
A Tcl Binding for HLA/RTI

William H. Duquette
Jet Propulsion Laboratory, California Institute of Technology

William.H.Duquette@jpl.nasa.gov

ABSTRACT
HLA/RTI is a "High Level Architecture" with accompanying
"Run-Time Infrastructure" designed by the U.S. Department of
Defense to support the creation of networks (called federations) of
cooperating simulation applications (called federates). The RTI
software layer provides basic inter-task messaging, as well as
management of simulated time across federates. RTI APIs are
commercially available for C++ and Java. The paper presents two
Tcl APIs, a low-level binding to the C++ API which adheres to
HLA/RTI naming conventions, and a higher-level API built on
top of it which is intended for actual use. The paper includes an
introduction to HLA/RTI, but the main focus is on the design and
implementation of the two APIs, which were developed as part of
an HLA/RTI federate called the Joint Non-kinetic Effects Model
(JNEM).

1. Joint Non-kinetic Effects Model
The Joint Non-kinetic Effects Model (JNEM) is a military training
simulation which participates in a network of simulations used to
train military commanders. The network, or federation, is called
the Joint Land Component Constructive Training Capability
(JLCCTC) Multi-Resolution Federation (MRF). JNEM's role as a
federate in the federation is to model the responses of the civilian
population, thus adding non-kinetic effects to the kinetic effects
modelled by the battlefield simulation. JNEM is written primarily
in Tcl/Tk 8.4 with a small amount of code in C/C++.

2. HLA/RTI
In 1993, the Department of Defense proposed the definition of a
"High Level Architecture" (HLA) for simulation programs which
would facilitate linking multiple simulations interoperably into a
single federation; the work was a follow-on to the previously
developed Aggregate Level Simulation Protocol (ALSP) and
Distributed Interactive Simulation (DIS) architectures, and was
intended to replace them both. Eventually a standard
communications API, the Run-Time Infrastructure for HLA (RTI)
was defined. The RTI allows federations to be created, programs
to join a federation and thus to become federates,
intercommunication between the federates, and synchronization of
the federates in simulated time.

The JLCCTC MRF federation uses RTI as its communication
infrastructure; specifically, it uses RTI NG Pro V3.x, sold by
Virtual Technology Corporation. [1]

2.1 Interaction Classes
The most basic type of communication between federates is by
means of interactions. An interaction is a dictionary of values
which is broadcast by one federate and received by subscribing
federates. Every interaction that is sent belongs to a particular
interaction class; an interaction's class determines the names and
data types of the interaction's parameters. Parameters may be
scalar-valued, array-valued, structure-valued, and so forth. Note

that the RTI API treats all parameter values as byte-arrays; each
federation must agree on an encoding scheme, and it is the
responsibility of each federate to encode and decode parameter
values accordingly.

Each federation's interaction classes are defined in a file called the
Federation Object Model, or FOM. Interaction classes are defined
in a single-inheritance hierarchy, which is reflected in the class
names; interaction classes REPORT.TEMPERATURE and
REPORT.HUMIDITY are both subclasses of interaction class
REPORT and inherit its parameter definitions. Note that
interaction classes are not classes in the OOP sense, as they define
data only, not behavior.

RTI has its own peculiar nomenclature, which is reflected in all of
the API calls. A federate which wishes to send interactions of a
particular class must declare its intent by publishing the
interaction class. A federate which wishes to receive interactions
of this class must similarly declare its intent by subscribing to the
class. Then, when the first federate sends the interaction, all
subscribed federates receive it.

The sending federate may choose to send all of the interaction's
parameters or only a subset. Note that the RTI API has no notion
of sending an interaction to a specific federate; in principle, every
federate can receive every interaction. In practice, any given
federate is usually interested in a small subset of the available
interactions and subscribes only to those.

Interactions have two general uses. First, an interaction may
indicate that some event has just occurred in the sending federate's
simulation; the interaction's class will indicate the nature of the
event, and the parameter values the details. Second, interactions
are used to implement orders, messages that direct another
federate or federates to take a particular action. In this case the
interaction class indicates the nature of the action and the
parameters any required details. One gathers that the former use
was the one primarily intended by the designers of RTI, as
interactions are poorly suited to positive closed-loop control;
unfortunately, RTI provides no better mechanism for this purpose.

A suscriber may subscribe to any class in the hierarchy, and will
get all interactions belonging to that class or its subclasses.
Continuing the above example, if a federate subscribes to class
REPORT it will receive all interactions of class REPORT,
REPORT.TEMPERATURE, and REPORT.HUMIDITY.
However, for interactions of the latter two classes it will only
receive the subset of their parameters defined in class REPORT,
which is probably not what was wanted. In the MRF, federates
tend to subscribe to the leaf classes.

