
TJC : A Tcl to Java Compiler
Mo DeJong

Mo DeJong Consulting
mo@modejong.com

Abstract

A recent trend in corporate computing environments is the reimplementation of legacy systems on a Java based software
platform. Significant long-term savings can be realized through use of a common software platform and tools, but the
costs of software development and retraining of engineers remains high. If a legacy system can be ported to a Java
environment without having to rewrite existing code, then most software development and retraining costs can be
avoided. A large semiconductor manufacturer recently faced just such a challenge and decided to evaluate Jacl (Tcl
interpreter written in Java) as a migration tool for a large legacy system implemented in Tcl. Jacl was found to be
satisfactory in all areas except one, runtime execution speed. The native version of Tcl contains a runtime compiler and
execution engine, while Jacl supports only interpreted execution. As a result, native Tcl executes code from 10 to 50
times faster than Jacl. This paper introduces TJC, a Tcl to Java compiler that converts Tcl procs into Java bytecode and
closes this performance gap. In many cases, TJC compiled Tcl code executes more quickly than the same code running
in native Tcl. This paper describes TJC's initial design and implementation, demonstrates code generated for simple
examples, and describes optimizations added as the compiler has matured into production ready software. In addition,
performance of TJC compiled code is compared to native Tcl, and to other scripting languages implemented in Java.

Keywords: Tcl, Java, JVM, Scripting, Compiler, Bytecode, Optimization

1 Design Goals

The TJC compiler was designed to optimize for runtime
execution speed. Execution time required to compile Tcl
procs, as well as runtime memory usage, were secondary
considerations. The targeted execution environment was a
server system running JDK 1.4, with sufficient memory
and CPU resources to handle most tasks. Since compile
time was a secondary concern, the compiler could make
multiple passes and generate the fastest possible code for a
specific usage. Compatibility with native Tcl was a design
requirement and has been maintained in all areas except
one. TJC will generate inlined logic for Tcl primitives like
set, if, for, lindex, and others. The compiler assumes
that the user will not redefine these built-in Tcl primitives
at runtime.

Early on, three options were considered:

A) Duplicate native Tcl's bytecode compiler and
execution engine

B) Duplicate native Tcl's bytecode compiler but emit
Java bytecode

C) Design new Tcl compiler and emit Java source
code

Option A was the most straightforward. Native Tcl
contains a compiler that emits Tcl bytecode and a runtime
execution engine that interprets Tcl bytecode instructions
[1, 2]. Although porting native Tcl's compiler and
execution engine to Java would take time, this approach
involved few risks or unknowns. The problem with option
A was that it was unclear if running a Tcl bytecode
interpreter on top of the JVM would produce acceptable

performance results.

Modern JVMs go to great lengths to execute Java
bytecode efficiently, compiling to native machine code in
many cases. Sun's Hotspot compiler is able to inline
methods, predict branches, and dynamically recompile
code based on actual usage. Unfortunately, these
optimizations would be of little value to a Tcl bytecode
interpreter loop implemented in Java. A significant
percentage of an application's execution time could be
spent just decoding Tcl bytecode instructions and then
jumping into and out of code that implements specific
instructions [3, 4, 5, 6, 7]. Option A was rejected on these
grounds.

Option B was briefly considered as a solution to the Tcl
bytecode execution issues described above. The existing
compiler from native Tcl could be ported to Java, but it
would be modified to emit Java bytecode equivalents for
each Tcl bytecode instruction. This approach would avoid
using CPU resources to decode Tcl bytecode instructions
at runtime. The Hotspot compiler could then convert entire
compiled command implementations to native code and
aggressively inline utility methods. Java libraries that
could significantly simplify this type of implementation
are freely available [8, 9]. However, option B was rejected
because it would be too complex to implement, debug, and
modify.

Option C involves emitting Java source code and
converting to Java bytecode using a Java compiler like
javac. This approach would require quite a bit of
implementation effort, as new compiler and runtime
support modules would need to be implemented from

scratch. This approach would also generate a relatively
large number of Java bytecode instructions, as compared
to the more compact Tcl bytecode instructions.
Nonetheless, option C was chosen because it had a
number of important advantages.

