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ABSTRACT 
HLA/RTI is a "High Level Architecture" with accompanying 
"Run-Time Infrastructure" designed by the U.S. Department of 
Defense to support the creation of networks (called federations) of 
cooperating simulation applications (called federates).  The RTI 
software layer provides basic inter-task messaging, as well as 
management of simulated time across federates.  RTI APIs are 
commercially available for C++ and Java.  The paper presents two 
Tcl APIs, a low-level binding to the C++ API which adheres to 
HLA/RTI naming conventions, and a higher-level API built on 
top of it which is intended for actual use.  The paper includes an 
introduction to HLA/RTI, but the main focus is on the design and 
implementation of the two APIs, which were developed as part of 
an HLA/RTI federate called the Joint Non-kinetic Effects Model 
(JNEM). 
 
1. Joint Non-kinetic Effects Model 
The Joint Non-kinetic Effects Model (JNEM) is a military training 
simulation which participates in a network of simulations used to 
train military commanders.  The network, or federation, is called 
the Joint Land Component Constructive Training Capability 
(JLCCTC) Multi-Resolution Federation (MRF).  JNEM's role as a 
federate in the federation is to model the responses of the civilian 
population, thus adding non-kinetic effects to the kinetic effects 
modelled by the battlefield simulation.  JNEM is written primarily 
in Tcl/Tk 8.4 with a small amount of code in C/C++. 
 
2. HLA/RTI 
In 1993, the Department of Defense proposed the definition of a 
"High Level Architecture" (HLA) for simulation programs which 
would facilitate linking multiple simulations interoperably into a 
single federation; the work was a follow-on to the previously 
developed Aggregate Level Simulation Protocol (ALSP) and 
Distributed Interactive Simulation (DIS) architectures, and was 
intended to replace them both.  Eventually a standard 
communications API, the Run-Time Infrastructure for HLA (RTI) 
was defined.  The RTI allows federations to be created, programs 
to join a federation and thus to become federates, 
intercommunication between the federates, and synchronization of 
the federates in simulated time. 
 
The JLCCTC MRF federation uses RTI as its communication 
infrastructure; specifically, it uses RTI NG Pro V3.x, sold by 
Virtual Technology Corporation. [1] 
 
2.1 Interaction Classes 
The most basic type of communication between federates is by 
means of interactions.  An interaction is a dictionary of values 
which is broadcast by one federate and received by subscribing 
federates. Every interaction that is sent belongs to a particular 
interaction class; an interaction's class determines the names and 
data types of the interaction's parameters.  Parameters may be 
scalar-valued, array-valued, structure-valued, and so forth.  Note 

that the RTI API treats all parameter values as byte-arrays; each 
federation must agree on an encoding scheme, and it is the 
responsibility of each federate to encode and decode parameter 
values accordingly. 
 
Each federation's interaction classes are defined in a file called the 
Federation Object Model, or FOM.  Interaction classes are defined 
in a single-inheritance hierarchy, which is reflected in the class 
names; interaction classes REPORT.TEMPERATURE and 
REPORT.HUMIDITY are both subclasses of interaction class 
REPORT and inherit its parameter definitions.  Note that 
interaction classes are not classes in the OOP sense, as they define 
data only, not behavior. 
 
RTI has its own peculiar nomenclature, which is reflected in all of 
the API calls.  A federate which wishes to send interactions of a 
particular class must declare its intent by publishing the 
interaction class.  A federate which wishes to receive interactions 
of this class must similarly declare its intent by subscribing to the 
class.  Then, when the first federate sends the interaction, all 
subscribed federates receive it. 
 
The sending federate may choose to send all of the interaction's 
parameters or only a subset.  Note that the RTI API has no notion 
of sending an interaction to a specific federate; in principle, every 
federate can receive every interaction.  In practice, any given 
federate is usually interested in a small subset of the available 
interactions and subscribes only to those. 
 
Interactions have two general uses.  First, an interaction may 
indicate that some event has just occurred in the sending federate's 
simulation; the interaction's class will indicate the nature of the 
event, and the parameter values the details.  Second, interactions 
are used to implement orders, messages that direct another 
federate or federates to take a particular action.  In this case the 
interaction class indicates the nature of the action and the 
parameters any required details.  One gathers that the former use 
was the one primarily intended by the designers of RTI, as 
interactions are poorly suited to positive closed-loop control; 
unfortunately, RTI provides no better mechanism for this purpose. 
 
A suscriber may subscribe to any class in the hierarchy, and will 
get all interactions belonging to that class or its subclasses.  
Continuing the above example, if a federate subscribes to  class 
REPORT it will receive all interactions of class REPORT, 
REPORT.TEMPERATURE, and REPORT.HUMIDITY.  
However, for interactions of the latter two classes it will only 
receive the subset of their parameters defined in class REPORT, 
which is probably not what was wanted.  In the MRF, federates 
tend to subscribe to the leaf classes. 
 
2.2 Object Classes 
In addition to sending interactions, a federate may also publish 
data relating to simulation objects, e.g., military units.  From the 
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RTI point of view, an object, like an interaction, is a dictionary of 
values.  The difference is that objects have an identity and a 
lifespan where interactions are anonymous and transient.  Objects 
belong to classes, just as interactions do, and as with interactions 
the FOM defines a single inheritance hierarchy of object classes. 
The naming convention is the same; GROUND.MANEUVER and 
GROUND.CONVOY are two subclasses of the base class 
GROUND.  Note that objects have no more behavior, so far as 
RTI is concerned, than interactions do. 
 
