
OO for Tcl
or “How I Learned to Stop Worrying and Write the Co de”

Donal Fellows
<donal.k.fellows@manchester.ac.uk>

For the past two years, I have been working on developing a new OO system for
Tcl that is intended to serve as a basis for a wide range of OO styles. In this pa-
per, I will describe and explain the current status of the work, discuss the issues
involved in producing a high-performance flexible OO system, and describe a
number of issues that have been encountered during work (with Arnulf Wiede-
mann) to build a version of [incr Tcl] on top of the core OO system.

As many of you know, I have been writing an object system for Tcl for a couple of
years now. The intention was that this object system should focus on just the core task of
making a fast method dispatch system as well as seeding the very heart of the inheritance
hierarchy. This is in contrast to the other major object systems (e.g., [incr Tcl], XOTcl,
Snit) that provide a much larger set of features, but at the cost of being far more complex.
By sticking to the fundamentals, my code will be well placed to focus on how to be fast
and readable, allowing the other OO systems to focus on “added value” such as collection
management systems, rich application support, etc. Like that, it would allow us to have
the power of the object-programming paradigm without enormous amounts of effort or
tearing up the large number of existing scripts that depend on the features of the previ-
ously existing object systems.

This paper does not describe the detailed programming interface for the object system:
I covered that previously1. Instead, it goes into more detail about the details of what
makes for a fast and flexible object system. There has been a major change since I pre-
sented the initial proposal for this work two years ago though: after much discussion, I
decided that any object system that goes into the core must have a substantial amount of
practical “in-deployment” experience first. In order to gain this experience, I redesigned
my object system to work as an extension package using the TEA build system. In addi-
tion, by doing this, I made it far easier for other people to work with the system during
development. More eyeballs really do mean fewer bugs!

This has resulted in the TclOO extension, which you can use with any sufficiently re-
cent version of an 8.5 core (i.e., after the sixth alpha release). It has documentation and a
test suite, and I know that it builds and works correctly on both Windows and Linux. It
even exports its own API via a stubs table, making it even easier to build your own exten-
sions on top. There are down-sides to this though: how they have been dealt with is one
of the topics of this paper.

1 See my paper in the Tcl 2005 conference, or TIP #257, which was derived from it.

Flexibility and the Art of Code Writing

One of the major driving requirements of the TclOO package has been that it should
be possible for third party code to extend it, and in as many different ways as possible.
Thus, you can define not just new methods, but new kinds of methods and (currently ex-
perimental) new ways of invoking objects. However, doing this, especially for the long
term, requires both the definition of structures (so that typing information can be pro-
vided in a sane fashion) and the rigorous hiding of the internal details of those structures
that are private to the TclOO package itself.

The concealment of the internal details of private structures is relatively straightfor-
ward in practice: when those tokens even potentially pass outside the control of the pack-
age, I conceal their real types and they are just an abstract pointer2. I then provide a set of
accessor functions to allow third-party code to extract the information within the real
structures without exposing details that can change between versions.

Ensuring that public structures are future-proof is more complex. The structures that
require this treatment are there to express the type of something, and instances of those
structures will typically be compiled as constants in extension code. This binds the binary
versions of those extensions inherently to the version of the API they use. Luckily, this
problem has already been resolved in Tcl for structures such as the Tcl_Filesystem
and Tcl_ChannelType , which would otherwise have the identical problem. These han-
dle versioning by putting a version number directly into the structure: by knowing what
version of the structure declaration the code was compiled against, the set of valid fields
can be understood. This allows structures for purposes such as the definition of types of
methods or metadata to be migrated into the future at minimal cost.

Another thing that has come from the TclOO work has been the way that some parts of
the Tcl core are much easier to extend than before. For example, the Tcl info command
is now an ensemble, as this allows the addition of new info class and info object
subcommands in a simple fashion. The alternative would have been a special mechanism
just for the info command itself, which would have required extensive testing instead of
being just an application of a more general facility.

Inheriting Diamonds

One of the things that I wished to support was multiple inheritance, since that is a fea-
ture that is often very useful; e.g., a school bus is both a road vehicle and a passenger
transportation device, and yet those superclasses are fundamentally distinct (compare
with dump trucks and cruise ships!) And yet this opens up the way to a classic problem
where you have a class that is a subclass of two other classes that define conflicting
methods: the key to the problem being which method is “more important”? Since this can
involve almost arbitrary amounts of additional confusing complexity, this problem is
genuinely hard. (Arguably, this should not happen as method names should never clash
like this, but method names model human language, and language is messy and impre-
cise.)