2.2 Object Classes
In addition to sending interactions, a federate may also publish
data relating to simulation objects, e.g., military units. From the

A Tcl Binding for HLA/RTI William H. Duquette Page 2

RTI point of view, an object, like an interaction, is a dictionary of
values. The difference is that objects have an identity and a
lifespan where interactions are anonymous and transient. Objects
belong to classes, just as interactions do, and as with interactions
the FOM defines a single inheritance hierarchy of object classes.
The naming convention is the same; GROUND.MANEUVER and
GROUND.CONVOY are two subclasses of the base class
GROUND. Note that objects have no more behavior, so far as
RTI is concerned, than interactions do.

Where an interaction has parameters, an object has attributes.
Attribute values, like parameter values, may be arbitrarily
complex and are sent as byte arrays, with encoding and decoding
left to the application. A federate may publish or subscribe to all
or a subset of an object class's attributes.

The nomenclature for objects is as follows. First, a federate
declares its intent to publish objects of a certain class by
publishing the class; the operation specifies the class name and the
names of some or all of the class's attributes. Note that publish, in
RTI, refers only to this declaration of intent, not to the publication
of any particular instance of the class (using "publication" in the
normal sense). Other federates may subscribe to specific
attributes of the class.

Having published the class, the federate may register instances of
the class with the RTI. (The term reflects the notion that the
objects already exist in the federate.) When an object is registered
it becomes known to the federation, and the subscribing federates
are said to discover it.

Having registered an instance the federate may update the values
of any or all of those attributes whose names it originally
published for the instance's class. After each update, the
subscribing federates reflect the new values.

Finally, the federate may decide to destroy the instance; it so
notifies the federation by deleting it. All subscribing federates are
then notified to remove the instance.

The RTI's role in object management is to deliver discover,
reflect, and remove messages to subscribing federates. The RTI
does not retain any attribute values; it is the responsibility of each
federate to preserve the values of all attributes that it updates or
reflects. In particular, when a federate joins the federation it will
immediate discover all registered object instances—but it will
have no knowledge of their attribute values until the owning
federates choose to update them.

Note that ownership of an object's attributes may be shared by two
or more federates. Federate A can register an object and update
one set of attributes; on discovering the object, federate B may
then update additional attributes for the same object (provided, of
course, that it has declared its intent to publish those attributes for
the object's class).

As with interactions, a suscriber may subscribe to any class in the
hierarchy, and will get all objects belonging to that class or its
subclasses. And as with interactions, this capability isn't generally
that useful (at least in the MRF).

2.3 Time Management
Some RTI federations run in real-time. In those federations RTI
is used purely as a messaging infrastructure, and all federates rely
on a real time clock for synchronization. This is especially the
case when hardware simulators, e.g., flight simulators or tank
simulators, are included in the mix.

On the other hand, many simulations, including JNEM, run on
simulated time, which might or might not be geared to the passage
of wallclock time. JNEM, for example, implements a "game
ratio" which controls the passage of simulated time in a ratio with
real time. When running in federation, simulated time must be
coordinated across federates; this is the aim of RTI's time
management features.

In a time-managed federation, a federate may be time-regulating,
time-constrained, or both. A time-regulating federate timestamps
its messages; the timestamps serve to regulate the time for other
federates. A time-constrained federate is constrained to run at a
simulated time consistent with the time-regulating federates in the
federation. A federate that is both time-constrained and time-
regulated is said to be time-managed.

A time-managed federate operates in the following loop:

 Initialize simulation
 Forever, Do
 Request advance to next simulation time of interest.
 Process incoming messages up to that simulated time.
 Receive time advance grant to time of interest.
 Advance time and do related work.

The RTI sees to it that a federate never gets a time advance grant
until it has received all messages timestamped prior to the
requested simulation time.

3. The C++ API
The RTI is specified as a C++ API. There are two primary
classes: the RTIambassador and the FederateAmbassador.

3.1 The RTIambassador
The RTIambassador class encapsulates the RTI API proper: all
API calls are member functions of the class. To join multiple
federations simultaneously, a federate must create an instance of
RTIambassador for each.

The member function names are extremely verbose; for example,

• publishInteractionClass
• subscribeInteractionClass
• sendInteraction
• publishObjectClass
• subscribeObjectClassAttributes
• registerObjectInstance
• updateAttributeValues
• deleteObjectInstance

One has the sense that the entire API was spec'd out in English in
great detail prior to implementation—and then the section
headings in the spec were used as the names of the member
functions.

A Tcl Binding for HLA/RTI William H. Duquette Page 3

3.2 The FederateAmbassador
All messages received by the federate are passed to the federate as
callbacks to member functions of a FederateAmbassador object.
FederateAmbassador is an abstract base class, and provides no
implementation at all; the federate must define a subclass and
provide an implementation (possibly trivial) for every member
function. FederateAmbassador member function names are just
as verbose as RTIambassador names:

• receiveInteraction
• discoverObjectInstance
• reflectAttributeValues
• removeObjectInstance

The federate passes a pointer to its FederateAmbassador object to
its RTIambassador when joining the federate. If the federate
participates in multiple federations, it should create a
FederateAmbassador for each.

