
A Tcl Language Extension for 

Accessing and Transmitting Data 

Link Layer Frames 

 

Hari T.S. Narayanan
1
 

Vasumathi Narayanan
2
 

SP. Sathappan 

St. Josephs College of Engineering, 

Chennai, India 

 

Abstract 

 

Tcl is a simple, interpreted, scripting 

language used for developing tools, 

prototypes, and utilities for networking 

besides other areas. Tcl offers an 

extension framework using which it can 

be made to offer domain or application 

specific commands. In this paper we 

describe an extenion to Tcl language by 

the addition of a set of commands (an 

interface) for capturing and transmitting 

raw frames. Unlike socket interface, this 

interface provides a lower layer  access 

to networking data. The set of new 

commands added to Tcl are supported on 

all popular platforms (Windows, Linux, 

and Unix). Using this new set of 

commands one can develop networking 

tools, cross layering features, 

applications and prototypes with faster 

turn around time.  

 

Our contribution includes specifying the 

syntax and semantics of this Tcl 

extension, designing and developing the 

command engine. The engine itself is 

developed using WinPcap and/or 

LibPcap C libraries. The extension is 

platform independent and supports frame 

transmit on platforms where it is 

supported by the corresponding packet 

capture C library. 

                                                 
1
 CEO, Netprowise, Chennai, India 

2
 Director, Netprowise, Chennai, India 

1 Introduction 

Tool Command Language [1], Tcl, is an 

interpreted language used extensively in 

developing scripts for testing and 

monitoring networking devices. Besides 

networking, Tcl is used in other domains 

for its simplicity and shorter learning 

curve. Tcl language offers an extension 

framework [2], which is used to offer 

application specific commands. There 

are several such extensions to Tcl both 

in networking and non-networking areas. 

Expect, Tk, Tnm/Scotty are some of the 

popular Tcl extensions. A 

comprehensive list of this can be found 

in Tcl/Tk Extensions & Information site. 

2 Motivation  

Most networking applications access 

network through operating system 

primitives such as sockets.  Using socket 

one can send a message from a host and 

receive a message directed to a host. It is 

easier to send and receive messages this 

way because: 

• Operating system copes with the low 

level details (protocol handling, 

packet reassembly, etc.). 

• Socket provides a familiar interface 

that is similar to the one used to read 

and write files.  

 

 

 

 

 

Fig 1. Frame API versus Socket API  

Networ

k Frames (Packets) 

         NIC Driver 

Frame API 
IP 

TCP/UDP 

      Socket API 

Taps, filters, and Buffers 



Sometimes, however, the 'easy way' is 

not up to the task, since some 

applications require direct access to 

frames sent to and received from the 

network.  That is, they need access to the 

"raw" frames of data link layer of the 

network without the interposition of 

protocol processing by the operating 

system. This data includes even the 

messages that are not necessarily sent 

from or directed to the host where these 

applications run. This issue is already 

addressed by a set of C libraries, 

WinPcap and Libpcap [3-5].  

We plan to address the above 

shortcoming for Tcl in this paper. To be 

consistent with the related literature [3-

5], we will use the term packet even 

though frame is more accurate because 

the capture process is done at the data-

link layer. The data-link header is 

included in the captured data.  

The set of Tcl features that are 

developed include: 

1. Capturing raw packets, both the 

ones destined to the machine where 

it's running and the ones 

exchanged by other hosts (on 

shared media)  

2. Transmitting raw packets to the 

network  

3. Filtering the packets according to 

user-specified rules.  

4. Gathering statistical information on 

the network traffic  

5. Accessing network from 

concurrently running applications. 

6. And a number of other related 

features 

The Tcl command engine will be using 

either WinPcap or Libpcap depending 

upon the platform. The code developed 

can be compiled to run on multiple 

platforms (Windows, Linux, Unix, Mac, 

BSD, etc.) by following the Tcl 

Extension Architecture (TEA). 

3 A short Survey 

The problem of developing a Tcl 

extension for packet capture is suggested 

in one of our earlier works [6]. Since 

then we have cited similar efforts to 

extending Tcl with either libpcap or 

WinPcap.  Jose Nazario has written a 

Tcl-pcap interface (tcap) [7,8]. This is 

built and tested with libpcap in BSD 

UNIX. Craig French has developed a Tcl 

Interface for Windows environment 

using WinPcap [9]. We have developed 

a platform independent packet capture 

and transmission using 

WinPcap/Libpcap.  Cliff Flynt has 

developed a library to writing packets in 

Tcl[10]. This library could be used in 

conjunction with our Tcl extension to 

transmit packets. 