A new compiler could take advantage of optimizations
that were not even considered in the native Tcl compiler.
Java bytecode would be executed directly in the JVM, so
there would be no runtime overhead associated with a Tcl
instruction decode and execute loop. Option C would be
easy to debug, since any Java source code debugger could
be used to step through generated code. Each Tcl proc
would be mapped to a Java class, each Tcl proc invocation
would be mapped to a Java method invocation, and each
Tcl variable frame would be mapped to a Java stack
frame. In addition, Java profiling tools could be used to
profile generated code in terms of time taken by each Tcl
command.

Readability and transparency were important factors in
choosing option C. Java source code emitted by the
compiler would be human readable and regression
testable. The importance of being able to easily understand
compiler output cannot be understated. Many tricky
problems were solved without the aide of a runtime or a
debugger, simply by looking at the Tcl input and the Java
output. Optimizations were similarly easy to visualize
when working directly with emitted source code.

2 Dual Implementations

The TJC compiler supports two compilation modes. Batch
mode is used to compile all the procs defined in a set of
Tcl files into a single Jar file. Runtime mode is used to
compile a specific Tcl proc into Java bytecode. Runtime
mode consumes memory and CPU resources, so startup
time could be affected. Batch mode does all compilation
off-line, so only minimal CPU and memory resources are
required at runtime. Batch mode is particularly useful for
large libraries of Tcl code. Runtime mode is most useful
when a small number of procs are to be compiled, or when
the procs are not defined until runtime.

2.1 Batch Mode

Batch mode is invoked from the command line via a script
named tjc.

 $ tjc example.tjc

The invocation above will scan the Tcl files indicated in
example.tjc and compile each statically defined proc.
The compiler will generate a Java source file for each proc
and then invoke javac to compile to Java bytecode.
Finally, Java's jar tool is invoked to create a pair of Jar
files. The example.jar file contains compiled Java class
files. The examplesrc.jar file contains generated Java
source files. A user would add both Jar files to the
CLASSPATH and then start the Jacl shell.

2.2 Runtime Mode

In runtime mode, the compiler runs in a separate thread.
Unlike native Tcl, procs are not automatically compiled
when defined in Jacl. The user must request that a specific
proc be compiled. First, the user loads the TJC package
into Jacl, then the TJC::compile command is invoked to
compile a proc.

 % proc hello {} {return "Hello World"}
 % package require TJC
 % TJC::compile hello

Once compilation is finished, the compiled
implementation of hello replaces the original. Behind the
scenes, TJC makes use of the Janino embedded Java
compiler [10] to convert generated Java source into
bytecode. Generated Java bytecode is then loaded into the
current interpreter.

TJC is implemented entirely in Tcl code. Modules are
organized as follows:

(Shared Modules)
 parse.tcl
 descend.tcl
 compileproc.tcl
 emitter.tcl

(Runtime Modules)
 tjcthread.tcl

(Batch Modules)

Tcl
proc

TJC Javac Jar

Java
source

Java
bytecode

Jar
file

Tcl
proc

TJC Janino Jacl

Java
source

Java
bytecode

 nameproc.tcl
 parseproc.tcl

Since TJC is written in Tcl, one can use the compiler to
compile itself and realize a significant performance
improvement. TJC compiling itself in interpreted mode
can take 25 minutes, but a compiled version of TJC can
compile itself in 2.5 minutes.

3 Generated Code Examples

This section presents some simple Tcl procs and the Java
code generated by TJC. Since generated code can be
verbose, only the first example will include the full Java
class output.

3.1 Hello World
Input:
proc hello {} {
 return "Hello World!"
}

Output:
// TJC implementation of hello
import tcl.lang.*;

public class HelloCmd
 extends TJC.CompiledCommand {
 public void cmdProc(
 Interp interp,
 TclObject[] objv)
 throws TclException
{
 if (!initCmd) { initCmd(interp); }
 CallFrame callFrame =
 TJC.pushLocalCallFrame(
 interp, wcmd.ns);
 try {
 if (objv.length != 1) {
 throw new TclNumArgsException(
 interp, 1, objv, "");
 }
 { // Invoke: return "Hello World!"
 interp.resetResult();
 interp.setResult(const0);
 if (true) { return; }
 } // End Invoke: return
 } catch (TclException te) {
 TJC.checkTclException(interp,
 te, "hello");
 } finally {
 TJC.popLocalCallFrame(interp,
 callFrame);
 }
}