3.3 Polling for Input
The RTI specification does not define the mechanism by which
the federate polls for input; in particular, it does not presume that
the federate is using an event loop. RTI NG Pro provides a "tick"
RTIambassador method which polls for incoming messages and
calls FederateAmbassador methods accordingly. When calling
"tick" the caller may specify the minimum and maximum amount
of time to spend waiting for incoming messages.

An unpleasant feature of this implementation is that most
recursive calls into the RTIambassador are forbidden. For
example, a federate cannot register an object instance or update an
object's attributes within a FederateAmbassador callback; such
actions must be postponed until after "tick" returns.

4. rti(n): The Tcl binding
JNEM's binding to the C++ API is called rti(n). rti(n) is intended
to be a one-to-one mapping from a subset of the C++ API into
Tcl; all operations have the same names and semantics as they do
in C++. (Section 6 lists the supported operations.) Consequently,
the rti(n) documentation need not duplicate the C++ API
documentation; rather, it explains how the C++ operations are
expressed in Tcl. The intent is that an experienced RTI
programmer should be able to read Tcl code that uses rti(n) and
understand it without reference to the rti(n) documentation.
Nevertheless, rti(n) does include a number of significant
enhancements to make the API both more Tcl-like and more
convenient (which amounts to the same thing).

rti(n) is implemented as a part of a custom Tcl interpreter (called,
for historical reasons, shark(1)), rather than as a loadable
extension, because the C++ API is multi-threaded, and multi-
threaded extensions can't be loaded into a single-threaded tclsh(1).
Since we'd be building a multi-threaded tclsh(1) anyway, we
chose to link rti(n) statically at build time.

4.1 ::rti::RTIambassador
rti(n) defines a single command, ::rti::RTIambassador, which is
used to create RTIambassador objects following the standard Tcl
object model:

$::rti::RTIambassador ra
::ra
$

::rti::RTIambassador is implemented in C++. It creates an
instance of the C++ RTIambassador object and ties it to a new Tcl
command; subcommands of the new command map to member
functions of the C++ object in the obvious way.

As stated above, the binding API is intended to be a
straightforward translation of the C++ API. Consider the
following call, which is used to create a federation given a
federation name (an arbitrary string) and the name of the fed file,
which contains the FOM information needed at run-time:

#include <RTI.hh>
void
RTI::RTIambassador::
 createFederationExecution (
 const char* executionName,
 const char* FED
) throw (/* Omitted, but lengthy */);

The signature of the equivalent rti(n) call is as follows:

$ra createFederationExecution executionName FED

The similarity is evident, as is the convenience Tcl adds.

4.1.1 Exceptions
RTI defines a plethora of exceptions, all of which are subclasses
of RTI::Exception. RTI::Exception conveniently has methods
which return the exception's name and an error message; rti(n)
consequently converts all RTI exceptions into Tcl errors, with the
errorCode set to the exception's name.

As a side note, the example code that comes with RTI NG Pro is
simply encrusted with try/catch constructs that deal with the vast
number of RTI exceptions; the catch blocks usually respond to an
error by shutting down the application gracefully if one is thrown.
Few of the exceptions are likely to occur in a properly written
program unless an incorrect FOM is provided at run-time (in
which case nothing is going to work anyway), so it would be
desirable to handle most of these exceptions in a top-level
try/catch block in main()...but because the exceptions are
documented explicitly in each RTIambassador call this is difficult
to do without cluttering the application code with exception
propagation clauses.

JNEM applications using rti(n) and the Tcl event loop leave
handling RTI exceptions up to bgerror; and as thrown exceptions
need not be declared explicitly in Tcl, the related problems don't
arise and the code looks much cleaner.

4.1.2 Enumerations
Enumerated types are handled in the usual way by translating the
name of the symbolic constant into the enumerated integer before
passing it to the C++ code:

A Tcl Binding for HLA/RTI William H. Duquette Page 4

$ra resignFederationExecution theAction
 theAction must be one of the following strings:

• RELEASE_ATTRIBUTES
• DELETE_OBJECTS
• DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES
• NO_ACTION

4.1.3 Overloaded Methods
Several of the RTIambassador member functions are overloaded.
Usually there's a base method and an additional method with extra
arguments. rti(n) implements these using optional arguments or
option/value syntax:

$ra requestFederationSave label ?theTime?

In the RTI specification, there are two versions of this method,
one with theTime and one without. In rti(n), theTime is simply an
optional argument.

$ra deleteObjectInstance objectHandle ?options...?

In the RTI specification, there are two versions of this method,
one that allows the caller to specify a timestamp and one that does
not. Each also has a string argument, theTag, which is used to
send an arbitrary and possibly empty string along with the remove
message that results from deleting the object. Since the
timestamp is effectively optional, and theTag has an obvious
default, they both become options:

-time fedTime
 fedTime is the federation time as a floating-point value.

-tag theTag

theTag is the tag string.