2 In C, a pointer is abstract if it points to a type that the compiler does not know the size of. The classic ex-
ample of an abstract pointer is void* , but pointers to a structure of unknown size are better in practice for
many things, since they require an explicit cast to be converted to another type.

A study of the literature for dynamic object systems (static systems like C++ have
other constraints that did not concern me) indicated that the best solution was to think in
terms of first converting the inheritance graph (as viewed from a particular point) into a
tree back to the object root, where any node may appear multiple times. Then you walk
the tree “pre-order” to produce a traversal list, traversing the parents of each node in
“natural” order (i.e., the order specified in the definition of the class). Finally, you re-
move every reference to any method on the list except the last one. The resulting list of
methods (see Figure 1) turns out to be exactly what you want.

Figure 1: Diamond Inheritance Pattern

Well, almost. TclOO also supports mixins and filters, which add to the complexity.
Mixins are classes that are added to objects; they are great for modelling roles and or-
thogonal behaviour, and come in the inheritance order before conventional classes (which
model types better.) Filters are a way to decide whether to skip the evaluation of a
method or perform some other kind of wrapping evaluation on a per-method basis, and
are implemented as a list of method names to call before calling the real method. With
both mixins and filters added, you have the model used by TclOO and XOTcl. (Other Tcl
object systems typically have either simplifications of this model – [incr Tcl] is like this –
or are done in a totally different way – the Self-modelled ones are in this category.)

Caching for Fun and Profit

The algorithm for calculating the method call chain described above is distinctly ex-
pensive, as you can imagine. The only way to get reasonable speed out of it is to be strict
about using caching. And yes, TclOO uses caches a lot.

In particular, it caches method chains carefully so that the second time you call an ob-
ject’s method, the chain can be retrieved rapidly and the method dispatched in double-
quick time. But care must be taken when doing such caches that the values retrieved from
them are valid; if a class in the inheritance tree is modified, it can mean that all your as-
sumptions about what the method chain looks like are wrong! Luckily, it turns out that it
is easy to build a system for detecting potential problems that is also cheap. Just as with
Tcl’s bytecode engine, I use epoch counters. When an incompatible change happens, the
appropriate epoch is updated – every object has its own epoch counter, but classes use a
global one because they may be used outside themselves – and the code that retrieves
values from the cache can just check two epochs (the object epoch and the global epoch)
against the values saved when the chain was created. When both epochs match, the chain
of implementations for that particular method name is correct and can be dispatched im-
mediately.

A

B C

D

D:method

B:method

A:method

C:method

A:method

Traversal Order

Of course, if you have experience with the Tcl_Obj value system you might expect
that the caches would be kept in the method name value itself. After all, that is exactly
where Tcl’s ensembles and functions like Tcl_GetIndexFromObj keep their caches.
But this is not actually a safe thing to do, since we have per-object methods (and mixins
and …) and without a strong classical object typing system I must keep the caches in the
object itself and not the method name value. This is a significant difference between a
subcommand dispatch scheme designed to support an ensemble and one for objects and
their methods.

Getting [Incr]ementally Better

As mentioned earlier, one of the major aims of this work was to support the building
of other object systems on top. This is a good thing to aim for since they have historically
reached very deep into Tcl’s innards in order to get speed, and that has left them inclined
to be tightly bound to particular versions of Tcl. Not exactly the Stubs promise!

Instead, I have been working (with much prompting from Arnulf Wiedemann) on pro-
viding an API that allows these other extensions to build their style of methods on top of
my core ones without having to pry deep inside my code. For the moment, this API is not
public – I do not know yet whether the functions and structures involved are at all stable
– but it is my intention to make it available. In particular, it allows for code to do things
like adjusting the command resolution scheme specifically for the body of the method
instead of by doing strange things with the overall command resolution system. This lim-
its the effects and makes it easier to increase the performance. Other areas that have an
internal extension point are the mechanisms for deciding how to implement a particular
method call, for deciding the exact level of privacy enjoyed by a class method, and to al-
low classes to control the name of the namespaces of the objects they create.

The net result of this (and much work by Arnulf) is that it has proved possible to im-
plement a new version of [incr Tcl] on top of the TclOO core and get it to sufficient qual-
ity where it passed the itcl test suite. One of the biggest gains is that this new version,
currently known as itcl-ng, can do this without need to deal with direct allocation of
structures that are in the Tcl core. This in turn makes it likely that future versions of itcl
will be compliant with the broader Tcl Stubs promise: that a new minor version of Tcl
will not force the rebuilding of extensions built against the old version.