Where an interaction has parameters, an object has attributes.  
Attribute values, like parameter values, may be arbitrarily 
complex and are sent as byte arrays, with encoding and decoding 
left to the application.  A federate may publish or subscribe to all 
or a subset of an object class's attributes. 
 
The  nomenclature for objects is as follows.  First, a federate 
declares its intent to publish objects of a certain class by 
publishing the class; the operation specifies the class name and the 
names of some or all of the class's attributes.  Note that publish, in 
RTI, refers only to this declaration of intent, not to the publication 
of any particular instance of the class (using "publication" in the 
normal sense).  Other federates may subscribe to specific 
attributes of the class. 
 
Having published the class, the federate may register instances of 
the class with the RTI.  (The term reflects the notion that the 
objects already exist in the federate.)  When an object is registered 
it becomes known to the federation, and the subscribing federates 
are said to discover it. 
 
Having registered an instance the federate may update the values 
of any or all of those attributes whose names it originally 
published for the instance's class.  After each update, the 
subscribing federates reflect the new values. 
 
Finally, the federate may decide to destroy the instance; it so 
notifies the federation by deleting it.  All subscribing federates are 
then notified to remove the instance. 
 
The RTI's role in object management is to deliver discover, 
reflect, and remove messages to subscribing federates. The RTI 
does not retain any attribute values; it is the responsibility of each 
federate to preserve the values of all attributes that it updates or 
reflects.  In particular, when a federate joins the federation it will 
immediate discover all registered object instances—but it will 
have no knowledge of their attribute values until the owning 
federates choose to update them. 
 
Note that ownership of an object's attributes may be shared by two 
or more federates.  Federate A can register an object and update 
one set of attributes; on discovering the object, federate B may 
then update additional attributes for the same object (provided, of 
course, that it has declared its intent to publish those attributes for 
the object's class). 
 
As with interactions, a suscriber may subscribe to any class in the 
hierarchy, and will get all objects belonging to that class or its 
subclasses.  And as with interactions, this capability isn't generally 
that useful (at least in the MRF). 

2.3 Time Management 
Some RTI federations run in real-time.  In those federations RTI 
is used purely as a messaging infrastructure, and all federates rely 
on a real time clock for synchronization.  This is especially the 
case when hardware simulators, e.g., flight simulators or tank 
simulators, are included in the mix. 
 
On the other hand, many simulations, including JNEM, run on 
simulated time, which might or might not be geared to the passage 
of wallclock time.  JNEM, for example, implements a "game 
ratio" which controls the passage of simulated time in a ratio with 
real time.  When running in federation, simulated time must be 
coordinated across federates; this is the aim of RTI's time 
management features. 
 
In a time-managed federation, a federate may be time-regulating, 
time-constrained, or both.  A time-regulating federate timestamps 
its messages; the timestamps serve to regulate the time for other 
federates.  A time-constrained federate is constrained to run at a 
simulated time consistent with the time-regulating federates in the 
federation.  A federate that is both time-constrained and time-
regulated is said to be time-managed. 
 
A time-managed federate operates in the following loop: 
 
 Initialize simulation 
 Forever, Do 
  Request advance to next simulation time of interest. 
  Process incoming messages up to that simulated time. 
  Receive time advance grant to time of interest. 
  Advance time and do related work. 
 
The RTI sees to it that a federate never gets a time advance grant 
until it has received all messages timestamped prior to the 
requested simulation time. 
 
3. The C++ API 
The RTI is specified as a C++ API.  There are two primary 
classes: the RTIambassador and the FederateAmbassador. 
 
3.1 The RTIambassador 
The RTIambassador class encapsulates the RTI API proper: all 
API calls are member functions of the class.  To join multiple 
federations simultaneously, a federate must create an instance of 
RTIambassador for each. 
 
The member function names are extremely verbose; for example, 
 

• publishInteractionClass 
• subscribeInteractionClass 
• sendInteraction 
• publishObjectClass 
• subscribeObjectClassAttributes 
• registerObjectInstance 
• updateAttributeValues 
• deleteObjectInstance 

 
One has the sense that the entire API was spec'd out in English in 
great detail prior to implementation—and then the section 
headings in the spec were used as the names of the member 
functions. 



A Tcl Binding for HLA/RTI William H. Duquette Page 3  

 

3.2 The FederateAmbassador 
All messages received by the federate are passed to the federate as 
callbacks to member functions of a FederateAmbassador object.  
FederateAmbassador is an abstract base class, and provides no 
implementation at all; the federate must define a subclass and 
provide an implementation (possibly trivial) for every member 
function.  FederateAmbassador member function names are just 
as verbose as RTIambassador names: 
 

• receiveInteraction 
• discoverObjectInstance 
• reflectAttributeValues 
• removeObjectInstance 

 
The federate passes a pointer to its FederateAmbassador object to 
its RTIambassador when joining the federate.  If the federate 
participates in multiple federations, it should create a 
FederateAmbassador for each. 
 