4.1.4 Handles vs. Names
Object class names, object attribute names, interaction class
names, and interaction parameter names are all defined in the
FOM file. At run-time these names are associated with handles.
The application is expected to look up the handles for each name
it uses, and then use these handles in all subsequent calls. For
example, the C++ code to declare intent to send interactions of a
particular class looks like this:

RTI::InteractionClassHandle h =
 ra.getInteractionClassHandle("MYCLASS");

ra.publishInteractionClass(h);

rti(n) supports this idiom; you can write the following:

set h [ra getInteractionClassHandle MYCLASS]

ra publishInteractionClass $h

The various kinds of handles are all represented as 32-bit
unsigned integers, which rti(n) handles as wide integers in order
to preserve the full unsigned range.

However, using handles for what are effectively predefined
constants is extremely un-Tcl-like; so any command that expects a
class, attribute, or parameter handle will also accept the actual
name:

ra publishInteractionClass MYCLASS

4.1.5 C++ Sets vs. Lists and Dictionaries
The RTI API includes a number of collection objects called "sets".
For example, when publishing an object class the application
must specify the particular set of attributes it plans to update in an
RTI::AttributeHandleSet. When this is combined with the need to
convert attribute names to integer handles, the C++ code becomes
spectacularly ugly. Here, for example, we declare that our
application wants to publish the NAME and COLOR attributes of
instances of the THING class:

RTI::ObjectClassHandle hThing =
 ra.getObjectClassHandle("THING");

RTI::AttributeHandle hName =
 ra.getAttributeHandle("NAME", hThing);
RTI::AttributeHandle hColor =
 ra.getAttributeHandle("COLOR", hThing);

RTI::AttributeHandleSet attr =
 RTI::AttributeHandleSetFactory::create(2);
attrs->add(hThing);
attrs->add(hColor);

ra.publishObjectClass(hThing, *attrs);

In rti(n), of course, the RTI::AttributeHandleSet is simply a Tcl
list of attribute handles—or, in practice, a list of attribute names:

ra publishObjectClass THING {NAME COLOR}

Updating an object's attributes is even uglier; the attribute handles
and their values must all be plugged into a data structure called an
RTI::AttributeHandleValuePairSet. With rti(n), a dictionary is
naturally used instead (note that the Tcl 8.5 dict(n) command is
not required). We will leave imagining the C++ code as an
exercise for the reader; the rti(n) code is as follows:

set hObject [ra registerObjectInstance THING]

ra updateAttributeValues $hObject \
 {NAME "This Thing" COLOR "Green"} \
 -time $t

4.2 The FederateAmbassador
Whenever rti(n) creates a C++ RTIambassador object, it goes on
to create a matching C++ FederateAmbassador object as well.
This object is invisible to the Tcl programmer, but it is responsible
for translating all supported FederateAmbassador callbacks into
equivalent Tcl callbacks. The details of this translation are
described in the following subsections.

4.2.1 FederateAmbassador Ensembles
An application joins an RTI federation by creating an
RTIambassador and calling its joinFederationExecution method.
One of the arguments to this method in the C++ API is a pointer
to an instance of a FederateAmbassador subclass. In rti(n), that
argument is replaced by the name of a Tcl command; the

A Tcl Binding for HLA/RTI William H. Duquette Page 5

command is treated as the name of an ensemble command whose
subcommands are the FederateAmbassador callback methods.
This ensemble command can be implemented however the user
prefers; for example, here's a FederateAmbassador that simply
logs the callbacks it receives:

proc fedAmb {subcmd args} {
 puts "FederateAmbassador: $subcmd $args"
}

::rti::RTIambassador ra
ra joinFederationExecution $myname $fedname fedAmb

Writing more realistic ensemble commands from scratch in pure
Tcl is a nuisance, of course, so JNEM uses Snit [2] to define a
FederateAmbassador type, as described in Section 5.

4.2.2 Callback Enhancements
When translating C++ FederateAmbassador callbacks into calls to
subcommands of the Tcl FederateAmbassador ensemble, rti(n)
makes the same kind of convenience adjustments as it does for the
RTIambassador commands: names are passed instead of handles,
overloaded methods are handled using optional arguments and
option/value syntax, and C++ collections are passed as Tcl lists
and dictionaries.

For example, when rti(n) receives an object attribute update, the
reflectAttributeValues method is called with a dictionary of
attribute names and values. This is a significant convenience;
C++ code must usually compare each attribute handle in the
update with each of a set of variables containing attribute handles
to determine which specific attribute each is.

4.2.3 Queuing Callbacks
One of the nuisances of the RTI API, described in detail in
Section 3.3, is that the C++ RTIambassador is not re-entrant—and
therefore, since the FederateAmbassador's callbacks are always
called from within the RTIambassador's "tick" method,
FederateAmbassador callbacks cannot call the RTIambassador's
methods. As a result, RTI applications generally queue up the
inputs received via the FederateAmbassador, and handle them
after "tick" returns.

rti(n) handles this queuing automatically. Each incoming
FederateAmbassador callback received during a call to "tick" is
translated into a Tcl command in the form of a list of Tcl_Obj*
structures, to be executed using Tcl_EvalObjv(). [3] Instead of
evaluating the command immediately, however, the command is
queued; and immediately after "tick" returns, rti(n) evaluates the
queued commands in sequence.

