
Automated Testing Tool

Damon Courtney, Gerald Lester, Lauren Vaughn and Tim Thompson

October 2, 2006

Abstract

This paper presents details of the design and implementation of a
Automated Testing Tool for a Tcl/Tk based database application suite.
The tool does record and playback of the of user interaction events, much
like TkReplay. In addition, the tool also records and compares database
interactions, display of error messages, and widget tree state.

Discussed are:

• The advantages of building a custom tool vs use of generic tool in
testing the application.

• The "tricks" required for accurate record and playback under Mi-
crosoft Windows.

While the initial implementation is Microsoft Windows based, care has
been taken to ensure that with minor modi�cations the Tool will run on
Unix under X11.

1 Overview

1.1 Computer Aided Process Planning & Shop Floor Man-
ufacturing System

Visiprise Computer Aided Process Planning (CAPP), part of the Visiprise Pro-
cess Planning solution, allows process planners to easily de�ne the manufac-
turing and assembly process using a multimedia delivery system that quickly
captures, retrieves, authors, manages and distributes manufacturing informa-
tion and work instructions.

Visiprise Shop Floor Manufacturing (SFM), part of the Visiprise Manufacturing
Operations Solution, is a comprehensive manufacturing shop �oor management
solution that delivers complete visibility of the entire shop �oor to decision-
makers across your shop �oor including manufacturing management, shop �oor
supervisors and shop �oor operators/mechanics. Visiprise SFM executes manu-
facturing and maintenance processes and manages all of the information required
for fabrication, tooling, sub-assembly and �nal assembly.

1



The current system consist of a Tcl/Tk based Client-Server application running
on the end user's desktop and zero or more daemon processes running on servers.
The daemon processes may be anyone of:

1. Transaction Monitors that monitor for incoming IBM MQ messages

2. Print Servers that process background printing for the end users

3. Batch Servers that process scheduled background task, e.g. nightly data
exports

4. Transaction Daemon that process background task for the end users

In short, our application presents a Graphical User Interface to an Oracle Db
and enforces certain Business Rules.

1.2 Goals

The section of the system that the Automated Testing Tool is to address is the
Graphical User Interface part of the Client-Server application running on the
end user's desktop. The API which the Graphical User Interface and daemon
process are built on top of can be tested using the existing Tcl Test package.
Thus the task is simpli�ed to ensuring the correctness of:

1. Verifying the starting and ending state of the GUI.

2. Verifying that any additional dialogs are posted (e.g. �Busy Dialog�).

3. Verifying that all database transactions occurred and occurred correctly.

1.3 Gray box testing

Black box testing[1], also known as functional testing. A software testing tech-
nique whereby the internal workings of the item being tested are not known by
the tester. For example, in a black box test on a software design the tester only
knows the inputs and what the expected outcomes should be and not how the
program arrives at those outputs.

The advantages of this type of testing include:

• The test is unbiased because the designer and the tester are independent
of each other.

• The tester does not need knowledge of any speci�c programming lan-
guages.

2



• The test is done from the point of view of the user, not the designer.

• Test cases can be designed as soon as the speci�cations are complete.

The disadvantages of this type of testing include:

• The test can be redundant if the software designer has already run a test
case.

• The test cases are di�cult to design.

• Testing every possible input stream is unrealistic because it would take
a inordinate amount of time; therefore, many program paths will go
untested.

White box testing[2], also known as glass box, structural, clear box and open box
testing. A software testing technique whereby explicit knowledge of the internal
workings of the item being tested are used to select the test data. Unlike black
box testing, white box testing uses speci�c knowledge of programming code
to examine outputs. The test is accurate only if the tester knows what the
program is supposed to do. The tester can then see if the program diverges
from its intended goal. White box testing does not account for errors caused by
omission, and all visible code must also be readable.

Gray box testing[3] involves inputs and outputs, but test design is educated
by information about the code or the program operation of a kind that would
normally be out of view of the tester. Gray box testing can be seen as the
blending of structural and functional testing methods throughout the entire
testing procedure.

Gray box testing examines the activity of back-end components during test case
execution. There are two types of problems that can be encountered during
gray-box testing. The �rst is when a component encounters a failure of some
kind, causing the operation to be aborted. For example, an edit check to allow
dollars does not accept dollar amounts, i.e. "AAA". The second is when the test
executes in full, but the content of the results is incorrect. Example: calculations
- produces a number but it is incorrect.