3.3 Polling for Input 
The RTI specification does not define the mechanism by which 
the federate polls for input; in particular, it does not presume that 
the federate is using an event loop.  RTI NG Pro provides a "tick" 
RTIambassador method which polls for incoming messages and 
calls FederateAmbassador methods accordingly.  When calling 
"tick" the caller may specify the minimum and maximum amount 
of time to spend waiting for incoming messages. 
 
An unpleasant feature of this implementation is that most 
recursive calls into the RTIambassador are forbidden.  For 
example, a federate cannot register an object instance or update an 
object's attributes within a FederateAmbassador callback; such 
actions must be postponed until after "tick" returns. 
 
4. rti(n): The Tcl binding 
JNEM's binding to the C++ API is called rti(n).  rti(n) is intended 
to be a one-to-one mapping from a subset of the C++ API into 
Tcl; all operations have the same names and semantics as they do 
in C++.  (Section 6 lists the supported operations.)  Consequently, 
the rti(n) documentation need not duplicate the C++ API 
documentation; rather, it explains how the C++ operations are 
expressed in Tcl.  The intent is that an experienced RTI 
programmer should be able to read Tcl code that uses rti(n) and 
understand it without reference to the rti(n) documentation.  
Nevertheless,  rti(n) does include a number of significant 
enhancements to make the API both more Tcl-like and more 
convenient (which amounts to the same thing). 
 
rti(n) is implemented as a part of a custom Tcl interpreter (called, 
for historical reasons, shark(1)), rather than as a loadable 
extension, because the C++ API is multi-threaded, and multi-
threaded extensions can't be loaded into a single-threaded tclsh(1).  
Since we'd be building a multi-threaded tclsh(1) anyway, we 
chose to link rti(n) statically at build time.  
 
4.1 ::rti::RTIambassador 
rti(n) defines a single command, ::rti::RTIambassador, which is 
used to create RTIambassador objects following the standard Tcl 
object model: 
 

$ ::rti::RTIambassador ra 
::ra 
$ 
 
::rti::RTIambassador is implemented in C++.  It creates an 
instance of the C++ RTIambassador object and ties it to a new Tcl 
command; subcommands of the new command map to member 
functions of the C++ object in the obvious way. 
 
As stated above, the binding API is intended to be a 
straightforward translation of the C++ API.  Consider the 
following call, which is used to create a federation given a 
federation name (an arbitrary string) and the name of the fed file, 
which contains the FOM information needed at run-time: 
 
#include <RTI.hh> 
void 
RTI::RTIambassador:: 
    createFederationExecution ( 
        const char* executionName, 
        const char* FED 
    ) throw ( /* Omitted, but lengthy */); 
 
The signature of the equivalent rti(n) call is as follows: 
 
$ra createFederationExecution executionName FED  
  
The similarity is evident, as is the convenience Tcl adds. 
 
4.1.1 Exceptions 
RTI defines a plethora of exceptions, all of which are subclasses 
of RTI::Exception.  RTI::Exception conveniently has methods 
which return the exception's name and an error message; rti(n) 
consequently converts all RTI exceptions into Tcl errors, with the 
errorCode set to the exception's name. 
 
As a side note, the example code that comes with RTI NG Pro is 
simply encrusted with try/catch constructs that deal with the vast 
number of RTI exceptions; the catch blocks usually respond to an 
error by shutting down the application gracefully if one is thrown.  
Few of the exceptions are likely to occur in a properly written 
program unless an incorrect FOM is provided at run-time (in 
which case nothing is going to work anyway), so it would be 
desirable to handle most of these exceptions in a top-level 
try/catch block in main()...but because the exceptions are 
documented explicitly in each RTIambassador call this is difficult 
to do without cluttering the application code with exception 
propagation clauses. 
 
JNEM applications using rti(n) and the Tcl event loop leave 
handling RTI exceptions up to bgerror; and as thrown exceptions 
need not be declared explicitly in Tcl, the related problems don't 
arise and the code looks much cleaner. 
 
4.1.2 Enumerations 
Enumerated types are handled in the usual way by translating the 
name of the symbolic constant into the enumerated integer before 
passing it to the C++ code: 
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$ra resignFederationExecution theAction 
 theAction must be one of the following strings: 
 

• RELEASE_ATTRIBUTES  
• DELETE_OBJECTS  
• DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES  
• NO_ACTION 

 
4.1.3 Overloaded Methods 
Several  of the RTIambassador member functions are overloaded.  
Usually there's a base method and an additional method with extra 
arguments.  rti(n) implements these using optional arguments or 
option/value syntax: 
 
$ra requestFederationSave label ?theTime? 
 
In the RTI specification, there are two versions of this method, 
one with theTime and one without. In rti(n), theTime is simply an 
optional argument. 
 
$ra deleteObjectInstance objectHandle ?options...? 
 
In the RTI specification, there are two versions of this method, 
one that allows the caller to specify a timestamp and one that does 
not.  Each also has a string argument, theTag, which is used to 
send an arbitrary and possibly empty string along with the remove 
message that results from deleting the object.  Since the 
timestamp is effectively optional, and theTag has an obvious 
default, they both become options: 
 
-time fedTime 
 fedTime is the federation time as a floating-point value. 
 
-tag theTag 

theTag is the tag string. 
 