As a result, rti(n) programs are free to call RTIambassador
methods from within FederateAmbassador callbacks. The
decision of whether or not to queue inputs can then be based
solely on the needs of the application.

4.2.4 Error Handling
The Tcl FederateAmbassador callbacks invoked by rti(n) may of
course contain bugs and throw Tcl errors. rti(n)'s C++ Federate-
Ambassador object catches those errors and implicitly invokes
"bgerror" to handle them, just as Tk does.

4.3 rti(n): Results
RTI NG Pro ships with a sample application called "FoodFight",
in which an arbitrary number of identical federates simulate a
food fight in a school cafeteria. (The fight continues until all
students have exhausted their supply of cash.) While developing
rti(n), I implemented a Tcl version of the FoodFight federate
which could interoperate with the C++ version. The Tcl version is
both more concise and more readable; but it is recognizably the
same program, and should be easily understood by an experienced
RTI developer after a short introduction to Tcl syntax.

Thus, rti(n) can be used to write RTI federates in a familiar style,
but with the convenience and expressiveness of Tcl.

5. rtiproxy(n): Convenience + Policy
rti(n) adds considerable value over the C++ API, but because it is
a straightforward binding to the C++ API there are many details
that it must necessarily leave to the application. Some of these
details can be handled in a general way for all rti(n) clients.
Others depend on the policies of the specific federation, but can
be handled in a general way for all federates in the federation.

Operationally, JNEM includes only one RTI federate; but for
testing and development it is naturally useful to implement others.
As a result, it's worthwhile to implement these general
mechanisms and policies in a reuseable object. JNEM does so,
using a higher-level API called rtiproxy(n). rtiproxy(n)'s API is
equally expressive yet more concise. It also implements a number
of policies that are specific to the JLCCTC MRF federation and to
JNEM itself. Consequently, rtiproxy(n) is specific to JNEM's
environment and is not directly reuseable by other projects. Its
design and interface are nevertheless instructive.

5.1 Architecture
rtiproxy(n) implements a single command, a snit::type called,
unremarkably, rtiproxy. Each instance of rtiproxy encapsulates an
instance of ::rti::RTIambassador, and in addition serves as its own
FederateAmbassador. Here is the skeleton of an rtiproxy-like
type:

snit::type rtiproxy {
 component ra ;# RTIambassador

 constructor {args} {
 # Create RTIambassador
 install ra using \
 ::rti::RTIambassador ${selfns}::ra

 # Process options, etc.
 }

 # Log undefined FederateAmbassador callbacks

 delegate method * using {%s Unknown %m}

 method Unknown {method args} {
 puts "+++ FedAmb: $self $method $args"
 }

 # Define required FederateAmbassador callbacks
 # here....
}

A Tcl Binding for HLA/RTI William H. Duquette Page 6

Note that it isn't necessary to define a method for every
FederateAmbassador callback, but only for those callbacks one
actually needs; the "Unknown" method will handle the rest.

Note also the name used for the ::rti::RTIambassador object.
Every instance of rtiproxy requires its own instance of
::rti::RTIambassador, each of which must have a unique name. If
::rti::RTIambassador were a Snit object, it would be usual to
specify the name "%AUTO%", which would direct Snit to
automatically generate a unique name. Some time ago, however,
Andreas Kupries [4] observed that component objects could be
created within the instance's private namespace, $selfns—and that
if they were, they would be automatically destroyed when the
parent was destroyed, with no explicit destructor required. This
has since become my preferred way of creating and naming
component objects.

5.2 Mechanisms
The following subsections describe a number of mechanisms
which every RTI application must implement, and which
rtiproxy(n) handles automatically.

5.2.1 Event Loop
Although RTI does not require an event loop, most Tcl pro-
grammers prefer to use one. Upon joining a federation,
rtiproxy(n) schedules a "ticker" timeout which is called
approximately every 10 milliseconds. This timeout calls the
RTIambassador's "tick" method, asking it to return after all
available messages have been processed. The result is that all
FederateAmbassador callbacks occur in the context of the event
loop, and the application can be developed using the usual event-
driven paradigm.

5.2.2 Federation Saves and Restores
RTI provides a mechanism by means of which an entire federation
can save its current state to disk such that it can be restored at a
later time. Supporting federation saves and restores requires a
federate to implement a complicated protocol. For example,
here's how a federation save proceeds:

• First, some federate calls requestFederationSave.
• Our federate receives an initiateFederateSave callback.
• Our federate must then:

o Call federateSaveBegun
o Save its state however it pleases
o Call federateSaveComplete
o Or, if it failed, call federateSaveNotComplete

• If all federates save successfully, our federate will
receive a federationSaved callback.

• Otherwise, it will receive a federationNotSaved
callback.

• Note that all other activities are suspended during the
save process.

The protocol for federation restores is nearly identical.

