK, 43
ARG_ERROR, 58
ARG_FORMAT, 108
ARG_MISMATCH, 221
ATTR_CHECK_FAILED, 182
ATTR_VAR_SPEC, 61
BAD_CREATION_TARGET, 145
BAD_RELATIONSHIP_SPEC, 125
BAD_TRACEOQOP, 240
BAD_TRACETYPE, 252
CONFIG_ERRORS, 91
DUP_ELEMENT_NAME, 102
DUP_OP_NAME, 112
EMPTY_NAME, 96
EVENT_IN_FLIGHT, 76, 78
EXPECTED_PSEUDO_STATE, 160
ID_UPDATE, 58
INVALID_TIME, 68
MUST_BE_SINGULAR, 37
NEED_ASSOCIATOR, 125
NEED_REFLEXIVE_PATH, 125
NO_ASSIGNER, 46
NO_CROSS_DOMAIN, 36
NO_IDENTIFIER, 47
NO_SAVEFILE, 240
NO_SUBCLASS, 45
NON_PARTICIPANTS, 37
NOT_IN_ASSOCIATION, 40
NS_QUALIFIERS, 112
PATH_ERROR, 52
PSEUDO_STATE, 159
REFLEXIVE_NOT_ALLOWED, 125
RELVAR_TRACE_OP, 182
RESERVED_NAME, 105
SAME_CLASS, 19
SAVE_ARG_ERROR, 228
SINGLE_REF_REQUIRED, 69, 70
TILDE_NAME, 124
TOO_FEW_SUBCLASSES, 132
UNKNOWN_ASSIGNER, 47
UNKNOWN_ATTRIBUTE, 58
UNKNOWN_LINKAGE, 52
UNKNOWN_OPTION, 108

UNKNOWN_RELATIONSHIP, 37
UNKNOWN_STATE, 31, 33
UNKNOWN_TRACE_CMD, 239
WITH_ATTR_USAGE, 61
EvalAttrCheck, 182
EVENT_IN_FLIGHT, 76, 78
EXPECTED_PSEUDO_STATE, 160

F

findAll, 26

findByld, 27
FindDelayedSignal, 79
findRelated, 52
FindRelatedInst, 50
findRelatedWhere, 53
findUnrelated, 53
findUnrelatedWhere, 54
findWhere, 28
forAllRefs, 19
FormatTimeAsSec, 252
FormatTimeStamp, 252
FormatTraceRec, 251
formatTraces, 250

G
generalization, 131

H

HandleConfigError, 163

Helpers
CheckValueTrace, 181
CreatelnlInitialState, 32
CreatelnlInitialStateFromRef, 32
CreateStatelnstance, 32
CreateStateInstanceFromRef, 32
DeclError, 87
DefValueTrace, 180
deRef, 15
EvalAttrCheck, 182
Interleave, 190
MapCondMultToConstraint, 193
nillnstRef, 17
PropagatePolyEvents, 148
QuerySystemClassOperations, 186
QuerySystemInstanceOperations, 186
QuerySystemOperations, 186
SelfInstRef, 66
SplitRelvarName, 88
ToRef, 14

I

ID_UPDATE, 58

initialstate, 145

InstCmds
assignAttribute, 64
canceldelayed, 69
delayremaining, 69

Relation Oriented Software Execution Architecture

293 / 295

delaysignal, 68
delete, 65
findRelated, 52
FindRelatedInst, 50
findRelatedWhere, 53
findUnrelated, 53
findUnrelatedWhere, 54
forAllRefs, 19
instop, 70
isEmptyRef, 17
isNotEmptyRef, 17
isRefEqual, 18
isRefSingular, 18
readAttribute, 63
refIntersect, 19
refMinus, 19
refMultiplicity, 18
RefSetCommand, 18
refUnion, 19
signal, 67
updateAttribute, 57
withAttribute, 60
instop, 70, 114
Interleave, 190
INVALID_TIME, 68
isEmptyRef, 17
isNotEmptyRef, 17
isRefEqual, 18
isRefSingular, 18

L
linkAssoc, 39
linkSimple, 36

M

MapCondMultToConstraint, 193
MapPolymorphicEvent, 84
migrate, 44
MUST_BE_SINGULAR, 37

N

NEED_ASSOCIATOR, 125
NEED_REFLEXIVE_PATH, 125
nillnstRef, 17
NO_ASSIGNER, 46
NO_CROSS_DOMAIN, 36
NO_IDENTIFIER, 47
NO_SAVEFILE, 240
NO_SUBCLASS, 45
NON_PARTICIPANTS, 37
NOT_IN_ASSOCIATION, 40
NS_QUALIFIERS, 112