 TclObject const0;

 protected void initConstants(
 Interp interp)

 throws TclException
 {
 const0 = TclString.newInstance(
 "Hello World!");
 const0.preserve();
 const0.preserve();
 }
} // end class HelloCmd

In this generated code, the HelloCmd extends
TJC.CompiledCommand and implements the Command
interface. Jacl will invoke the cmdProc() method when
the hello command is called in the interpreter. Each class
generated by TJC includes code to push a call frame and
then pop it off the stack when the method is finished. The
proc hello invokes just one Tcl command, it is translated
into three Java statements in the emitted code. Note the
statement interp.setResult(const0), it sets the
interpreter result to the constant string "Hello World!".
Finally, the code returns and the method completes
normally.

3.2 Command Invocation

This example shows how a Tcl command would be
invoked from a compiled proc. The output in this example
includes just the generated code for the command
invocation. The generated class defines three constant
strings, one for each command argument.

Input:
proc foolen {} {
 string length "foo"
}

Output:
// Snippet of FoolenCmd.java

{ // Invoke: string length "foo"
 TclObject[] objv0 =
 TJC.grabObjv(interp, 3);
 try {
 TclObject tmp1;
 // Arg 0 constant: string
 tmp1 = const0;
 tmp1.preserve();
 objv0[0] = tmp1;
 // Arg 1 constant: length
 tmp1 = const1;
 tmp1.preserve();
 objv0[1] = tmp1;
 // Arg 2 constant: "foo"
 tmp1 = const2;
 tmp1.preserve();
 objv0[2] = tmp1;
 TJC.invoke(interp, null, objv0, 0);
 } finally {
 TJC.releaseObjvElems(interp,
 objv0, 3);
 }

} // End Invoke: string

The code above invokes the string Tcl command. The
TJC.invoke() method calls the cmdProc() method in
the StringCmd class, passing an array of TclObject
arguments. Most of the code in this invocation is needed
to populate the argument array and maintain Tcl's
reference counting rules for TclObject arguments.

3.3 Inlined String Command

Most Tcl command invocations are implemented like the
previous example, but TJC is able to emit inlined code for
a number of built-in Tcl commands. This example shows
an inlined call to Tcl's string command. Again, the
output in this example includes just the generated code for
the command invocation. The generated class defines just
one constant, the string "foo".

Input:
proc foolen {} {
 string length "foo"
}

Output:
// Snippet of FoolenCmd.java

{ // Invoke: string length "foo"
 int tmp0 = const0.toString().length();
 interp.setResult(tmp0);
} // End Invoke: string

This inlined string command is significantly less
complex when compared to invoking the string
command at runtime. The inlined code avoids allocating
an array, populating the array, incrementing and
decrementing ref counts, and array cleanup and release.
The inlined code is efficient and is easily optimized by the
Hotspot compiler.

3.4 Inlined If Command

This example shows how a Tcl if command is converted
to inlined Java code and how a simple expression is
evaluated.

Input:
proc iftrue {} {
 if {0 == 1} {
 # no-op
 }
}

Output:
// Snippet of IftrueCmd.java

{ // Invoke: if {0 == 1} ...

 // Binary operator: 0 == 1
 ExprValue tmp0 = new ExprValue();
 tmp0.setIntValue(0);
 ExprValue tmp1 = new ExprValue();
 tmp1.setIntValue(1);
 TJC.exprBinaryOperator(interp,
 TJC.EXPR_OP_EQUAL, tmp0, tmp1);
 // End Binary operator: ==
 boolean tmp2 =
 (tmp0.getIntValue() != 0);
 if (tmp2) {
 interp.resetResult();
 } else {
 interp.resetResult();
 }
} // End Invoke: if

The ExprValue class manages the details of maintaining
the expression result type and its value. The expression
result is converted to a Java boolean and one of the
branches of the if statement is taken. If this example had
included Tcl commands in the if block, instead of a
comment, then these commands would appear before the
first interp.resetResult() call.

4 Optimizations

This section describes some of the most important
optimizations implemented in TJC. These examples are
simplified and make use pseudo-code, see [11] for detailed
examples that include complete Java source code.