When creating the rtiproxy(n) object, the application specifies
save and restore callbacks using the -savecmd and -restorecmd
options; the callbacks need only save or restore the application's
state, and throw an error if they fail. rtiproxy(n) handles the rest
of the protocol automatically.

5.2.3 Attribute Value Management
As stated in Section 2.2, the RTI retains the identity of all
registered objects, but does not retain any record of the current
attribute values. If a federate joins the federation after objects
have been created, it will immediately receive a discoverObject-
Instance callback for each registered object...but it will receive
attribute updates only as the other federates decide to update
them.

In such a case, the late-joiner can call

$ra requestClassAttributeValueUpdate \
 theClass attributeList

giving the name of the class and a list of the names of the
attributes in which it is interested. The federate or federates that
own objects of this class will receive

$fa provideAttributeValueUpdate \
 theObject theAttributes

for each object of that class that they own. They must then
republish all of the specified attributes for that object by calling

$ra updateAttributeValues \
 theObject theAttributes ?options...?

The ultimate effect is to refresh the late-joiner's set of object data.

rtiproxy(n) helps with all of this by keeping a record of every
attribute value published by the application. Consequently, it can
handle the provideAttributeValueUpdate callback completely
automatically; no application code need be involved.

This feature could be problematic for federates that publish a vast
quantity of data, as it means that the attribute data is effectively
stored twice, once by the application, and once by rtiproxy(n).
For smaller federates like JNEM, however, it's a reasonable
convenience.

5.2.4 Synchronization Points
RTI synchronization points are essentially a generic equivalent of
the federation save and restore protocols; they allow federations to
synchronize their federates for other arbitrary kinds of
housekeeping tasks. JLCCTC MRF defines a synchronization
point called "REGISTER_OBJECTS"; federates are not supposed
to register objects or update their attributes until they receive this
synchronization point. In this way object registration can be
delayed until all federates have joined the federation, thus
removing the need for federates to request an attribute-value
update, as described in the previous section.

Responding to a synchronization point involves a dance similar to
that shown for federation saves; and as with federation saves,
rtiproxy(n) handles most of the details. The application provides
a synchronization point callback via the -synccmd option. The
callback receives the synchronization point's name; the
application is then required to call the rtiproxy(n) object's
"synced" method to indicate that synchronization is complete.

A Tcl Binding for HLA/RTI William H. Duquette Page 7

5.3 Policies
The following subsections describe a number of federation-
specific and application-specific policies which are implemented
by rtiproxy(n).

5.3.1 Encoding and Decoding
As indicated in Section 2, the RTI treats all attribute and
parameter values as byte arrays. It's up to the application to
encode and decode them as required for interoperability. If a
federation consists only of rti(n) clients, encoding and decoding
isn't an issue (provided that all clients use the same unicode
encoding), as all values are sent as Tcl strings. If an rti(n) client is
to interoperate with federates implemented in other languages, or
resident on hosts with differing hardware architectures, then
encoding the data is a serious issue.

Many federations use "xdr" to encode and decode data; JLCCTC
relies on an ad hoc scheme documented in the federation
agreement. JNEM includes a module called schema(n) which lists
the object classes, attributes, interaction classes, and parameters
used by JNEM (a small subset of the FOM) along with sufficient
type information that another module called codec(n) can perform
the JLCCTC-specific encoding and decoding. rtiproxy(n) relies
on schema(n)/codec(n) to encode and decode data automatically
on send and receive. schema(n)/codec(n)'s implementation could
reasonably be swapped out for another without affecting the
rtiproxy(n) code.

5.3.2 Time Management
JNEM is a time-managed federate; that is, it is both time-
regulated and time-constrained. Consequently, all incoming
messages are timestamped by the sending federate), and all
outgoing messages must be timestamped by JNEM.

RTI NG Pro expresses simulation time as a double-precision
floating point value starting at 0.0; in JLCCTC, this value is
interpreted as decimal hours. JNEM is a time-step simulation
with a step size of one minute; hence, JNEM keeps time in integer
minutes starting at 0. JNEM's simulation time is managed by an
object of type simclock(n), which does all translation between
differing time formats; one of rtiproxy(n)'s responsibilities is
advancing the simclock when a time advance is granted. The
algorithm described in Section 2.3 is therefore implemented
something like this in rtiproxy(n):

 On joining the federation:
 Become time-managed, and get the current federation
 simulation time T as a value in integer minutes,
 updating the simclock accordingly.
 While in the federation,
 When enough wallclock time has passed, request a
 time advance to time T + 1 minute.
 Process incoming messages, which will be timestamped
 between T and T + 1. Call application callbacks
 as appropriate. This will continue until RTI
 determines that all messages with timestamps less
 than T + 1 have been received.
 Receive time advance grant to time T + 1, and advance
 the simclock accordingly.
 Call -advancecmd callback, notifying the
 application of the time advance.

The application registers callbacks with rtiproxy(n) for the various
interaction and object classes, and for the time advances.

