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Abstract

A recent trend in corporate computing environments is the reimplementation of legacy systems on a Java based software 
platform. Significant long-term savings can be realized through use of a common software platform and tools, but the 
costs of software development and retraining of engineers remains high. If a legacy system can be ported to a Java 
environment without having to rewrite existing code, then most software development and retraining costs can be 
avoided. A large semiconductor manufacturer recently faced just such a challenge and decided to evaluate Jacl (Tcl 
interpreter written in Java) as a migration tool for a large legacy system implemented in Tcl. Jacl was found to be 
satisfactory in all areas except one, runtime execution speed. The native version of Tcl contains a runtime compiler and 
execution engine, while Jacl supports only interpreted execution. As a result, native Tcl executes code from 10 to 50 
times faster than Jacl. This paper introduces TJC, a Tcl to Java compiler that converts Tcl procs into Java bytecode and 
closes this performance gap. In many cases, TJC compiled Tcl code executes more quickly than the same code running 
in native Tcl. This paper describes TJC's initial design and implementation, demonstrates code generated for simple 
examples, and describes optimizations added as the compiler has matured into production ready software. In addition, 
performance of TJC compiled code is compared to native Tcl, and to other scripting languages implemented in Java.
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1 Design Goals

The TJC compiler was designed to optimize for runtime 
execution speed. Execution time required to compile Tcl 
procs, as well as runtime memory usage, were secondary 
considerations. The targeted execution environment was a 
server system running JDK 1.4, with sufficient memory 
and CPU resources to handle most tasks. Since compile 
time was a secondary concern, the compiler could make 
multiple passes and generate the fastest possible code for a 
specific usage. Compatibility with native Tcl was a design 
requirement and has been maintained in all areas except 
one. TJC will generate inlined logic for Tcl primitives like 
set, if, for, lindex, and others. The compiler assumes 
that the user will not redefine these built-in Tcl primitives 
at runtime.

Early on, three options were considered:

A) Duplicate native Tcl's bytecode compiler and 
execution engine

B) Duplicate native Tcl's bytecode compiler but emit 
Java bytecode

C) Design new Tcl compiler and emit Java source 
code

Option A was the most straightforward. Native Tcl 
contains a compiler that emits Tcl bytecode and a runtime 
execution engine that interprets Tcl bytecode instructions 
[1, 2]. Although porting native Tcl's compiler and 
execution engine to Java would take time, this approach 
involved few risks or unknowns. The problem with option 
A was that it was unclear if running a Tcl bytecode 
interpreter on top of the JVM would produce acceptable 

performance results.

Modern JVMs go to great lengths to execute Java 
bytecode efficiently, compiling to native machine code in 
many cases. Sun's Hotspot compiler is able to inline 
methods, predict branches, and dynamically recompile 
code based on actual usage. Unfortunately, these 
optimizations would be of little value to a Tcl bytecode 
interpreter loop implemented in Java. A significant 
percentage of an application's execution time could be 
spent just decoding Tcl bytecode instructions and then 
jumping into and out of code that implements specific 
instructions [3, 4, 5, 6, 7]. Option A was rejected on these 
grounds.

Option B was briefly considered as a solution to the Tcl 
bytecode execution issues described above. The existing 
compiler from native Tcl could be ported to Java, but it 
would be modified to emit Java bytecode equivalents for 
each Tcl bytecode instruction. This approach would avoid 
using CPU resources to decode Tcl bytecode instructions 
at runtime. The Hotspot compiler could then convert entire 
compiled command implementations to native code and 
aggressively inline utility methods. Java libraries that 
could significantly simplify this type of implementation 
are freely available [8, 9]. However, option B was rejected 
because it would be too complex to implement, debug, and 
modify.

Option C involves emitting Java source code and 
converting to Java bytecode using a Java compiler like 
javac. This approach would require quite a bit of 
implementation effort, as new compiler and runtime 
support modules would need to be implemented from 



scratch. This approach would also generate a relatively 
large number of Java bytecode instructions, as compared 
to the more compact Tcl bytecode instructions. 
Nonetheless, option C was chosen because it had a 
number of important advantages.