4.1 Shared Constants

Assume the following Tcl proc is defined.

proc hello {} {
 return "Hello World!"
}

If this proc was interpreted in Jacl, the return command
would be parsed from a string:

"return \"Hello World!\""

Jacl would parse these word elements into an array and
then lookup and invoke the return command. Pseudo-
code for this command might look like:

TclObject[] objv = new TclObject[2];
objv[0] = TclString.newInstance(
 "return");
objv[1] = TclString.newInstance(
 "Hello World!");
TJC.invoke(interp, objv);

The first and most obvious optimization to apply here is to
avoid allocating two new TclObject values each time the
command is invoked. TJC creates a pool of shared
constants and then uses these constants each time a value
is accessed inside a compiled proc. Pseudo-code might

look like:

TclObject[] objv = new TclObject[2];
objv[0] = const0;
objv[1] = const1;
TJC.invoke(interp, objv);

This example assumes that the constants have already
been initialized, another method would be emitted to do
that.

void initConstants() {
 const0 = TclString.newInstance(
 "return");
 const1 = TclString.newInstance(
 "Hello World!");
}

4.2 Cached Command Lookup

The next optimization that could be applied to the hello
proc would be to cache a reference to the command,
instead of looking it up by name for each invocation. TJC
implements this optimization by passing a cached
command reference when invoking a command. This
reference would be defined as an instance variable in the
generated class, so that it would be saved from one
invocation to the next.

class HelloCmd {
 Command ccmd0 = null;

 ...
}

Then, method invocation code might look like:

TclObject[] objv = new TclObject[2];
objv[0] = const0;
objv[1] = const1;
if (ccmd0 == null) {
 ccmd0 = TJC.lookup("return");
}
TJC.invoke(interp, objv, ccmd0);

4.3 Inlined Commands

Tcl's catch, expr, for, foreach, if, switch, and
while commands are special cases since these commands
can contain other commands. When one of these
commands is found, TJC will inline the command and any
contained commands. TJC also includes inline support for
other built-in Tcl commands, these are append, break,
continue, global, incr, lappend, lindex, list,
llength, return, and set.

4.4 Compiled Local Variables

Optimizing local variable access in a compiled proc is
critical to efficient execution. Consider the following
procedure.

proc setme {} {
 set i 0
 set j $i
}

The code above might be mapped to operations like:

setVar("i", const0);
setVar("j", getVar("i"));

In the pseudo-code above, the local variable i is accessed
twice and j is accessed once. In interpreted mode, Jacl
stores local variables in a hashtable. While this approach
is flexible, it can quickly become a performance problem
because of the sheer number of hashtable searches.

Compiled local variables avoid a hashtable search on each
access by saving variables in an array. Each local variable
name is associated with an integer array index. Pseudo-
code to allocate such an array might look like:

Var[] compiledLocals = new Var[2];
compiledLocals[0] = new Var("i");
compiledLocals[1] = new Var("j");

Then, logic for the setme proc might look like:

setVar(compiledLocals[0], const0);
setVar(compiledLocals[1],
 getVar(compiledLocals[0]));

4.5 Omit Unused Results

A Tcl proc can return either an empty result or a specific
value. If a proc does not return a value, then the result of
the last command in the proc is returned as the result.
Consider the following:

proc setme {} {
 set i 0
 set j 1
 set k 2
}

The result of executing this proc is 2. Pseudo-code might
look like:

TclObject tmp;
tmp = setVar("i", const0);
setResult(tmp);
tmp = setVar("j", const1);
setResult(tmp);
tmp = setVar("k", const2);
setResult(tmp);

The result of this command can never be 0 or 1, so the
compiler need only emit the third call to setResult().
TJC implements specific logic to detect when the result of
a command is not used. The compiler can then omit
pointless result set operations. With this optimization
enabled, emitted code for the example above might look
like:

setVar("i", const0);
setVar("j", const1);
TclObject tmp = setVar("k", const2);
setResult(tmp);

4.6 Expr Operations

The expr command and expression arguments to the for,
if, and while commands are particularly important
because expression evaluation can take up a large
percentage of the total execution time. So, optimizing
expression evaluation can have a significant performance
impact. Consider the following example:

expr {!$v}

This expression consists of a unary not operator and a
variable operand. Pseudo-code to evaluate this expression
might look like:

{ // Invoke: expr {!$v}
 ExprValue tmp = new ExprValue();
 tmp.setValue(getVar("v"));
 TJC.exprUnaryOperator(interp,
 TJC.EXPR_OP_UNARY_NOT, tmp);
 TJC.exprSetResult(interp, tmp);
} // End Invoke: expr

Tcl's expression evaluation logic is tricky, the variable
operand could contain an int, double, or string value. TJC
handles each of these input types in the
exprUnaryOperator() method. The logic above is less
than optimal, since a new ExprValue object is allocated
each time the expression is evaluated. TJC addresses this
issue by allocating temporary ExprValue objects at the
beginning of a compiled proc. Pseudo-code might look
like:

(At the beginning of the method)

ExprValue tmp = new ExprValue();

...