4 Design Objective 

 

As a programming language Tcl is 

endowed with certain inherent 

characteristics. These characteristics 

differentiate Tcl from other 

programming languages. For instance, 

Tcl’s short learning curve comes from its 

simple grammar. This characteristic 

makes it a desirable language for 

building utilities, tool, and prototypes. 

The extension features that we add keep 

the syntax simple to a large extent. Most 

of the commands work with a single 

parameter.  

5 Extension Commands 

Every pcap extension command is 

preceded by the keyword, pcap to 

indicate that it is an extended Tcl 



command. The term pcap is followed by 

a command option (list, open, close, 

etc.). The Tcl extension to access data 

link layer (networking adapters) is 

similar to a file access using a handle.  

In general pcap extension commands 

return error value using Tcl extension 

architecture. Using this architecture both 

error values and normal values are 

returned. 

5.1 Listing Network Adapters  

 

Typically, the first thing that a user likes 

to do is to identify the list of networking 

adapters or interfaces in a host. The pcap 

list (extension) command supports this 

requirement as follows: 

 

pcap list   

 

Parameters: 

 

No parameters for the list command in 

this release. In future this could be 

enhanced to list the interfaces on a 

remote host. 

 

This command returns the list of 

networking interfaces hosted by the 

platform. The return value for the list 

command is a (Tcl) list of interfaces.  

Each interface in the list includes the 

following attributes in order: 

1. Interface number 

2. IP address of the interface  

3. Net Mask  

4. Interface ID  

5. Interface description 

The list and individual items are 

enclosed within curly braces as shown 

below: 

 

 

The interface number is provided for 

ease of use. Interface number is easier to 

specify in a Tcl command shell rather 

than the long, unique, alphanumeric 

interface identity. Interface numbers are 

likely to change when adapters are hot-

swapped. So it must be used with care. 

The interface identity is unique and 

recommended for identifying an 

interface. 

 

If the command fails, then the error 

status is set to TCL_ERROR and the 

return value includes a description of the 

error condition. Otherwise, the error 

status is set to TCL_OK and a response 

is returned. 

5.2 Opening an interface 

 

The extension command that opens an 

interface for packet capture or 

transmission is pcap open. This 

command is also used to open pcap files 

for reading in the packet data. The pcap 

open command of Tcl simply readies the 

specified interface for capturing and/or 

transmitting packets. The interface is 

specified using one of the four possible 

parameters 
 

pcap open   

-if <ifnum> | 

-ipaddress <ipaddress> | 

-id <interfaceid> | 



-infile <filename> 

 

This command when successful returns 

an interface handle. This handle is a 

positive integer prefixed with pcap. It is 

used to capture packet and/or transmit 

packets on that interface. This handle 

reduces the possible errors in typing in 

the long interface name. More than one 

handle can be associated with an 

interface at a given time. 

The same open command can also be 

used to open a file using –infile option.  

The file should have been created with 

tcpdump format either by pcap or any 

similar application. The handle returned 

is used with pcap capture and loop 

commands. The pcap send and stats 

commands are not applicable for 

captured files. 

 

Parameters: 

-if (interface)   

Specifies an interface using the 

number listed in the output of 

pcap list command.  

-ipaddress    

Specifies an interface using its IP 

address.  

-id   

Specifies an interface using its 

alphanumeric Identity. Pcap list 

command lists identities of all 

the interfaces on a given host.  

-infile 

Specifies a tcpdump file name. 

The filename specification is 

limited to 1024 characters. Full 

path name of the file is required. 

 

If this command fails, then the error 

status is set to TCL_ERROR and the 

return value includes a description of the 

error condition. Otherwise, the error 

status is set to TCL_OK, and this 

command returns an interface handle. 

 

 

5.3 Updating Handle Attributes 

 

In order to simplify the use of pcap 

commands, attributes of a handle are 

updated using set command rather than 

specifying the attributes with open and 

other handle-based commands. This 

separation simplifies the syntax.  But at 

the same time it needs invocation of one 

or more set commands to update the 

handle attributes before an action 

command (loop, capture, stats, and 

send) is invoked. 
 

pcap set handle   

[-callback <cbscript>] 

[-count <pktcount>] 

[-filter <filterstr>]  

[-format hexa|decimal]  

[-outfile <filename>]  

[-promiscuous y/n] 

[-snaplen <int>] 

[-timeout <readtimeout>] 

 

All of the above parameters are optional. 