A new compiler could take advantage of optimizations 
that were not even considered in the native Tcl compiler. 
Java bytecode would be executed directly in the JVM, so 
there would be no runtime overhead associated with a Tcl 
instruction decode and execute loop. Option C would be 
easy to debug, since any Java source code debugger could 
be used to step through generated code. Each Tcl proc 
would be mapped to a Java class, each Tcl proc invocation 
would be mapped to a Java method invocation, and each 
Tcl variable frame would be mapped to a Java stack 
frame. In addition, Java profiling tools could be used to 
profile generated code in terms of time taken by each Tcl 
command.

Readability and transparency were important factors in 
choosing option C. Java source code emitted by the 
compiler would be human readable and regression 
testable. The importance of being able to easily understand 
compiler output cannot be understated. Many tricky 
problems were solved without the aide of a runtime or a 
debugger, simply by looking at the Tcl input and the Java 
output. Optimizations were similarly easy to visualize 
when working directly with emitted source code.

2 Dual Implementations

The TJC compiler supports two compilation modes. Batch 
mode is used to compile all the procs defined in a set of 
Tcl files into a single Jar file. Runtime mode is used to 
compile a specific Tcl proc into Java bytecode. Runtime 
mode consumes memory and CPU resources, so startup 
time could be affected. Batch mode does all compilation 
off-line, so only minimal CPU and memory resources are 
required at runtime. Batch mode is particularly useful for 
large libraries of Tcl code. Runtime mode is most useful 
when a small number of procs are to be compiled, or when 
the procs are not defined until runtime.

2.1 Batch Mode

Batch mode is invoked from the command line via a script 
named tjc.

  $ tjc example.tjc

The invocation above will scan the Tcl files indicated in 
example.tjc and compile each statically defined proc. 
The compiler will generate a Java source file for each proc 
and then invoke javac to compile to Java bytecode. 
Finally, Java's jar tool is invoked to create a pair of Jar 
files. The example.jar file contains compiled Java class 
files. The examplesrc.jar file contains generated Java 
source files. A user would add both Jar files to the 
CLASSPATH and then start the Jacl shell.

2.2 Runtime Mode

In runtime mode, the compiler runs in a separate thread. 
Unlike native Tcl, procs are not automatically compiled 
when defined in Jacl. The user must request that a specific 
proc be compiled. First, the user loads the TJC package 
into Jacl, then the TJC::compile command is invoked to 
compile a proc.

  % proc hello {} {return "Hello World"}
  % package require TJC
  % TJC::compile hello

Once compilation is finished, the compiled 
implementation of hello replaces the original. Behind the 
scenes, TJC makes use of the Janino embedded Java 
compiler [10] to convert generated Java source into 
bytecode. Generated Java bytecode is then loaded into the 
current interpreter.

TJC is implemented entirely in Tcl code. Modules are 
organized as follows:

(Shared Modules)
  parse.tcl
  descend.tcl
  compileproc.tcl
  emitter.tcl

(Runtime Modules)
  tjcthread.tcl

(Batch Modules)

Tcl
proc

TJC Javac Jar

Java
source

Java
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TJC Janino Jacl
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  nameproc.tcl
  parseproc.tcl

Since TJC is written in Tcl, one can use the compiler to 
compile itself and realize a significant performance 
improvement. TJC compiling itself in interpreted mode 
can take 25 minutes, but a compiled version of TJC can 
compile itself in 2.5 minutes.

3 Generated Code Examples

This section presents some simple Tcl procs and the Java 
code generated by TJC. Since generated code can be 
verbose, only the first example will include the full Java 
class output.