{ // Invoke: expr {!$v}
 tmp.setValue(getVar("v"));
 TJC.exprUnaryOperator(interp,
 TJC.EXPR_OP_UNARY_NOT, tmp);
 TJC.exprSetResult(interp, tmp);
} // End Invoke: expr

This change might not seem like a big deal, but it can have
a huge impact on performance. Consider the following
loop, with an expr command in the body.

for {set v 0} {$v < 1000} {incr v} {
 expr {!$v}
}

Allocating an ExprValue at the beginning of the
command moves the allocation outside of the loop. Instead

of allocating and garbage collecting 1000 temporary
ExprValue objects, a single object is allocated and
reused. Allocating and garbage collecting lots of
temporary objects is a serious performance problem, even
for a modern JVM. This allocation change alone resulted
in a 5x performance improvement for some examples.

TJC is able to use compile time type information to further
optimize compiled expressions. Consider the
exprSetResult() method, it sets the interp result based
on the type of the passed in ExprValue. TJC knows that
the result of a unary not operator is always an integer type,
so int type logic from exprSetResult() can be inlined.

{ // Invoke: expr {!$v}
 tmp.setValue(getVar("v"));
 TJC.exprUnaryOperator(interp,
 TJC.EXPR_OP_UNARY_NOT, tmp);
 setResult(tmp.getIntValue() != 0);
} // End Invoke: expr

In addition, TJC is able to inline logic from
exprUnaryOperator(), to optimize the common case
where the TclObject operand contains an integer value.

{ // Invoke: expr {!$v}
 TclObject otmp = getVar("v");
 if (otmp.isIntType()) {
 tmp.setIntValue(
 otmp.ivalue == 0);
 } else {
 tmp.setValue(otmp);
 TJC.exprUnaryOperator(interp,
 TJC.EXPR_OP_UNARY_NOT, tmp);
 }
 setResult(tmp.getIntValue() != 0);
} // End Invoke: expr

Applying these expression optimizations results in a
significant improvement in runtime performance. The
Hotspot compiler, particularly in the server configuration,
does a very good job of optimizing the code above. In
some cases, the code above runs only slightly slower than
Java code using typed local variables.

5 Regression Testing

TJC has been successful in large part due to the
effectiveness of the regression test suite designed and
implemented along with the compiler. The regression test
suite is called tjcruntime, it is available via CVS. Every
Tcl language feature is extensively tested by the suite.
Native Tcl includes a regression test suite, but it could not
be used directly since TJC supports multiple compilation
options that need to be tested individually. Instead, many
tests from the native Tcl test suite were incorporated into
tjcruntime.

When run, the tjcruntime test suite executes about
17,000 tests. There are 1,900 individual tests, each is

compiled with 9 different option configurations.

6 TJC vs. Native Tcl

In this section a few simple Tcl procs are presented.
Execution time for an interpreted version of each proc is
compared to a TJC compiled version and to the execution
time in native Tcl. These examples are very simple and are
by no means a complete comparison. For a detailed,
feature by feature comparison of TJC and native Tcl, see
[12].