4.1.4 Handles vs. Names 
Object class names, object attribute names, interaction class 
names, and interaction parameter names are all defined in the 
FOM file.  At run-time these names are associated with handles.  
The application is expected to look up the handles for each name 
it uses, and then use these handles in all subsequent calls. For 
example, the C++ code to declare intent to send interactions of a 
particular class looks like this: 
 
RTI::InteractionClassHandle h =  
    ra.getInteractionClassHandle("MYCLASS"); 
 
ra.publishInteractionClass(h); 
 
rti(n) supports this idiom; you can write the following: 
 
set h [ra getInteractionClassHandle MYCLASS] 
 
ra publishInteractionClass $h 
 
The various kinds of handles are all represented as 32-bit 
unsigned integers, which rti(n) handles as wide integers in order 
to preserve the full unsigned range. 
 

However, using handles for what are effectively predefined 
constants is extremely un-Tcl-like; so any command that expects a 
class, attribute, or parameter handle will also accept the actual 
name: 
  
ra publishInteractionClass MYCLASS 
 
4.1.5 C++ Sets vs. Lists and Dictionaries 
The RTI API includes a number of collection objects called "sets".  
For example, when publishing an object class the application  
must specify the particular set of attributes it plans to update in an 
RTI::AttributeHandleSet.  When this is combined with the need to 
convert attribute names to integer handles, the C++ code becomes 
spectacularly ugly.  Here, for example, we declare that our 
application wants to publish the NAME and COLOR attributes of  
instances of the THING class: 
 
RTI::ObjectClassHandle hThing = 
    ra.getObjectClassHandle("THING"); 
 
RTI::AttributeHandle hName = 
    ra.getAttributeHandle("NAME", hThing); 
RTI::AttributeHandle hColor = 
    ra.getAttributeHandle("COLOR", hThing); 
 
RTI::AttributeHandleSet attr = 
    RTI::AttributeHandleSetFactory::create(2); 
attrs->add(hThing); 
attrs->add(hColor); 
 
ra.publishObjectClass(hThing, *attrs); 
 
In rti(n), of course, the RTI::AttributeHandleSet is simply a Tcl 
list of attribute handles—or, in practice, a list of attribute names: 
 
ra publishObjectClass THING {NAME COLOR} 
 
Updating an object's attributes is even uglier; the attribute handles 
and their values must all be plugged into a data structure called an 
RTI::AttributeHandleValuePairSet.  With rti(n), a dictionary is 
naturally used instead (note that the Tcl 8.5 dict(n) command is 
not required).  We will leave imagining the C++ code as an 
exercise for the reader; the rti(n) code is as follows: 
 
set hObject [ra registerObjectInstance THING] 
 
ra updateAttributeValues $hObject \ 
    {NAME "This Thing" COLOR "Green"} \ 
    -time $t 
 
4.2 The FederateAmbassador 
Whenever rti(n)  creates a C++ RTIambassador object, it goes on 
to create a matching C++ FederateAmbassador object as well.  
This object is invisible to the Tcl programmer, but it is responsible 
for translating all supported FederateAmbassador callbacks into 
equivalent Tcl callbacks. The details of this translation are 
described in the following subsections. 
 
4.2.1 FederateAmbassador Ensembles 
An application joins an RTI federation by creating an 
RTIambassador and calling its joinFederationExecution method.  
One of the arguments to this method in the C++ API is a pointer 
to an instance of a FederateAmbassador subclass.  In rti(n), that 
argument is replaced by the name of a Tcl command; the 



A Tcl Binding for HLA/RTI William H. Duquette Page 5  

 

command is treated as the name of an ensemble command whose 
subcommands are the FederateAmbassador callback methods.  
This ensemble command can be implemented however the user 
prefers; for example, here's a FederateAmbassador that simply 
logs the callbacks it receives: 
 
proc fedAmb {subcmd args} { 
    puts "FederateAmbassador: $subcmd $args" 
} 
 
::rti::RTIambassador ra 
ra joinFederationExecution $myname $fedname fedAmb 
 
Writing more realistic ensemble commands from scratch in pure 
Tcl is a nuisance, of course, so JNEM uses Snit [2] to define a 
FederateAmbassador type, as described in Section 5. 
 
4.2.2 Callback Enhancements 
When translating C++ FederateAmbassador callbacks into calls to 
subcommands of the Tcl FederateAmbassador ensemble, rti(n) 
makes the same kind of convenience adjustments as it does for the 
RTIambassador commands: names are passed instead of handles, 
overloaded methods are handled using optional arguments and 
option/value syntax, and C++ collections are passed as Tcl lists 
and dictionaries.   
 
For example, when rti(n) receives an object attribute update, the 
reflectAttributeValues method is called with a dictionary of 
attribute names and values.  This is a significant convenience; 
C++ code must usually compare each attribute handle in the 
update with each of a set of variables containing attribute handles 
to determine which specific attribute each is. 
 
4.2.3 Queuing Callbacks 
One of the nuisances of the RTI API, described in detail in 
Section 3.3, is that the C++ RTIambassador is not re-entrant—and 
therefore, since the FederateAmbassador's callbacks are always 
called from within the RTIambassador's "tick" method, 
FederateAmbassador callbacks cannot call the RTIambassador's 
methods.  As a result, RTI applications generally queue up the 
inputs received via the FederateAmbassador, and handle them 
after "tick" returns. 
 
rti(n) handles this queuing automatically.  Each incoming 
FederateAmbassador callback received during a call to "tick"  is 
translated into a Tcl command in the form of a list of Tcl_Obj* 
structures, to be executed using Tcl_EvalObjv(). [3]  Instead of 
evaluating the command immediately, however, the command is 
queued; and immediately after "tick" returns, rti(n) evaluates the 
queued commands in sequence. 
 