The Game Ratio. Note the phrase "When enough wallclock time
has passed..." in the above pseudocode. Analytical simulations
usually run as fast as possible, which in a federation is at the
speed of the slowest federate. JLCCTC is a training federation,
with human beings very much in the loop, and consequently is
usually run operationally at approximately 1 simulated minute per
wall-clock minute. During development, though, and at times
during operations, it's convenient to run at other (often much
higher) rates. Consequently, rtiproxy(n) implements a game ratio,
which is the desired number of simulated minutes per wallclock
minute. If the game ratio is 0.0, time does not advance at all. If it
is 1.0, the simulation runs at approximately real time. If it is 20.0,
time can advance quite rapidly. The game ratio can also be set to
the string "auto", in which case rtiproxy(n) will advance time as
fast as the rest of the federation—and the host processor—will
allow.

The game ratio is implemented by the same "ticker" timeout
which is used to periodically call "tick"; see Section 5.2.1.

Timestamps and Lookahead. RTI incorporates a scheme
whereby it is guaranteed that time can advance in the federation:
the timestamp on an outgoing message must be slightly later than
the federate's current simulation time. This small interval is called
the federate's lookahead. When sending a message, a federate
simply adds the lookahead to the current game time and uses that
to timestamp outgoing messages. Since rtiproxy(n) expects a time
step of one minute it uses a lookahead of one minute as well.
Further, because rtiproxy(n) knows both the current simulation
time and the lookahead, it automatically timestamps all outgoing
messages.

5.4 rtiproxy(n) API
This section describes a portion of rtiproxy(n)'s API, and contrasts
it with the lower-level rti(n) API. In the example code in the
following subsections, $ra denotes the name of an rti(n)
::rti::RTIambassador object and $rp denotes the name of an
rtiproxy(n) object.

5.4.1 Implicit Argument Values
There are a number of ::rti::RTIambassador subcommands that
require an argument which rtiproxy(n) implements as one of its
options instead. The joinFederationExecution subcommand, for
example, requires the name of the federation that the federate
should join. This makes it straightforward to join different
federations at different times; however, it's more usual to join and
then resign from the same federation many times in succession
during the course of a training exercise. Consequently,
rtiproxy(n) provides a -federation option, thus taking on the
burden of remembering the federation name, as well as allowing
the client to join and resign from the federation without explicitly
specifying the federation name each time. A number of inputs are
replaced by options in this way.

Similarly, as a time-managed federate Snit must provide a
timestamp for all outgoing messages. Because rtiproxy(n) knows
both the current simulation time and the lookahead interval, and
because JNEM is a timestep simulation that never sends messages

A Tcl Binding for HLA/RTI William H. Duquette Page 8

stamped later than the current time plus the lookahead, rtiproxy(n)
can timestamp all of the messages automatically.

5.4.2 Hierarchical Command Set
The Tk text widget presents a vast, rich API concisely by using
sub-ensembles to group related subcommands. For example, text
tags are manipulated using subcommands of the widget's "tag"
subcommand, embedded widgets are manipulated using
subcommands of the widget's "window" subcommand, and so
forth. The full set of text widget operations is thus represented
hierarchically, rather than as a flat list of operations. This
hierarchical presentation is of great psychological importance
when reading either application code or the text widget's
documentation: it's much easier to ignore whole branches of the
tree than it is a selection of operations in a flat list. If there's no
need to use an embedded window in a particular text widget,
there's no need to read—or even notice—the related
documentation.

rtiproxy(n) uses Snit's hierarchical method names to do the same
thing. The following code, for example, defines a method "fed"
with two submethods, "join" and "resign":

method {fed join} {} {
 # Join the federation ...
}

method {fed resign} {} {
 # Resign from the federation ...
}

rtiproxy(n) uses this feature to define three sub-ensembles, "fed",
"obj", and "int", to group subcommands related to the federation
as a whole, to objects and their attributes, and to interactions. The
following table relates some of their subcommands with their
rti(n) equivalents (omitting argument lists):

$ra createFederationExecution $rp fed create
$ra destroyFederationExecution $rp fed destroy
$ra joinFederationExecution $rp fed join
$ra resignFederationExecution $rp fed resign

$ra publishInteractionClass $rp int publish
$ra subscribeInteractionClass $rp int subscribe
$ra sendInteraction $rp int send

$ra publishObjectClass $rp obj publish
$ra registerObjectInstance $rp obj register
$ra updateAttributeValues $rp obj update
$ra deleteObjectInstance $rp obj delete

A developer wanting information on object management knows to
go directly to the section of the man page on the "obj" method.
Plus, the resulting API is both more concise and more Tcl-like.

5.4.3 Finer-grained Callbacks
The FederateAmbassador provides one callback for each kind of
incoming message. All interactions, for example, are passed to
the federate ambassador's receiveInteraction callback. This leads
naturally to long ugly switch statements, and makes it difficult to
have different interactions handled by different modules. The
same consideration applies to object attribute updates.
Consequently, rtiproxy(n) allows the client to register callbacks
by interaction or object class.