P

PATH_ERROR, 52
polymorphic, 147
Populate

assigner, 224
class, 220
domain, 219
populate, 217
populateFromChan, 218
populateFromFile, 218
populate, 217
populateFromChan, 218
populateFromFile, 218
proc
DiagTraces, 253
domain operation
createWasher, 273
deleteWasher, 274
selectCycle, 274
startWasher, 274
FormatTimeAsSec, 252
FormatTimeStamp, 252
FormatTraceRec, 251
formatTraces, 250
rosea
configure, 91, 232
configureFromChan, 92
configureFromFile, 92
TracesToRecords, 245
PropagatePolyEvents, 148
PSEUDO_STATE, 159

Q
QueryClassTraces, 235

QuerySystemClassOperations, 186
QuerySystemInstanceOperations, 186
QuerySystemOperations, 186
QueryTargetTraces, 236

R
readAttribute, 63
reference, 107
reflntersect, 19
REFLEXIVE_NOT_ALLOWED, 125
refMinus, 19
refMultiplicity, 18
RefSetCommand, 18
refUnion, 19
RelCmds
createMultiAssigner, 48
linkAssoc, 39
linkSimple, 36
migrate, 44
signalAssigner, 46
signalMultiAssigner, 47
unlinkAssoc, 42
unlinkSimple, 41
RELVAR_TRACE_OP, 182
RESERVED_NAME, 105
rosea
ClassCmds

Relation Oriented Software Execution Architecture

294 / 295

create, 30
createasync, 33
createin, 31
findAll, 26
findByld, 27
findWhere, 28
update, 34
Config
assigner, 157
association, 123
attribute, 104
class, 101
classop, 111
ConfigEvaluate, 90
defaulttrans, 146
domain, 95
generalization, 131
HandleConfigError, 163
initialstate, 145
instop, 114
polymorphic, 147
reference, 107
state, 137
statemodel, 133
terminal, 146
transition, 144
configure, 91, 232
configureFromChan, 92
configureFromFile, 92
Dispatch
CancelDelayedSignal, 82
DeleteDelayedSignal, 80
DispatchDelayedEvent, 81
DispatchEvent, 75
FindDelayedSignal, 79
MapPolymorphicEvent, 84
SignalDelayedEvent, 80
SignalEvent, 73
SignalTimeRemaining, 83
TransitionError, 77
Helpers
CheckValueTrace, 181
CreatelnlInitialState, 32
CreatelnlnitialStateFromRef, 32
CreateStateInstance, 32
CreateStateInstanceFromRef, 32
DeclError, 87
DefValueTrace, 180
deRef, 15
EvalAttrCheck, 182
Interleave, 190
MapCondMultToConstraint, 193
nillnstRef, 17
PropagatePolyEvents, 148
QuerySystemClassOperations, 186
QuerySystemInstanceOperations, 186
QuerySystemOperations, 186

S

SelfInstRef, 66
SplitRelvarName, 88
ToRef, 14

InstCmds

assignAttribute, 64
canceldelayed, 69
delayremaining, 69
delaysignal, 68
delete, 65
findRelated, 52
FindRelatedInst, 50
findRelatedWhere, 53
findUnrelated, 53
findUnrelatedWhere, 54
forAllRefs, 19
instop, 70
isEmptyRef, 17
isNotEmptyRef, 17
isRefEqual, 18
isRefSingular, 18
readAttribute, 63
refIntersect, 19
refMinus, 19
refMultiplicity, 18
RefSetCommand, 18
refUnion, 19

signal, 67
updateAttribute, 57
withAttribute, 60

Populate

assigner, 224

class, 220

domain, 219

populate, 217
populateFromChan, 218
populateFromFile, 218

RelCmds

createMultiAssigner, 48
linkAssoc, 39
linkSimple, 36

migrate, 44

signal Assigner, 46
signalMultiAssigner, 47
unlinkAssoc, 42
unlinkSimple, 41

Trace

DecodeAllTraces, 246
DecodeClassTraces, 247
DecodeTargetTraces, 249
DiagAllTraces, 253
DiagClassTraces, 253
DiagTargetTraces, 254
QueryClassTraces, 235
QueryTargetTraces, 236

SAME_CLASS, 19

Relation Oriented Software Execution Architecture

295/ 295

SAVE_ARG_ERROR, 228
selectCycle, 274
SelfInstRef, 66

signal, 67

signalAssigner, 46
SignalDelayedEvent, 80
SignalEvent, 73
signalMultiAssigner, 47
SignalTimeRemaining, 83
SINGLE_REF_REQUIRED, 69, 70
SplitRelvarName, 88
startWasher, 274

state, 137

statemodel, 133

T

terminal, 146

TILDE_NAME, 124

TOO_FEW_SUBCLASSES, 132

ToRef, 14

Trace
DecodeAllTraces, 246
DecodeClassTraces, 247
DecodeTargetTraces, 249
DiagAllTraces, 253
DiagClassTraces, 253
DiagTargetTraces, 254
QueryClassTraces, 235
QueryTargetTraces, 236