As a result, rti(n) programs are free to call RTIambassador 
methods from within FederateAmbassador callbacks.  The 
decision of whether or not to queue inputs can then be based 
solely on the needs of the application. 
 
4.2.4 Error Handling 
The Tcl FederateAmbassador callbacks invoked by rti(n) may of 
course contain bugs and throw Tcl errors.  rti(n)'s C++ Federate-
Ambassador object catches those errors and implicitly invokes 
"bgerror" to handle them, just as Tk does. 
 

4.3 rti(n): Results 
RTI NG Pro ships with a sample application called "FoodFight", 
in which an arbitrary number of identical federates simulate a 
food fight in a school cafeteria.  (The fight continues until all 
students have exhausted their supply of cash.)  While developing 
rti(n), I implemented a Tcl version of the FoodFight federate 
which could interoperate with the C++ version.  The Tcl version is 
both more concise and more readable; but it is recognizably the 
same program, and should be easily understood by an experienced 
RTI developer after a short introduction to Tcl syntax. 
 
Thus, rti(n) can be used to write RTI federates in a familiar style, 
but with the convenience and expressiveness of Tcl. 
 
5. rtiproxy(n): Convenience + Policy 
rti(n) adds considerable value over the C++ API, but because it is 
a straightforward binding to the C++ API there are many details 
that it must necessarily leave to the application.  Some of these 
details can be handled in a general way for all rti(n) clients.  
Others depend on the policies of the specific federation, but can 
be handled in a general way for all federates in the federation. 
 
Operationally, JNEM includes only one RTI federate; but for 
testing and development it is naturally useful to implement others.  
As a result, it's worthwhile to implement these general 
mechanisms and policies in a reuseable object.  JNEM does so, 
using a higher-level API called rtiproxy(n).  rtiproxy(n)'s API is 
equally expressive yet more concise.  It also implements a number 
of policies that are specific to the JLCCTC MRF federation and to 
JNEM itself.  Consequently, rtiproxy(n) is specific to JNEM's 
environment and is not directly reuseable by other projects. Its 
design and interface are nevertheless instructive. 
 
5.1 Architecture 
rtiproxy(n) implements a single command, a snit::type called, 
unremarkably, rtiproxy.  Each instance of rtiproxy encapsulates an 
instance of ::rti::RTIambassador, and in addition serves as its own 
FederateAmbassador.  Here is the skeleton of an rtiproxy-like 
type: 
 
snit::type rtiproxy { 
    component ra   ;# RTIambassador 
 
    constructor {args} { 
        # Create RTIambassador 
        install ra using \ 
            ::rti::RTIambassador ${selfns}::ra 
 
        # Process options, etc. 
    } 
 
    # Log undefined FederateAmbassador callbacks 
 
    delegate method * using {%s Unknown %m} 
 
    method Unknown {method args} { 
        puts "+++ FedAmb: $self $method $args" 
    } 
 
    # Define required FederateAmbassador callbacks 
    # here.... 
}  
 



A Tcl Binding for HLA/RTI William H. Duquette Page 6  

 

Note that it isn't necessary to define a method for every 
FederateAmbassador callback, but only for those callbacks one 
actually needs; the "Unknown" method will handle the rest. 
 
Note also the name used for the ::rti::RTIambassador object.  
Every instance of rtiproxy requires its own  instance of 
::rti::RTIambassador, each of which must have a unique name.  If 
::rti::RTIambassador were a Snit object, it would be usual to 
specify the name "%AUTO%", which would direct Snit to 
automatically generate a unique name.  Some time ago, however, 
Andreas Kupries [4] observed that component objects could be 
created within the instance's private namespace, $selfns—and that 
if they were, they would be automatically destroyed when the 
parent was destroyed, with no explicit destructor required.  This 
has since become my preferred way of creating and naming 
component objects. 
 
5.2 Mechanisms 
The following subsections describe a number of mechanisms 
which every RTI application must implement, and which 
rtiproxy(n) handles automatically. 
 
5.2.1 Event Loop 
Although RTI does not require an event loop, most Tcl pro-
grammers prefer to use one.  Upon joining a federation, 
rtiproxy(n) schedules a "ticker" timeout which is called 
approximately every 10 milliseconds.  This timeout calls the 
RTIambassador's "tick" method, asking it to return after all 
available messages have been processed.  The result is that all 
FederateAmbassador callbacks occur in the context of the event 
loop, and the application can be developed using the usual event-
driven paradigm. 
 
5.2.2 Federation Saves and Restores 
RTI provides a mechanism by means of which an entire federation 
can save its current state to disk such that it can be restored at a 
later time.  Supporting federation saves and restores requires a 
federate to implement a complicated protocol.  For example, 
here's how a federation save proceeds: 
 

• First, some federate calls requestFederationSave.   
• Our federate receives an initiateFederateSave callback. 
• Our federate must then: 

o Call federateSaveBegun 
o Save its state however it pleases 
o Call federateSaveComplete 
o Or, if it failed, call federateSaveNotComplete 

• If all federates save successfully, our federate will 
receive a federationSaved callback. 