The promiscuous parameter is used to 

capture either all packets in the wire or 

those directed to and leaving from the 

host. All packets are captured by default. 

This parameter is set to ‘y’ to capture 

packets in promiscuous mode. The snap 

length indicates the maximum size of the 

packet to be returned. This is in bytes, 

and read timeout is in milli-seconds. The 

default value for snap length is 65535 

bytes, and default timeout is 1 second 

(1000 msec). The filter specification 



uses the syntax described in 

http://www.tcpdump.com Callback 

script is any legitimate Tcl script.  Using 

the outfile option, one can redirect the 

output to a file. This file saves the 

captured packets in tcpdump file format. 

The count parameter is used to specify 

the number of packets to capture. The 

format option allows the packet data to 

be represented in either hexadecimal or 

decimal form for both sending and 

receiving. The default format is 

hexadecimal.  
 

-callback   

Specifies the Tcl script to be 

invoked when the interface driver 

returns a packet. There is no 

default value for this parameter. 

This parameter is used only with 

loop command. 

-count:  

Specifies the number of packets 

to be captured with loop or stats 

command. By default this is set 

to 0 – indicates that the user sets 

no limit. The range of count is 0 

to 2
32
-1. This parameter is used 

in pcap-loop and pcap-send 

commands. 

-filter: 

Specifies the filter used in 

capturing. It follows the tcpdump 

filter format. The size of the filter 

specification is limited to 1024 

characters including the space. 

This parameter is used for 

capture, loop, and stats 

commands. 

-format 

The format parameter allows the 

packet data to be represented in 

either hexadecimal or decimal 

form for both sending and 

receiving. The default format 

value is hex. This parameter is 

used for capture, loop, and send 

commands. 

-outfile 

This option is used to specify the 

filename. The captured packets 

are redirected to this file. This 

file saves the captured packets in 

tcpdump format. The default file 

name is <handle>DumpFile. The 

file appears in Tcl/bin(Windows) 

or current directory where Tcl 

script is launched. The file name 

is limited to 1024 characters. 

This parameter is used for loop 

command. 

 

-promiscuous 

The promiscuous parameter is 

used to capture either all packets 

that are seen by the interface or 

those that are sent and received 

by the host. All packets are 

captured by default; this is 

indicated by promiscuous mode 

of a handle set to y. The possible 

values are y and n. This 

parameter is used for capture, 

loop, and stats commands. 

 

-snaplen 

Specifies the maximum size of 

the captured packet in number of 

bytes. By default this is set to 

64K. The range for snaplen is 0 

to 2
32
-1. This parameter is used 

with capture and loop 

commands. 

 

-timeout 

The maximum time to wait for 

the arrival of a packet for 

‘capture’ command. This is not 

applicable to other action 

commands. If no packet arrives 

within the specified time then, 

the command (capture) returns. 



By default this is set to 1 second. 

The resolution is milliseconds. 

 

The return value is 0 (TCL_OK) if the 

command is successful. Otherwise, the 

error status is set to TCL_ERROR and 

the return value includes a description of 

the error condition. The pcap info 

command is used to list the attributes of 

a handle. 

 

 
 

5.4 Capturing Packets 

Tcl extension provides two different 

capture commands. The first command, 

pcap capture, is a simple Tcl extension 

that offers synchronous packet capture. 

The only input for this command is an 

interface handle. This command is 

blocked on Tcl event-loop until a packet 

arrives at the specified interface or a 

timeout occurs. If this command is 

successful, a list with two items is 

returned. The first item in the list is 

packet header and the second item in the 

list is a partial or full packet-dump. The 

packet header is a list with three items: 

time stamp, length of the packet-dump, 

and the length of this packet (off wire). 

pcap capture handle 

pcap loop  handle  

 

The second Tcl extension, pcap loop, 

includes an option to use a callback 

function. This callback function is 

invoked when a packet is received. 

There is no timeout associated with loop 

command. This command returns after 

the specified number of packets arrive. 

The count and callback parameters are 

applicable only for loop command. That 

is, they are not used for capture 

command. Similarly, the output file is 

used only with the loop command.  

 

The loop command also populates two 

Tcl global variables %H and %D. The 

%H is the header information and %D is 

the packet data. The %H includes 

timestamp with the following format:  

“HH:MM:SS microseconds”. Packet 

length and captured length follow the 

timestamp. Both are in number of bytes. 