6.1 Int Sum Loop
proc isum { num } {
 set sum 0
 for {set i 0} {$i < $num} {incr i} {
 incr sum $i
 }
 return $sum
}

% isum 1000
499500

6.2 List Sum Loop
proc lsum { elems } {
 set sum 0
 foreach elem $elems {
 incr sum $elem
 }
 return $sum
}

set elems [list]
for {set i 0} {$i < 1000} {incr i} {
 lappend elems $i
}

% lsum $elems
499500

6.3 Call Command
proc caller {} {
 for {set i 0} {$i < 1000} {incr i} {
 callme "abcdefghijklmnop"
 }
}

proc callme { str } {
 return [string index $str 0]
}

6.4 Timing Results

Timing results are given in uSecs. JDK 1.4.2 (-server) and
Tcl 8.4.12 (compiled with gcc -O2) were run under
WinXP. Timing results are gathered after the Hotspot
compiler has optimized the code.

isum lsum caller

Jacl 7600 3750 26500

TJC/Jacl 125 96 400

Native Tcl 220 181 1250

7 Java Scripting Languages

In this section, timing results from some other scripting
languages implemented in Java are compared to plain Java
and to TJC. The isum, lsum, and caller examples from
the previous section were coded in each language. Only
the timing results (in uSecs) are presented here, see [13]
for full source code.

isum lsum caller

Java 6 12 25

TJC/Jacl 125 96 400

Jython 120 100 390

Pnuts 146 880 550

Groovy 2100 1250 2650

Beanshell 4087 9100 11200

Both Groovy and Beanshell lack the ability to compile to
bytecode at runtime. Groovy (JSR-06) includes a batch
mode compiler, but it generated classes that did not pass
the bytecode verifier. An attempt to evaluate Jruby 0.9.0
was made, but it did not work with JDK 1.4. Both Jython
and Pnuts contain a bytecode compiler and both turned in
performance numbers comparable to TJC.

8 Future Directions

Performance of TJC compiled code is good, but could be
improved significantly. Many additional optimizations
have been identified, but they require time and funding to
implement.

For example, all expr operators should be inlined, but
only the unary operators are inlined in the current
implementation. Command invocations could be
accelerated by saving argument arrays on the stack.
Invocations that set a variable to the result of an inlined
command could be optimized by emitting logic to skip
setting the interp result. Many scripts would run more
quickly if the regexp and regsub commands were
inlined, since regular expression patterns could be
compiled ahead of time.

It may also be possible to significantly reduce the size of
emitted Java bytecode by using code templates that cover

the most common Tcl command invocations. Additional
research is needed to determine if these and other
optimizations would make TJC compiled code execute
more efficiently.

9 Conclusions

The TJC compiler project has been an unqualified success.
The compiler is functionally complete, it supports both
batch and runtime compilation, and emits Java source
code that is easily understood. Comparing execution times
for interpreted Jacl to TJC shows that compiling results in
an order of magnitude improvement. TJC outperforms
native Tcl in many cases, sometimes by a wide margin.
Timing results show that TJC tied both Jython and Pnuts
as the fastest scripting languages implemented in Java.

The TJC project is an effective example of how
corporations can benefit from open source software. In
this case, porting the infrastructure from a legacy system
to the Java environment was significantly less expensive
than reimplementing thousands of scripts. TJC has been
thoroughly tested and contains no known defects. The
compiler is currently being evaluated for deployment in
productions systems.

10 Availability

Jacl 1.4.0 includes the TJC compiler, runtime modules,
and complete documentation. Jacl can be downloaded
from:

http://tcljava.sourceforge.net

Both Jacl and TJC are licensed under BSD like licenses.
For details, see the license.terms and license.amd
files included in Jacl.

11 Thanks

Many thanks go to the Austin based Advanced Process
Control Framework team at Advanced Micro Devices, Inc.
The TJC project would not have been possible without
their vision, funding, and patience. Thanks also go to New
Iron Systems for making it possible for this project to
move forward.

Many thanks go to One Moon Scientific for funding TJC's
runtime compiler implementation. The runtime compiler
work was made possible by NIH grant R01GM073053-02.
Thanks also go to the original Tcl compiler team at Sun
Labs and later Scriptics. Many good ideas that first
appeared in the Tcl compiler were subsequently
implemented in TJC.