• Otherwise, it will receive a federationNotSaved 
callback. 

• Note that all other activities are suspended during the 
save process. 

 
The protocol for federation restores is nearly identical. 
 
When creating the rtiproxy(n) object, the application specifies 
save and restore callbacks using the -savecmd and -restorecmd 
options; the callbacks need only save or restore the application's 
state, and throw an error if they fail.  rtiproxy(n) handles the rest 
of the protocol automatically. 

5.2.3 Attribute Value Management 
As stated in Section 2.2, the RTI retains the identity of all 
registered objects, but does not retain any record of the current 
attribute values.  If a federate joins the federation after objects 
have been created, it will immediately receive a discoverObject-
Instance callback for each registered object...but it will receive 
attribute updates only as the other federates decide to update 
them. 
 
In such a case, the late-joiner can call 
 
$ra requestClassAttributeValueUpdate \ 
    theClass attributeList 
 
giving the name of the class and a list of the names of the 
attributes in which it is interested.  The federate or federates that 
own objects of this class will receive 
 
$fa provideAttributeValueUpdate \ 
    theObject theAttributes 
 
for each object of that class that they own.  They must then 
republish all of the specified attributes for that object by calling 
 
$ra updateAttributeValues \ 
    theObject theAttributes ?options...? 
 
The ultimate effect is to refresh the late-joiner's set of object data. 
 
rtiproxy(n) helps with all of this by keeping a record of every 
attribute value published by the application.  Consequently, it can 
handle the provideAttributeValueUpdate callback completely 
automatically; no application code need be involved. 
 
This feature could be problematic for federates that publish a vast 
quantity of data, as it means that the attribute data is effectively 
stored twice, once by the application, and once by rtiproxy(n).  
For smaller federates like JNEM, however, it's a reasonable 
convenience. 
 
5.2.4 Synchronization Points 
RTI synchronization points are essentially a generic equivalent of 
the federation save and restore protocols; they allow federations to 
synchronize their federates for other arbitrary kinds of 
housekeeping tasks.  JLCCTC MRF defines a synchronization 
point called "REGISTER_OBJECTS"; federates are not supposed 
to register objects or update their attributes until they receive this 
synchronization point.  In this way object registration can be 
delayed until all federates have joined the federation, thus 
removing the need for federates to request an attribute-value 
update, as described in the previous section. 
 
Responding to a synchronization point involves a dance similar to 
that shown for federation saves; and as with federation saves, 
rtiproxy(n) handles most of the details.  The application provides 
a synchronization point callback via the -synccmd option. The 
callback receives the synchronization point's name; the 
application is then required to call the rtiproxy(n) object's 
"synced" method to indicate that synchronization is complete. 
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5.3 Policies 
The following subsections describe a number of federation-
specific and application-specific policies which are implemented 
by rtiproxy(n). 
 
5.3.1 Encoding and Decoding 
As indicated in Section 2, the RTI treats all attribute and 
parameter values as byte arrays.  It's up to the application to 
encode and decode them as required for interoperability.  If a 
federation consists only of rti(n) clients, encoding and decoding 
isn't an issue (provided that all clients use the same unicode 
encoding), as all values are sent as Tcl strings.  If an rti(n) client is 
to interoperate with federates implemented in other languages, or 
resident on hosts with differing hardware architectures, then 
encoding the data is a serious issue. 
 
Many federations use "xdr" to encode and decode data; JLCCTC 
relies on an ad hoc scheme documented in the federation 
agreement.  JNEM includes a module called schema(n) which lists 
the object classes, attributes, interaction classes, and parameters 
used by JNEM (a small subset of the FOM) along with sufficient 
type information that another module called codec(n) can perform 
the JLCCTC-specific encoding and decoding.  rtiproxy(n) relies 
on schema(n)/codec(n) to encode and decode data automatically 
on send and receive.  schema(n)/codec(n)'s implementation could 
reasonably be swapped out for another without affecting the 
rtiproxy(n) code. 
 
5.3.2 Time Management 
JNEM is a time-managed federate; that is, it is both time-
regulated and time-constrained.  Consequently, all incoming 
messages are timestamped by the sending federate), and all 
outgoing messages must be timestamped by JNEM. 
 
RTI NG Pro expresses simulation time as a double-precision 
floating point value starting at 0.0; in JLCCTC, this value is 
interpreted as decimal hours.  JNEM is a time-step simulation 
with a step size of one minute; hence, JNEM keeps time in integer 
minutes starting at 0.  JNEM's simulation time is managed by an 
object of type simclock(n), which does all translation between 
differing time formats; one of rtiproxy(n)'s responsibilities is 
advancing the simclock when a time advance is granted.  The 
algorithm described in Section 2.3 is therefore implemented 
something like this in rtiproxy(n): 
 
 On joining the federation: 
  Become time-managed, and get the current federation 
   simulation time T as a value in integer minutes, 
   updating the simclock accordingly. 
 While in the federation, 
  When enough wallclock time has passed, request a 
   time advance to time T + 1 minute. 
  Process incoming messages, which will be timestamped  
   between T and T + 1.  Call application callbacks 
   as appropriate.  This will continue until RTI 
   determines that all messages with timestamps less 
   than T + 1 have been received. 
  Receive time advance grant to time T + 1, and advance 
   the simclock accordingly. 
  Call -advancecmd callback, notifying the  
   application of the time advance. 