Collecting Examples

But you would rather see code, right?

There are many features in the TclOO system that are of interest at the scripted level.
Although it only defines two classes (being oo::object , the class of objects, and
oo::class , the class of classes) these classes have many abilities, some of which I shall
show off here. Firstly, let us define some simple collection classes.

Since we want to allow objects to be automatically deleted when they are no longer
referenced, it greatly helps to start with a reference-counting infrastructure. The following
class creates objects that maintain a reference count just like those for Tcl_Obj values,
deleting themselves when the count drops below one.

oo::class create Refcountable {
 constructor {} {
 variable refcount 0

 next

 }

 method incrRefCount {} {
 variable count
 incr count
 }

 method decrRefCount {} {
 variable count
 if {[incr count -1] <= 0} {
 my delete
 }
 }
}

On top of this class, we then build some simple collection classes. This list class can have
reference counted objects added to it, searched for in it, removed from it, and can also
iterate over the list of objects. When the list is destroyed, it will automatically remove its
references to its contents (possibly deleting them in turn, of course).

oo::class create List {

 superclass Refcountable

 constructor {} {

 variable list {}

 next

 }

 destructor {

 my foreach object {

 $object decrRefCount

 }

 next

 }

 method add args {

 variable list

 foreach object $args {

 lappend list $object

 $object incrRefCount

 }

 }

 method has object {

 variable list

 expr {$object in $list}

 }

 method remove object {
 variable list
 set idx [lsearch -exact $list $object]
 if {$idx >= 0} {
 set list [lreplace $list $idx $idx]
 }

 return

 }

 method foreach {var body} {
 variable list
 upvar 1 $var v

 foreach v $list {

 uplevel 1 $body

 }

 }

}

But as we all know, lists are not the only sort of collection. The other major kind is the
map. This map class maintains a mapping (in a dictionary) from strings to objects. The
objects are naturally reference counted. It supports methods to put (add or update) a map-
ping, get the object from a mapping, delete a mapping or list the keys in the mapping.
Aside from the other features, one interesting thing to note here is the Decr method,
which is hidden from use by things outside the class. This happens automatically when
the method name does not start with a lower-case letter.

oo::class create Map {
 superclass Refcountable
 constructor {} {

 variable map {}

 next

 }

 destructor {

 variable map

 dict for $map {key object} {

 $object decrRefCount

 }

 next

 }

 method Decr key {

 variable map

 if {[dict exists $map $key]} {

 [dict get $map $key] decrRefCount

 return 1

 }

 return 0

 }

 method put {key object} {
 variable map
 $object incrRefCount
 my Decr $key
 dict set map $key $object

 return

 }

 method get {key} {
 variable map

 return [dict get $map $key]

 }

 method unset {key} {
 if {[my Decr $key]} {
 variable map

 dict unset map $key

 }

 return

 }
 method keys {} {

 variable map

 return [dict keys $map]

 }

}

As you can see, it is quite easy to build all the trappings of a conventional object system.
Or at least it is if you do not permit renaming of objects with rename . When objects may
be renamed, things get quite a bit more complex since you can no longer safely store the

object’s name; instead, you need to use some kind of unique identifier that is never modi-
fied: the name of the object’s private namespace serves this purpose well. This class also
demonstrates how the object system can use other features of Tcl (in this case, name-
spaces and traces) to achieve its aims

oo::class create Renamable {

 superclass Refcountable

 constructor {

 variable ::objforname

 set objforname([namespace current]) [self]

 trace add command [self] rename \

 [namespace code {my Renamed}]

 next

 }

 destructor {

 variable ::objforname

 unset objforname([namespace current])

 next

 }

 method Renamed {from to op} {
 variable ::objforname
 set objforname([namespace current]) $to
 }

 method uid {} {
 return [namespace current]

 }

 method getFromUid {uid} {

 variable ::objforname

 return $objforname($uid)

 }

}

Updating the list and map classes to use this new class’s features by storing the unique
identifier values instead of the object names is left as an exercise for the reader.

Wrapping Widgets

One key rite of passage for an object system is integrating with Tk. Everyone wants to
do it so they can make megawidgets and create other sorts of enhanced functionality.
Here I demonstrate how to do this in a simple example using an entry widget:

oo::class create Entry {

 self.unexpose create

 constructor {widgetName args} {

 entry $widgetName {*}$args

 variable realName __$widgetName

 rename $widgetName $realName

 rename [self] $widgetName

 trace add command $realName delete \

 [namespace code {my delete ;#}]

 }

 method unknown {method args} {

 variable realName

 return [$realName $method {*}$args]

 }

 unexpose unknown

}

Note that I use the special unknown method here to direct any method invocations not
otherwise known to the subcommands of the real widget. This, very much like Snit’s
delegation, makes it simple to override a method without having to maintain the whole
list of subcommands (a traditional problem with [incr Tk]).