3.1 Hello World
Input:
proc hello {} {
  return "Hello World!"
}

Output:
// TJC implementation of hello
import tcl.lang.*;

public class HelloCmd
    extends TJC.CompiledCommand {
  public void cmdProc(
    Interp interp,
    TclObject[] objv)
      throws TclException
{
  if (!initCmd) { initCmd(interp); }
  CallFrame callFrame =
    TJC.pushLocalCallFrame(
      interp, wcmd.ns);
  try {
  if (objv.length != 1) {
    throw new TclNumArgsException(
      interp, 1, objv, "");
  }
  { // Invoke: return "Hello World!"
    interp.resetResult();
    interp.setResult(const0);
    if ( true ) { return; }
  } // End Invoke: return
  } catch (TclException te) {
    TJC.checkTclException(interp,
      te, "hello");
  } finally {
    TJC.popLocalCallFrame(interp,
      callFrame);
  }
}

  TclObject const0;

  protected void initConstants(
    Interp interp)

      throws TclException
  {
    const0 = TclString.newInstance(
      "Hello World!");
    const0.preserve();
    const0.preserve();
  }
} // end class HelloCmd

In this generated code, the HelloCmd extends 
TJC.CompiledCommand and implements the Command 
interface. Jacl will invoke the cmdProc() method when 
the hello command is called in the interpreter. Each class 
generated by TJC includes code to push a call frame and 
then pop it off the stack when the method is finished. The 
proc hello invokes just one Tcl command, it is translated 
into three Java statements in the emitted code. Note the 
statement interp.setResult(const0), it sets the 
interpreter result to the constant string "Hello World!". 
Finally, the code returns and the method completes 
normally.

3.2 Command Invocation

This example shows how a Tcl command would be 
invoked from a compiled proc. The output in this example 
includes just the generated code for the command 
invocation. The generated class defines three constant 
strings, one for each command argument.

Input:
proc foolen {} {
  string length "foo"
}

Output:
// Snippet of FoolenCmd.java

{ // Invoke: string length "foo"
  TclObject[] objv0 =
    TJC.grabObjv(interp, 3);
  try {
    TclObject tmp1;
    // Arg 0 constant: string
    tmp1 = const0;
    tmp1.preserve();
    objv0[0] = tmp1;
    // Arg 1 constant: length
    tmp1 = const1;
    tmp1.preserve();
    objv0[1] = tmp1;
    // Arg 2 constant: "foo"
    tmp1 = const2;
    tmp1.preserve();
    objv0[2] = tmp1;
    TJC.invoke(interp, null, objv0, 0);
  } finally {
    TJC.releaseObjvElems(interp,
      objv0, 3);
  }



} // End Invoke: string

The code above invokes the string Tcl command. The 
TJC.invoke() method calls the cmdProc() method in 
the StringCmd class, passing an array of TclObject 
arguments. Most of the code in this invocation is needed 
to populate the argument array and maintain Tcl's 
reference counting rules for TclObject arguments.

3.3 Inlined String Command

Most Tcl command invocations are implemented like the 
previous example, but TJC is able to emit inlined code for 
a number of built-in Tcl commands. This example shows 
an inlined call to Tcl's string command. Again, the 
output in this example includes just the generated code for 
the command invocation. The generated class defines just 
one constant, the string "foo".

Input:
proc foolen {} {
  string length "foo"
}

Output:
// Snippet of FoolenCmd.java

{ // Invoke: string length "foo"
  int tmp0 = const0.toString().length();
  interp.setResult(tmp0);
} // End Invoke: string

This inlined string command is significantly less 
complex when compared to invoking the string 
command at runtime. The inlined code avoids allocating 
an array, populating the array, incrementing and 
decrementing ref counts, and array cleanup and release. 
The inlined code is efficient and is easily optimized by the 
Hotspot compiler.

3.4 Inlined If Command

This example shows how a Tcl if command is converted 
to inlined Java code and how a simple expression is 
evaluated.

Input:
proc iftrue {} {
  if {0 == 1} {
    # no-op
  }
}

Output:
// Snippet of IftrueCmd.java

{ // Invoke: if {0 == 1} ...