The %D contains the packet data. Each 

byte value is represented by a 

hexadecimal or a decimal number and 

separated from each other by a space. 

 

The filter specification and promiscuous 

mode are used for both loop and capture 

commands. The filtering specification is 

same as the one used in tcpdump syntax. 

The original version of this specification 

can be found at www.tcpdump.org. 

Filters are based on a declarative 

predicate syntax. A filter is a string 

containing a filtering expression. The 

expression selects which packets to be 

captured. If no expression is given, all 

packets on the net will be captured. 

Otherwise, only packets for which 

expression is `true' are captured. 

  

Both the commands work seamlessly 

with tcpdump files. Packets are retrieved 

from the specified tcpdump file instead 

of an interface. If successful, this 

command returns TCL_OK, otherwise 

returns an appropriate error code with 

the error status set to TCL_ERROR.  



Breaking the loop: If the packet count 

attribute of the handle is set to 0 then the 

pcap loop continues perpetually. 

Otherwise, it terminates after the 

specified number of packets are 

captured. The only way to break the loop 

is to set the global variable pcap_bloop 

to 1. By default, this variable starts with 

the value 0. The engine checks the value 

of this variable when the callback script 

is called to see if the loop needs to be 

terminated. If the value is non-zero then 

the loop is terminated, otherwise it 

continues. This type of interruption 

works only in Windows platform at 

present.  

Parameter: 

<handle>   

The handle is a mandatory 

parameter for both the 

commands. This handle can 

represent an interface or a 

tcpdump file 

The response to capture includes two Tcl 

lists.  

The first list contains three attributes:  

• Timestamp: HH:MM:SS and 

microseconds 

• Length of the packet off wire. 

• Length of the packet presented 

(different from the length of the 

packet off wire). 

The second list contains the packet data. 

Each byte value is represented by 

hexadecimal or decimal and separated 

from each other by a space. 

 

5.5 Transmitting Packets 

 

The pcap send command transmits a raw 

packet through the specified networking 

interface. The MAC CRC doesn't need 

to be included, because it is 

transparently calculated and added by 

the network interface driver. The return 

value is 0 (TCL_OK) if the packet is 

transmitted successfully; otherwise it 

returns appropriate TCL_ERROR status. 

User program should rely on the error 

status to interpret the return value. 

 

The first parameter is an interface 

handle. The second parameter is a 

hexadecimal or decimal byte value string 

separated by space. The send command 

is not supported for handles that 

represent tcpdump files. This command 

is also not supported on non-Windows 

platforms. 

        pcap send  handle “pktstring “  

 

Parameters: 

<handle>   

The handle is a mandatory 

parameter. It represents only an 

interface. 

<pktstring> 

The packet data is a hexadecimal 

or decimal byte value string 



separated by space. The format 

attribute is used to specify 

whether the value is in 

hexadecimal or decimal form. 

5.6 Listing Statistics 

 

The pcap stats command implements the 

function to retrieve statistics for an 

interface (handle). At present the 

following two counters are supported: 

number of frames received by the 

interface (sent and received to/from 

network), and the number of frames 

dropped due to errors. 

 

This command needs only one 

parameter, that is, pcap handle The Tcl 

stats command returns a list with two 

counter values. If there is any error in 

completing the command then an empty 

or NULL list is returned with error status 

set to TCL_ERROR. 

 

pcap stats handle   

 

Parameters: 

<handle>   

The handle is a mandatory 

parameter. This handle can 

represent only an interface. That 

is, there are no statistics for files.   

 

 

 

5.7 The info Command 

 

The pcap info command provides 

detailed information about the currently 

opened handles and their attributes.  The 

info command syntax is shown in the 

following Fig. If no handle is specified 

in the command then currently open 

handles are listed (Tcl list), otherwise 

the attributes of the specified handle are 

listed (Tcl list). 

 

 pcap info [handle] 

 

Parameters: 

<handle>   

The handle is an optional parameter. 

This handle either represents an 

interface or a tcpdump file. 

 

 
 

The pcap info command lists the 

following values for a handle in Tcl List 

form: 

• Handle type (Interface) 

• Snap length 

• Read Timeout 

• Promiscuous option (y/n) 

• Packet Count 

• Filter String 

• Callback Script 

• Output Dump Filename 

• Interface Number 

• IP Address 

• Net mask 

• Interface ID 



• Interface Description 

 

The pcap info command lists the 

following values for a file type in Tcl list 

form: 

• Handle type (File) 

• Snap length 

• Read Timeout 

• Promiscuous option (y/n) 

• Packet Count 

• Filter String 

• Callback Script 

• Output Dump Filename 

• Input Filename 

5.8 The version Command 

 

The pcap version command provides the 

version number of pcap extension and 

WinPcap/Libpcap libraries. The syntax 

is as follows: 

pcap version 

 

 
 

5.9 The close Command 

 

The pcap close command removes a 

handle from active use and releases all 

its resources. It also closes the 

corresponding output file (e.g. 

pcap1DumpFile) if there is one. 