TracesToRecords, 245

transition, 144

TransitionError, 77

U

UNKNOWN_ASSIGNER, 47
UNKNOWN_ATTRIBUTE, 58
UNKNOWN_LINKAGE, 52
UNKNOWN_OPTION, 108
UNKNOWN_RELATIONSHIP, 37
UNKNOWN_STATE, 31, 33
UNKNOWN_TRACE_CMD, 239
unlinkAssoc, 42

unlinkSimple, 41

update, 34

updateAttribute, 57

w
WITH_ATTR_USAGE, 61
withAttribute, 60

	Introduction
	What's Next
	How To Read This Document
	A Few Words About Tcl

	Design Strategy
	Comparing Approaches
	Namespace Ensemble Design Approach
	Domain Organization
	Package Organization

	Realizing Model Concepts in rosea
	Relation Values, Relvars and Instance References — Oh My!
	Creating References
	Dereferencing an Instance
	Nil Instance Reference
	Counting References
	Instance Reference Equality
	Instance Reference Set Operations
	Iterating on References

	Forming and Breaking Relationships
	Navigating the Model
	Simple Associations
	Generalization
	Associative Classes

	Package Procedures
	A Diversion for Testing
	Class Commands
	Find All Instances
	Find an Instance by its Identifier
	Find Instances Meeting a Criteria
	More Testing Infrastructure
	Create an Instance
	Create an Instance in a Given State
	Asynchronous Instance Creation
	Updating Class Values

	Relationship Commands
	Linking Simple Associations
	Linking Class Based Associations
	Unlinking Simple Associations
	Unlinking Class Based Associations
	Migrating Subclasss In Generalizations
	Signaling an Assigner
	Signaling a Multi-Assigner
	Creating a Multi-Assigner

	Instance Commands
	Finding Related Instances
	Updating Attributes
	Modifying Attributes
	Reading Attributes
	Deleting Instances
	Signaling Events
	Signaling Delayed Events
	Canceling Delayed Events
	Remaining Time for a Delayed Event
	Invoking Instance Operations

	Dispatch Commands
	Dispatching Events
	SignalEvent
	DispatchEvent
	Dispatching Delayed Events
	SignalDelayedEvent
	DispatchDelayedEvent
	CancelDelayedEvent
	SignalTimeRemaining
	Dispatching Polymorphic Events
	MapPolymorphicEvent

	Helper Commands
	DeclError
	SplitRelvarName

	Configuration Language
	Config Namespace Layout
	Evaluating Configuration Scripts
	Configure
	ConfigureFromChan
	ConfigureFromFile

	Defining a Domain
	Domain

	Defining Domain Components
	Defining Classes
	Class

	Defining Classes Components
	Attribute
	Reference

	Defining Operations
	Classop
	Instop

	Defining Relationships
	Association
	Generalization

	Defining Class State Models
	Statemodel
	State
	Transition
	Initialstate
	Defaulttrans
	Terminal
	Polymorphic

	Defining Assigners
	Assigner
	State
	Transition
	Initialstate
	Defaulttrans
	Identifyby

	Defining Domain Operations
	Handling Configuration Errors

	Generating Domains
	Initial Instance Population
	Populating Domains
	Domain
	Class
	Assigner

	Serializing a Domain
	Bridging to Instance Operations
	State Machine Trace
	Trace Data
	Trace Procedure
	Trace Control
	Trace Population
	Trace Operations
	Trace Dictionary Structure
	Decode All Traces
	Decode Class Traces
	Decode Target Traces
	Format Traces
	Format Trace Record
	Format Time Stamp
	Format Time As Seconds

	Sequence Diagrams
	Diagram Traces
	Diagram All Traces
	Diagram Class Traces
	Diagram Target Traces

	An Example
	Domain Data
	Washing Machine Class
	Washing Cycle Class
	Clothes Tub Class
	Water Valve Class
	Motor Class
	Water Level Sensor

	Domain Dynamics
	Washing Machine State Model
	Clothes Tub State Model

	Domain Processing
	Washing Machine State Activities
	Clothes Tub State Activities
	Class Instance Operations
	Domain Operations

	Initial Instance Population
	Stubbing the External Operations
	Running the Example
	Example Run Results

	Code Organization
	Source Code
	Package Index
	Unit Tests
	Example Domain
	Example Program
	Reference Documentation

	Bibliography
	Books
	Articles

	Literate Programming
	Index