The Automated Testing Tool that we have implement is a Gray box testing
application, it:

• Gathers important state information at the start of the test

� Execution environmental information

� Database information

� State of the GUI

3



• Monitor Database transactions

• Monitor the appearance and disappearance of toplevel widgets

• Gathers important state information at the end of the test

� State of the GUI

1.4 Tester Friendly - Record/Playback Model

Our testers, and those of our end users, tend to be non-programmers. Thus
our software had to be aimed, primarily at non-programmers. To this end we
decided early on to use the Record/Playback model with a �VCR Control� like
GUI. We felt that most of our testers would not use a tool that required them
to write scripts but would use tools that allowed them to use a simple GUI to
record, modify and play back their test.

One goal was for the recorded test to be editable. This was done at two levels.
The �rst was to provide a GUI to:

1. Delete recorded event

2. Change recorded timing on an event

3. Change the description of an event

The second level this was done at was to store the recorded events as a human
readable plain text �le. This allows for the developers and advance testers to
quickly modify a test.

The architecture of the testing tool also had to be extendable in the the future
as the product evolved. This was done by mapping the recorded test events to
commands and by using a plugin architecture for displaying and editing events.

1.5 Non-Goals

We did not set out to build a generic testing tool. The testing group at the
company had attempted, with varying small degrees of success, to use several of
the generic testing tools on the market. Since these tools work either by doing
screen scrapes or looking at an MFC widget tree, neither worked well with our
Tcl/Tk based application.

Those tools that did screen scrapes were very sensitive to a tester (or a release
of Microsoft Windows) changing system colors. They also do not allow for the
movement or resizing of a widget without rerecording the test. Resizing in this
case also include the slider in the through of a scrollbar.

Those tools that look at the MFC widget tree have particular problems with Tk
since, by and large it does not use MFC widgets. Thus most of the application
is �invisible� to those testing tools.

4



2 Design

Part of the design for testing of our application included the ability to capture
and compare database queries while the application ran. This isn't something
that every application would have a need for, but because of the sheer amount
of database work in our application, and because we consistently have problems
with database results, it was important to our testing.

Because all of our database functions are abstracted through a Tcl layer, the
implementation of capturing the database calls was easy. We handle this by
"hijacking" the database commands when the user enters record mode and then
replacing them once the recording has stopped. This mostly allows us to capture
the database queries as they occur, but it has the added bene�t of letting us
stop commits and rollbacks to the database.

With the Automated Testing Tool's ability to create savepoints and then restore
the database to a known state, it was necessary for us to stop the code from
doing its normal routine of commits and rollbacks and let us handle the brains
behind it. All of this is done by renaming our database procs out of the way
and replacing them with our own. We then rename the original procs back once
the record mode has ended.

Most of the database interaction could, of course, be done using Tcl's excellent
command tracing capabilities just easily as renaming the procs. With com-
mand traces, we could just as easily have captured the queries before the actual
commands are called and then captured the result on the way out of the proc.
Using command traces, one could easily handle the capture of database queries
without the necessity of a database abstraction layer. You could simply trace
the actual library calls for your speci�c database and record the queries that
way.

With all this in place, the Automated Testing Tool can record all of the database
interaction from the application in a way that can be veri�ed during playback.
The tool does not play back the database results, it simply stores them in
its script and upon playback, it compares the queries going out with the ones
stored to �rst verify that the queries are the same. And, secondly, it compares
the results coming back to make sure we got the same results as when the test
script was �rst created.

This allows us to not only tell when a query has been modi�ed without our
knowledge, but it also tells us whether that query is returning the exact same
results as we expect. If not, the new query may be wrong, and this would be a
red �ag in our testing that something was not correct.

5



3 Tk State Capture

At start and end of test the visible widget tree is walked and a subset of at-
tributes captured, these include the contents of associated variables. Only the
visible widget tree is walked instead of the entire widget tree since our appli-
cation caches �forms� instead of destroying them. By only walking the visible
widget tree, this allows tests to be reused regardless of the previous test that
have been run.

4 Application State Capture

Besides the state of the Tk widget tree, we also capture some application infor-
mation that e�ects the execution of our application and hence of our test:

• Current user of our application speci�c user database that the test is being
run under. This may be di�erent from both the operating system user and
the Oracle DB user.