Receiving them requires subscribing to the class and defining the
FederateAmbassador receiveInteraction callback:

In FederateAmbassador type definition

method receiveInteraction {class parmdict args} {
 switch -exact -- $class {
 REPORT.TEMPERATURE {
 .
 .
 .
 }

 .
 .
 .
 }
}

An application using rtiproxy(n) would do the following instead:

$rp int receiveWith REPORT.TEMPERATURE \
 receiveTEMPERATURE

proc receiveTEMPERATURE {class parmdict tag} {
 # Process REPORT.TEMPERATURE interaction
}

The callback is defined as a command prefix in the usual way; the
actual command may be defined anywhere in the application, and
may be implemented as a proc, a Snit method, etc. To cancel the
callback, set it to the empty string.

A more advanced mechanism would allow multiple callbacks to
be registered for each interaction class; to date, however, that
hasn't been needed in JNEM.

5.5 rtiproxy(n): Results
The rtiproxy(n) module has proven to be a solid and robust
interface for JNEM. Its primary flaw is that it mingles essential
mechanism (which is useful to many federates regardless of
federation) with policies specific to the JLCCTC MRF federation
or to JNEM itself. This was a mistake.

For example, there is a strong desire within the U.S. Army's
training community to use JNEM in a number of other training
federations. One of these, the JLCCTC Entity Resolution
Federation (ERF), does not use RTI time management; instead,
each federate is regulated purely by wall-clock time. rtiproxy(n)
does not currently support this mode of operation. With essential
mechanism and MRF-specific policy mixed together, it becomes
harder to reuse the code that applies to both environments.
Similarly, rtiproxy(n) uses a specific encoding/decoding scheme
rather than allowing different schemes to be selected based on
context. Such policies should either be implemented in a separate
object, or should be selectable by option. As JNEM moves into
additional federations, I'll need to fix these defects.

6. Supported RTI Features
rti(n) does not implement the full set of RTIambassador methods
and FederateAmbassador callbacks. Advanced features, such as
management of the ownership of object attributes and Data
Distribution Management (DDM) have been omitted.

A Tcl Binding for HLA/RTI William H. Duquette Page 9

6.1 Supported RTIambassador Methods

o createFederationExecution
o deleteObjectInstance
o destroyFederationExecution
o disableTimeConstrained
o disableTimeRegulation
o enableAttributeRelevancyAdvisorySwitch
o enableTimeConstrained
o enableTimeRegulation
o federateRestoreComplete
o federateRestoreNotComplete
o federateSaveBegun
o federateSaveComplete
o federateSaveNotComplete
o getAttributeHandle
o getAttributeName
o getInteractionClassHandle
o getInteractionClassName
o getObjectClass
o getObjectClassHandle
o getObjectClassName
o getObjectInstanceHandle
o getObjectInstanceName
o getParameterHandle
o getParameterName
o joinFederationExecution
o publishInteractionClass
o publishObjectClass
o queryLBTS
o queryLookahead
o registerFederationSynchronizationPoint
o registerObjectInstance
o requestClassAttributeValueUpdate
o requestFederationRestore
o requestFederationSave
o resignFederationExecution
o sendInteraction
o subscribeInteractionClass
o subscribeObjectClassAttributes
o synchronizationPointAchieved
o tick
o timeAdvanceRequest
o unpublishInteractionClass
o unpublishObjectClass
o unsubscribeInteractionClass
o unsubscribeObjectClass
o updateAttributeValues

6.2 FederateAmbassador Callbacks
rti(n) necessarily implements all of the FederateAmbassador
callbacks, as the code will not successfully compile otherwise.
The following callbacks are actually passed through to the Tcl
application (the remainder are stubbed out via the NullFederate-
Ambassador class provided with RTI NG Pro V3.0):

o announceSynchronizationPoint
o discoverObjectInstance
o federationNotRestored
o federationNotSaved
o federationRestoreBegun

o federationRestored
o federationSaved
o federationSynchronized
o initiateFederateRestore
o initiateFederateSave
o provideAttributeValueUpdate
o receiveInteraction
o reflectAttributeValues
o removeObjectInstance
o requestFederationRestoreFailed
o requestFederationRestoreSucceeded
o startRegistrationForObjectClass
o stopRegistrationForObjectClass
o synchronizationPointRegistrationFailed
o synchronizationPointRegistrationSucceeded
o turnInteractionsOff
o turnInteractionsOn
o turnUpdatesOffForObjectInstance
o turnUpdatesOnForObjectInstance

7. REFERENCES

1 RTI NG Pro Programmer's Guide V3.0, by Virtual Technology

Corporation, http://www.virtc.com/rtingpro-full.jsp.

2 Duquette, William H., "Snit's Not Incr Tcl",

http://www.wjduquette.com/snit.

3 Tcl Manual, http://www.tcl.tk/man/tcl8.4/TclLib/Eval.htm.

4 Andreas Kupries, personal e-mail.

8. ACKNOWLEDGEMENTS
This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration, during the
development of the Joint Non-kinetic Effects Model (JNEM) for
the U.S. Army's National Simulation Center at Fort Leavenworth,
Kansas.