But we want to do something fancier with this new capability. We do this by Here’s a
new kind of entry widget that we can flash like a button:

oo::class create FlashEntry {
 superclass Entry
 method flash {{times 5}} {
 set bg [my cget –bg]
 set fg [my cget –fg]
 for {set i 0} {$i < $times} {} {
 my configure –bg $fg –fg $bg
 update idletasks
 after 200
 my configure –bg $bg –fg $fg
 update idletasks
 if {[incr i] < $times} {
 after 200
 }

 }

 }

}

Now we can use this like this, which (apart from the slightly different creation sequence)
is now just like using a normal widget, except it has this extra capability:

FlashEntry new .e

pack .e

bind .e <Return> {%W flash}

Tackling Threads

As you might expect, the TclOO package is completely thread-safe. This means that
we can use it with the Thread package with very little fuss. For example, here is a small
thread pool manager that also looks after getting the results from the pool back and clean-
ing up after itself:

package require Thread

oo::class create Parallel {

 constructor {lambdaTerm $args} {

 variable term $lambdaTerm

 variable pool [tpool::create {*}$args]

 variable posted {}

 }

 destructor {

 variable pool

 variable posted

 if {[dict size $posted]} {

 my cancel

 }

 tpool::release $pool

 }

 method start {values} {
 variable term
 variable pool
 variable posted
 if {[dict size $posted]} {
 error "pool still busy"

 }

 variable results {}

 foreach v $values {

 dict set posted [tpool::post –nowait $pool \

 [list apply $term $key]] $v

 }

 }

 method wait {} {

 variable pool

 variable posted

 variable results

 set done [tpool::wait $pool [dict keys $posted]]

 foreach j $done {

 dict set results [dict get $posted $j] \

 [tpool::get $pool $j]

 dict unset posted $j

 }

 return [dict size $posted]

 }

 method cancel {} {

 variable pool

 variable posted

 variable results

 set left [tpool::cancel $pool [dict keys $posted]]

 foreach j $left {

 tpool::wait $pool $j

 dict set results [dict get $posted $j] \

 [tpool::get $pool $j]

 }

 set posted {}

 }

 method results {} {

 variable results

 return $results

 }

}

The thread pool manager can be used to execute lambda terms on many values in parallel;
for example, this simple example demonstrates how to compute Fibonacci numbers in a
somewhat foolish fashion:

Parallel create Fib {x {fib $x}} –maxthreads 6 –ini tcmd {
 proc fib x {
 if {$x <= 2} {return 1}
 expr {[fib [incr x -1]] + [fib [incr x -1]]}
 }
}

Fib start {10 20 30 40 50 60 70 80 90 100 110 120 1 30 140}

while {[Fib wait]} {}

array set fibonacci [Fib results]

puts "got part way..."

Fib start {150 160 170 180 190 200 210 220 230 240 250 260}

while {[Fib wait]} {}

array set fibonacci [Fib results]

Fib delete

parray fibonacci

Working with WebServices

Of course, we can also do things with objects and WebServices. Indeed, this is how
they are typically created in most of the rest of the WS community.

package require WS::Server

package require WS::Utils

oo::class create Service {

 self.unexport new

 constructor {args} {

 global Config

 variable ServName [self]

 ::WS::Server::Service -service [self] \

 -host $Config(host):$Config(port)

 {*}$args \

 -premonitor [namespace code {my}] \

 -postmonitor [namespace code {my}] \

 -checkheader [namespace code {my CHECK}]

 }

 method PRE {service operation argList} {

 }

 method POST {service operation status results} {

 }

 method CHECK {

 service operation caller httpHeaders soapHeaders

 } {}

 # A Simple Utility Method
 method DateTime {instant} {
 clock format $instant –format {%Y-%m-%dT%H:%M:%SZ} \
 -gmt yes
 }

 # A Utility Method
 method type {name definition} {
 variable ServName
 ::WS::Utils::ServiceTypeDef Server $ServName \
 $name $definition
 }