The application registers callbacks with rtiproxy(n) for the various 
interaction and object classes, and for the time advances. 
 
The Game Ratio.  Note the phrase "When enough wallclock time 
has passed..." in the above pseudocode.  Analytical simulations 
usually run as fast as possible, which in a federation is at the 
speed of the slowest federate.  JLCCTC is a training federation, 
with human beings very much in the loop, and consequently is 
usually run operationally at approximately 1 simulated minute per 
wall-clock minute.  During development, though, and at times 
during operations, it's convenient to run at other (often much 
higher) rates.  Consequently, rtiproxy(n) implements a game ratio, 
which is the desired number of simulated minutes per wallclock 
minute.  If the game ratio is 0.0, time does not advance at all.  If it 
is 1.0, the simulation runs at approximately real time. If it is 20.0, 
time can advance quite rapidly.  The game ratio can also be set to 
the string "auto", in which case rtiproxy(n) will advance time as 
fast as the rest of the federation—and the host processor—will 
allow. 
 
The game ratio is implemented by the same "ticker" timeout 
which is used to periodically call "tick"; see Section 5.2.1. 
 
Timestamps and Lookahead. RTI incorporates a scheme 
whereby it is guaranteed that time can advance in the federation: 
the timestamp on an outgoing message must be slightly later than 
the federate's current simulation time.  This small interval is called 
the federate's lookahead.  When sending a message, a federate 
simply adds the lookahead to the current game time and uses that 
to timestamp outgoing messages.  Since rtiproxy(n) expects a time 
step of one minute it uses a lookahead of one minute as well.  
Further, because rtiproxy(n) knows both the current simulation 
time and the lookahead, it automatically timestamps all outgoing 
messages.  
 
5.4 rtiproxy(n) API 
This section describes a portion of rtiproxy(n)'s API, and contrasts 
it with the lower-level rti(n) API.  In the example code in the 
following subsections, $ra denotes the name of an rti(n) 
::rti::RTIambassador object and $rp denotes the name of an 
rtiproxy(n) object. 
 
5.4.1 Implicit Argument Values 
There are a number of  ::rti::RTIambassador subcommands that 
require an argument which rtiproxy(n) implements as one of its 
options instead. The joinFederationExecution subcommand, for 
example, requires the name of the federation that the federate 
should join.  This makes it straightforward to join different 
federations at different times; however, it's more usual to join and 
then resign from the same federation many times in succession 
during the course of a training exercise.  Consequently, 
rtiproxy(n) provides a -federation option, thus taking on the 
burden of remembering the federation name, as well as allowing 
the client to join and resign from the federation without explicitly 
specifying the federation name each time.  A number of inputs are 
replaced by options in this way. 
 
Similarly, as a time-managed federate Snit must provide a 
timestamp for all outgoing messages.  Because rtiproxy(n) knows 
both the current simulation time and the lookahead interval, and 
because JNEM is a timestep simulation that never sends messages 
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stamped later than the current time plus the lookahead, rtiproxy(n) 
can timestamp all of the messages automatically. 
 
5.4.2 Hierarchical Command Set 
The Tk text widget presents a vast, rich API concisely by using 
sub-ensembles to group related subcommands.  For example, text 
tags are manipulated using subcommands of the widget's "tag" 
subcommand, embedded widgets are manipulated using 
subcommands of the widget's "window" subcommand, and so 
forth.  The full set of text widget operations is thus represented 
hierarchically, rather than as a flat list of operations. This 
hierarchical presentation is of great psychological importance 
when reading either application code or the text widget's 
documentation: it's much easier to ignore whole branches of the 
tree than it is a selection of operations in a flat list.  If there's no 
need to use an embedded window in a particular text widget, 
there's no need to read—or even notice—the related 
documentation. 
 
rtiproxy(n) uses Snit's hierarchical method names to do the same 
thing.  The following code, for example, defines a method "fed" 
with two submethods, "join" and "resign": 
 
method {fed join} {} { 
    # Join the federation ... 
} 
 
method {fed resign} {} { 
    # Resign from the federation ... 
} 
 
rtiproxy(n) uses this feature to define three sub-ensembles, "fed", 
"obj", and "int", to group subcommands related to the federation 
as a whole, to objects and their attributes, and to interactions.  The 
following table relates some of their subcommands with their 
rti(n) equivalents (omitting argument lists): 
 
$ra createFederationExecution $rp fed create 
$ra destroyFederationExecution $rp fed destroy 
$ra joinFederationExecution $rp fed join 
$ra resignFederationExecution $rp fed resign 
 
$ra publishInteractionClass  $rp int publish 
$ra subscribeInteractionClass $rp int subscribe 
$ra sendInteraction $rp int send 
 
$ra publishObjectClass $rp obj publish 
$ra registerObjectInstance $rp obj register 
$ra updateAttributeValues $rp obj update 
$ra deleteObjectInstance $rp obj delete 
 
A developer wanting information on object management knows to 
go directly to the section of the man page on the "obj" method.  
Plus, the resulting API is both more concise and more Tcl-like. 
 