• Current user enabled role. This consist of the application speci�c Pro�le
and Group that are currently selected.

• Contents of ::tcl_platform

5 Oracle Data Capture

This information is used to assist with performance issues and error resolution.
Gathering this information up front saves tracking down a DBA to gather it
later. It allows for proactive problem resolution. The following information is
captured at the beginning of a test capture or replay of a test:

• Database Version

• List of Parameters

• Data Dictionary Information (Tables, Columns, Indexes)

• Server Statistics

• Connected Session Information

• Execution Plans

6



6 Tk Event Capture

The capturing of events in record mode is all handled at the Tcl level using Tk's
events. While this could have been done at a lower level, it does not allow us
the ability to record data that is speci�c to Tk, like: widget name, widget class,
widget attributes, etc... This works out to our advantage most times, but it
does lead to some problem.

Some things are just not possible to record when recording our test scripts using
Tk's events. Chief among them being that events on menus on the Windows
platform are sorely lacking, so we can only record our best an estimation of what
the user is doing and just hope and pray that we're right. Menus, in particular,
are handled by overriding the commands of each menu when record mode begins
and then replacing them when it ends. This will cause big problems if the code
somehow wants to modify the commands of a menu, but it's what we've got to
work with.

One thing we were able to do in Tk that would have been very di�cult at a
lower level was to record the events as the occur on the widgets themselves
rather than based on coordinates. Most of your common testing tools available
record actions based on the X,Y coordinates of where the action occurred. This
works �ne when the GUI is not going to change, but if you, say, move a button
100 pixels to the left, your script is worthless.

By recording events like buttons clicks and entry focus based on the widget
names, we are able to play back a script based on the current locations of the
widgets instead of where they were when the script was recorded. This was
crucial to our testing strategy because of the volume of changes that our GUIs
often go through. With customer demands constantly coming in, our GUIs can
change drastically from release-to-release.

This method is not without its problems though. If the name of the widget in
the GUI changes, your script will need to be recorded again. However, we �nd
that this type of change occurs far less frequently than just moving the button
over 100 pixels to make room for another button.

The record mode takes events from Tk and appends them to a long list as the
script builds. When recording stops, the scripts is then analyzed for events that
need to be stripped out. Because we end up with a lot of events from Tk that
are garbage to our playback, we need to walk through and try to determine
what can stay and what can go.

This usually includes stripping out Window con�gure events down to the last
event, meaning that we don't care how the window was resized, we only care
about the last event that tells us the �nal geometry. We didn't really feel it was
necessary to record every tiny movement in between.

It is also necessary to rework some of the timing of the events to make things
a little smoother. Movement through a popup menu, for example, needs to be

7



spaced out a little to give the OS time to draw the menus during cascading.
The timing can always be adjusted by the user after the script has been record
if it's necessary.

Once the user is �nished recording and the analyzer has cleaned up the script,
the user is presented with the �nished script including some basic comments
about the events as they occurred. The user can go through and modify the
script as they choose without ever having to actually learn how the scripts are
saved.

This was another big win for us because our testers are often unskilled in any
kind of programming, and while it would be possible to train them, the e�ort
could be better spent actually testing our application instead of programming
our testing tool. With the script editor, the basic functions of a script can all
be changed from within the tool itself.

7 Future Directions

The Testing Tool was proposed to in the spring of 2005 to the management team
at HMS Software. Work, both design and coding, proceeding on a part time
basis through the �rst quarter of 2006. During this time, at the end of 2005,
HMS Software was acquired by Visiprise. This e�ected the future direction of
this work.

Items that had been planned to be added in later releases were:

1. Parameter driven substitution of keyboard entered data

2. Parameter driven looping of test

However, Visiprise's vision is to convert the entire code base of the application
to Java within �ve years. Such plans, along with restructuring of the testing
department, have caused a large decrease in support for this product � at least
at this time.

8 Summary

We believe that our tool allows for successful testing of our application. We also
believe that for a large number of applications that are essentially GUI front
ends to a data base that a Gray Box testing tool like the one described in this
paper is the correct approach to testing.

8



References

[1] http://www.webopedia.com/TERM/B/Black_Box_Testing.html

[2] http://www.webopedia.com/TERM/W/White_Box_Testing.html

[3] http://www.geocities.com/xtremetesting/WorldofGrayBoxTesting.html

9