12 References

[1] An On-the-fly Bytecode Compiler for Tcl : Lewis :

http://www.usenix.org/publications/library/proceedings/tcl9
6/full_papers/lewis/index.html

[2] Tcl bytecode optimization : some experiences : Kenny,
Sofer, Hobbs :
http://aspn.activestate.com/ASPN/Tcl/TclConferencePapers
2002/Tcl2002papers/kenny-bytecode/paperKBK.html

[3] Catenation and specialization for Tcl virtual machine
performance : Vitale, Abdelrahman :
http://portal.acm.org/citation.cfm?id=1059591&dl=ACM&
coll=&CFID=15151515&CFTOKEN=6184618

[4] Alternative dispatch techniques for the Tcl VM interpreter :
Vitale, Zaleski :
http://www.cs.toronto.edu/~bv/tcl2005/tcl2005-vitale-
zaleski.pdf

[5] The Behavior of Efficient Virtual Machine Interpreters on
Modern Architectures : Ertl, Gregg :
http://citeseer.ist.psu.edu/ertl01behavior.html

[6] The Structure and Performance of Efficient Interpreters :
Ertl, Gregg : http://www.jilp.org/vol5/v5paper12.pdf

[7] Effective Inline-Threaded Interpretation of Java Bytecode
Using Preparation Sequences : Gagnon, Hendren :
http://www.sable.mcgill.ca/publications/papers/2003-
2/sable-paper-2003-2.pdf

[8] BCEL: The Byte Code Engineering Library :
http://jakarta.apache.org/bcel/

[9] Serp : An open source framework for manipulating Java
bytecode : http://serp.sourceforge.net/

[10] Janino : An embedded Java compiler :
http://www.janino.net/

[11] TJC generated code examples :
http://tcljava.cvs.sourceforge.net/*checkout*/tcljava/tcljava/
docs/TJC/example2.html

[12] Comparing Tcl to TJC/Jacl :
http://www.modejong.com/tcljava/tjc_results_6_20_2006/in
dex.html

[13] Scripting Examples :
http://www.modejong.com/tcljava/tjc_scripting_examples.z
ip

http://tcljava.sourceforge.net/
http://www.modejong.com/tcljava/tjc_scripting_examples.zip
http://www.modejong.com/tcljava/tjc_scripting_examples.zip
http://www.modejong.com/tcljava/tjc_results_6_20_2006/index.html
http://www.modejong.com/tcljava/tjc_results_6_20_2006/index.html
http://tcljava.cvs.sourceforge.net/*checkout*/tcljava/tcljava/docs/TJC/example2.html
http://tcljava.cvs.sourceforge.net/*checkout*/tcljava/tcljava/docs/TJC/example2.html
http://www.janino.net/
http://jakarta.apache.org/bcel/
http://www.sable.mcgill.ca/publications/papers/2003-2/sable-paper-2003-2.pdf
http://www.sable.mcgill.ca/publications/papers/2003-2/sable-paper-2003-2.pdf
http://www.jilp.org/vol5/v5paper12.pdf
http://citeseer.ist.psu.edu/ertl01behavior.html
http://www.cs.toronto.edu/~bv/tcl2005/tcl2005-vitale-zaleski.pdf
http://www.cs.toronto.edu/~bv/tcl2005/tcl2005-vitale-zaleski.pdf
http://portal.acm.org/citation.cfm?id=1059591&dl=ACM&coll=&CFID=15151515&CFTOKEN=6184618
http://portal.acm.org/citation.cfm?id=1059591&dl=ACM&coll=&CFID=15151515&CFTOKEN=6184618
http://aspn.activestate.com/ASPN/Tcl/TclConferencePapers2002/Tcl2002papers/kenny-bytecode/paperKBK.html
http://aspn.activestate.com/ASPN/Tcl/TclConferencePapers2002/Tcl2002papers/kenny-bytecode/paperKBK.html
http://www.usenix.org/publications/library/proceedings/tcl96/full_papers/lewis/index.html
http://www.usenix.org/publications/library/proceedings/tcl96/full_papers/lewis/index.html

	Abstract
	1 Design Goals
	2 Dual Implementations
	2.1 Batch Mode
	2.2 Runtime Mode

	3 Generated Code Examples
	3.1 Hello World
	3.2 Command Invocation
	3.3 Inlined String Command
	3.4 Inlined If Command

	4 Optimizations
	4.1 Shared Constants
	4.2 Cached Command Lookup
	4.3 Inlined Commands
	4.4 Compiled Local Variables
	4.5 Omit Unused Results
	4.6 Expr Operations

	5 Regression Testing
	6 TJC vs. Native Tcl
	6.1 Int Sum Loop
	6.2 List Sum Loop
	6.3 Call Command
	6.4 Timing Results

	7 Java Scripting Languages
	8 Future Directions
	9 Conclusions
	10 Availability
	11 Thanks
	12 References