5.4.3 Finer-grained Callbacks 
The FederateAmbassador provides one callback for each kind of 
incoming message.  All interactions, for example, are passed to 
the federate ambassador's receiveInteraction callback.  This leads 
naturally to long ugly switch statements, and makes it difficult to 
have different interactions handled by different modules.  The 
same consideration applies to object attribute updates.  
Consequently, rtiproxy(n) allows the client to register callbacks 
by interaction or object class. 
 

Receiving them requires subscribing to the class and defining the 
FederateAmbassador receiveInteraction callback: 
 
# In FederateAmbassador type definition 
 
method receiveInteraction {class parmdict args} { 
    switch -exact -- $class { 
        REPORT.TEMPERATURE { 
            . 
            . 
            . 
        } 
 
        . 
        . 
        . 
    } 
} 
 
An application using rtiproxy(n) would do the following instead: 
 
$rp int receiveWith REPORT.TEMPERATURE \ 
    receiveTEMPERATURE 
 
proc receiveTEMPERATURE {class parmdict tag} { 
    # Process REPORT.TEMPERATURE interaction 
} 
 
The callback is defined as a command prefix in the usual way; the 
actual command may be defined anywhere in the application, and 
may be implemented as a proc, a Snit method, etc.  To cancel the 
callback, set it to the empty string. 
 
A more advanced mechanism would allow multiple callbacks to 
be registered for each interaction class; to date, however, that 
hasn't been needed in JNEM. 
 
5.5 rtiproxy(n): Results 
The rtiproxy(n) module has proven to be a solid and robust 
interface for JNEM.  Its primary flaw is that it mingles essential 
mechanism (which is useful to many federates regardless of 
federation) with policies specific to the JLCCTC MRF federation 
or to JNEM itself.  This was a mistake. 
 
For example, there is a strong desire within the U.S. Army's 
training community to use JNEM in a number of other training 
federations.  One of these, the JLCCTC Entity Resolution 
Federation (ERF), does not use RTI time management; instead, 
each federate is regulated purely by wall-clock time.  rtiproxy(n) 
does not currently support this mode of operation.  With essential 
mechanism and MRF-specific policy mixed together, it becomes 
harder to reuse the code that applies to both environments.  
Similarly, rtiproxy(n) uses a specific encoding/decoding scheme 
rather than allowing different schemes to be selected based on 
context.  Such policies should either be implemented in a separate 
object, or should be selectable by option. As JNEM moves into 
additional federations, I'll need to fix these defects. 
 
6. Supported RTI Features 
rti(n) does not implement the full set of RTIambassador methods 
and FederateAmbassador callbacks.  Advanced features, such as 
management of the ownership of object attributes and Data 
Distribution Management (DDM) have been omitted. 
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6.1 Supported RTIambassador Methods 
 

o createFederationExecution 
o deleteObjectInstance 
o destroyFederationExecution 
o disableTimeConstrained 
o disableTimeRegulation 
o enableAttributeRelevancyAdvisorySwitch 
o enableTimeConstrained 
o enableTimeRegulation 
o federateRestoreComplete 
o federateRestoreNotComplete 
o federateSaveBegun 
o federateSaveComplete 
o federateSaveNotComplete 
o getAttributeHandle 
o getAttributeName 
o getInteractionClassHandle 
o getInteractionClassName 
o getObjectClass 
o getObjectClassHandle 
o getObjectClassName 
o getObjectInstanceHandle 
o getObjectInstanceName 
o getParameterHandle 
o getParameterName 
o joinFederationExecution 
o publishInteractionClass 
o publishObjectClass 
o queryLBTS 
o queryLookahead 
o registerFederationSynchronizationPoint 
o registerObjectInstance 
o requestClassAttributeValueUpdate 
o requestFederationRestore 
o requestFederationSave 
o resignFederationExecution 
o sendInteraction 
o subscribeInteractionClass 
o subscribeObjectClassAttributes 
o synchronizationPointAchieved 
o tick 
o timeAdvanceRequest 
o unpublishInteractionClass 
o unpublishObjectClass 
o unsubscribeInteractionClass 
o unsubscribeObjectClass 
o updateAttributeValues 

 
6.2 FederateAmbassador Callbacks 
rti(n) necessarily implements all of the FederateAmbassador 
callbacks, as the code will not successfully compile otherwise.  
The following callbacks are actually passed through to the Tcl 
application (the remainder are stubbed out via the NullFederate-
Ambassador class provided with RTI NG Pro V3.0): 
 

o announceSynchronizationPoint 
o discoverObjectInstance 
o federationNotRestored 
o federationNotSaved 
o federationRestoreBegun 

o federationRestored 
o federationSaved 
o federationSynchronized 
o initiateFederateRestore 
o initiateFederateSave 
o provideAttributeValueUpdate 
o receiveInteraction 
o reflectAttributeValues 
o removeObjectInstance 
o requestFederationRestoreFailed 
o requestFederationRestoreSucceeded 
o startRegistrationForObjectClass 
o stopRegistrationForObjectClass 
o synchronizationPointRegistrationFailed 
o synchronizationPointRegistrationSucceeded 
o turnInteractionsOff 
o turnInteractionsOn 
o turnUpdatesOffForObjectInstance 
o turnUpdatesOnForObjectInstance 
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