 

pcap close handle 

 

Parameters: 

<handle>   

The handle is a mandatory parameter. 

This handle either represents an 

interface or a tcpdump file.  

 

The return value is 0 (TCL_OK) if the 

handle is closed successfully; otherwise 

it returns appropriate error message. 

 

 

5.10 The help Command 

 

The pcap help command lists all pcap 

commands with brief help messages.  

 

pcap –help 

6 Status, Limitations, and Future 

work 

 

The pcap extension includes packet 

capture and packet injector (transmit) for 

networking interface; packet capture for 

tcpdump files, and a host of other 

commands. The Tcl language extension 

is tested on Windows, Linux, and BSD 

UNIX platforms. The command 

execution examples presented 

throughout this paper are Windows 

screen shots.  

 

One must have the root user privilege to 

use pcap in Unix like platforms. The 

number of networking interface and the 

number of open handles are limited to 16 

at present. The packet send command is 

supported only on Windows and there is 

no support for callback with stats 

command. 

 



This Tcl extension enables a class of 

networking tools to be easily developed. 

We plan to develop some of these tools 

ourselves.  A simple, demonstration tool 

is listed in Appendix B. A similar 

extension to Python language has been 

initiated already. Our future 

development also includes remote packet 

capture feature and an extension to stop 

packets reaching higher level layers. 

7 Acknowledgement 

This development has been made 

possible by the support extended by 

Netprowise and St. Josephs College of 

Engineering, Chennai, India. We thank 

these two organizations for their support. 

8 References  

 

1. John Ousterhout’s “Book Tcl and the Tk 

Toolkit”,  Chapters 28-34, Addison-

Wesley Professional. 

2. The Tcl Extension Architecture, Brent 

Welch, Michael Thomas Scriptics 

Corporation http://www.tcl.tk/doc/tea/ 

3. Fulvio Risso, Loris Degioanni, An 

Architecture for High Performance 

Network Analysis, Proceedings of the 

6
th
 IEEE Symposium on Computers and 

Communications (ISCC 2001), 

Hammamet, Tunisia, July 2001  

4. Loris Degioanni, Mario Baldi, Fulvio 

Risso and Gianluca Varenni, Profiling 

and Optimization of Software-Based 

Network-Analysis Applications, 

Proceedings of the 15
th
 IEEE 

Symposium on Computer Architecture 

and High Performance Computing 

(SBAC-PAD 2003), Sao Paulo, Brasil, 

November 2003  

5. Loris Degioanni, Development of an 

Architecture for Packet Capture and 

Network Traffic Analysis, Graduation 

Thesis, Politecnico Di Torino (Turin, 

Italy, Mar. 2000)  

6. Hari and Barani, Projects in 

Networking, SciTech Publishing, 

Chennai, India. Dec, 2005. 

7. Jose Nazario’s tcap download: 

http://monkey.org/~jose/software/tcap/  

8. Jose Nazario’s tcap: 

http://wiki.tcl.tk/13515 

9. Craig French’s Tcl Interface to 

WinPcap: http://wiki.tcl.tk/13150 

10. Clif Flynt’s packet writer: 

http://noucorp.com/tcl/login/L/packetms

tr0_1.zip  

 

9 Appendix A: 

 

Installation on Windows Platform: 

1. Install WinPcap 

2. Install Tcl, preferably Scotty 

3. Copy pcap.dll to Tcl/bin directory 

4. Start Tcl shell 

5. Issue the following command to 

load pcap library. Note: The 

following command is case 

sensitive: 

load pcap.dll Pcap 

6. Start using pcap commands: 

10   Appendix B 

The following figures show a live Packet 

Capture tool developed using platform 

independent Tk and pcap extension. 

Packets are sent from the top window 

and captured by the lower window. This 

tool includes about 1000 lines of code 

developed in about 2 days by someone 

who knows Tcl well but a beginner toTk. 

Our current distribution includes 

pcap.dll, some demo tools, and pcap user 

documentation.  
 



 
 

 

 