 # Utility method

 method operation {nameInfo argList doc body} {

 variable ServName

 set args {}

 set name [lindex $nameInfo 0]

 oo::define [self] method $name $args $body

 set body2 [namespace code [list my $name]]

 foreach arg $argList {

 append body2 " $" [lindex $arg 0]

 lappend args [lindex $arg 0]

 }

 ::WS::Server::ServiceProc $ServName $nameInfo \
 $argList $doc $body2

 }

 # Utility method for producing operation result s

 method Result args {

 set op [uplevel 1 {self method}]Result

 upvar 1 _RESULT_ result

 if {![info exists result]} {set result {}}

 if {![dict exists $result $op]} {

 dict set result $op {}

 }

 dict set result $op {*}$args

 }

}

A demonstration of how to use this code is naturally in order. This is adapting from the

Service create wsExamples \

 -description {Tcl Example Web Services}

wsExamples type echoReply {

 echoBack {type string}

 echoTS {type dateTime}

}

wsExamples operation {

 SimpleEcho {type string comment {Requested Echo }}

} {

 {TestString {type string comment {Text to echo back}}}

} {Echos a string back} {

 my Result $TextString

}

wsExamples operation {
 ComplexEcho {type echoReply comment {Requested echo+ts}}
} {
 {TestString {type string comment {Text to echo back}}}
} {Echos a string back with a timestamp attached} {
 my Result echoBack $TestString

 my Result echoTS [my DateTime [clock seconds]]

}

This example, based on the code on the Web Services for Tcl website, is already consid-
erably simpler for the application of simple object technology. But deeper support should
be possible in the future. After all, ideally a web service should not be significantly
harder to write syntactically than a conventional Tcl namespace; there is more than
enough other complexity to deal with!

Accelerating with Aspects

Another thing you can do with TclOO is create aspects. An aspect is a way of “cross-
cutting” a program so that code does not need to deal with everything in one place. In-
stead, you can have each part be a specialist in what it does, perhaps by adding logging or
persistence to some existing code that would otherwise need significant reengineering.
For example, below we define a special class that is used for applying transparent caches
to an object. This is great when you are dealing with methods that can take a long time to

execute because of computation, though care must be taken with it because it does not
understand object internal state.

oo::class create cacheAspect {

 filter Memoize

 method Memoize args {

 # Do not filter the core method implementations

 if {[lindex [self target] 0] eq "::oo::object"} {

 return [next {*}$args]

 }

 # Check if the value is already in the cache

 my variable ValueCache

 set key [self target],$args

 if {[info exist ValueCache($key)]} {

 return $ValueCache($key)

 }

 # Compute value, insert into cache, and return it

 return [set ValueCache($key) [next {*}$args]]

 }

 method flushCache {} {

 my variable ValueCache

 unset ValueCache

 # Skip the cacheing

 return -level 2 ""

 }

}

You can then apply this to any object to add memoization to that object’s methods by
mixing the class in. For example:

oo::object create demo
oo::define demo {

 method compute {a b c} {

 after 3000 ;# Simulate deep thought

 return [expr {$a + $b * $c}]

 }

}

This object just does some simple calculations, but takes a long time over it.

puts [demo compute 1 2 3] prints "7" after delay

puts [demo compute 1 2 3] prints "7" after delay

puts [demo compute 1 2 3] prints "7" after delay

Time to add that memoization!

oo::define demo mixin cacheAspect

puts [demo compute 1 2 3] prints "7" after delay

puts [demo compute 1 2 3] prints "7" instantly!

puts [demo compute 1 2 3] prints "7" instantly!

puts [demo compute 4 5 6] prints "34" after delay

puts [demo compute 4 5 6] prints "34" instantly!

puts [demo compute 1 2 3] prints "7" instantly!

If we change things, we need to flush the cache…

oo::define demo method compute {a b c} {

 after 3000

 return [expr {$a * $b + $c}]

}

puts [demo compute 1 2 3] prints "7" instantly, wrongly!

demo flushCache

puts [demo compute 1 2 3] prints "6" after delay, right!

puts [demo compute 1 2 3] prints "6" instantly

And all this from just the application of a mixin and a filter. The demo object itself knows
nothing at all about how to do caching, but we waved our magic wand and added the
functionality after the fact. Can aspects make your programming tasks easier?

Future Directions

Thanks to the help I have received from many people (especially Arnulf Wiedemann),
the TclOO package is almost ready for public release. The main thing left to do is to dis-
cover what features have I left out that are critical, and that is something which is best
done by letting other people try to use and break it. As always, the code probably needs
more work so that it goes faster. I also want to really encourage everyone to take my code
and find cool ways to use it to do things that are relevant to you.