  // Binary operator: 0 == 1
  ExprValue tmp0 = new ExprValue();
  tmp0.setIntValue(0);
  ExprValue tmp1 = new ExprValue();
  tmp1.setIntValue(1);
  TJC.exprBinaryOperator(interp,
    TJC.EXPR_OP_EQUAL, tmp0, tmp1);
  // End Binary operator: ==
  boolean tmp2 =
    ( tmp0.getIntValue() != 0 );
  if ( tmp2 ) {
    interp.resetResult();
  } else {
    interp.resetResult();
  }
} // End Invoke: if

The ExprValue class manages the details of maintaining 
the expression result type and its value. The expression 
result is converted to a Java boolean and one of the 
branches of the if statement is taken. If this example had 
included Tcl commands in the if block, instead of a 
comment, then these commands would appear before the 
first interp.resetResult() call.

4 Optimizations

This section describes some of the most important 
optimizations implemented in TJC. These examples are 
simplified and make use pseudo-code, see [11] for detailed 
examples that include complete Java source code.

4.1 Shared Constants

Assume the following Tcl proc is defined.

proc hello {} {
  return "Hello World!"
}

If this proc was interpreted in Jacl, the return command 
would be parsed from a string:

"return \"Hello World!\""

Jacl would parse these word elements into an array and 
then lookup and invoke the return command. Pseudo-
code for this command might look like:

TclObject[] objv = new TclObject[2];
objv[0] = TclString.newInstance(
  "return");
objv[1] = TclString.newInstance(
  "Hello World!");
TJC.invoke(interp, objv);

The first and most obvious optimization to apply here is to 
avoid allocating two new TclObject values each time the 
command is invoked. TJC creates a pool of shared 
constants and then uses these constants each time a value 
is accessed inside a compiled proc. Pseudo-code might 



look like:

TclObject[] objv = new TclObject[2];
objv[0] = const0;
objv[1] = const1;
TJC.invoke(interp, objv);

This example assumes that the constants have already 
been initialized, another method would be emitted to do 
that.

void initConstants() {
  const0 = TclString.newInstance(
    "return");
  const1 = TclString.newInstance(
    "Hello World!");
}

4.2 Cached Command Lookup

The next optimization that could be applied to the hello 
proc would be to cache a reference to the command, 
instead of looking it up by name for each invocation. TJC 
implements this optimization by passing a cached 
command reference when invoking a command. This 
reference would be defined as an instance variable in the 
generated class, so that it would be saved from one 
invocation to the next.

class HelloCmd {
  Command ccmd0 = null;

  ...
}

Then, method invocation code might look like:

TclObject[] objv = new TclObject[2];
objv[0] = const0;
objv[1] = const1;
if ( ccmd0 == null ) {
  ccmd0 = TJC.lookup("return");
}
TJC.invoke(interp, objv, ccmd0);

4.3 Inlined Commands

Tcl's catch, expr, for, foreach, if, switch, and 
while commands are special cases since these commands 
can contain other commands. When one of these 
commands is found, TJC will inline the command and any 
contained commands. TJC also includes inline support for 
other built-in Tcl commands, these are  append, break, 
continue, global, incr, lappend, lindex, list, 
llength, return, and set.

4.4 Compiled Local Variables

Optimizing local variable access in a compiled proc is 
critical to efficient execution. Consider the following 
procedure.

proc setme {} {
  set i 0
  set j $i
}

The code above might be mapped to operations like:

setVar("i", const0);
setVar("j", getVar("i"));

In the pseudo-code above, the local variable i is accessed 
twice and j is accessed once. In interpreted mode, Jacl 
stores local variables in a hashtable. While this approach 
is flexible, it can quickly become a performance problem 
because of the sheer number of hashtable searches.

Compiled local variables avoid a hashtable search on each 
access by saving variables in an array. Each local variable 
name is associated with an integer array index. Pseudo-
code to allocate such an array might look like:

Var[] compiledLocals = new Var[2];
compiledLocals[0] = new Var("i");
compiledLocals[1] = new Var("j");

Then, logic for the setme proc might look like:

setVar(compiledLocals[0], const0);
setVar(compiledLocals[1],
  getVar(compiledLocals[0]));

4.5 Omit Unused Results

A Tcl proc can return either an empty result or a specific 
value. If a proc does not return a value, then the result of 
the last command in the proc is returned as the result. 
Consider the following:

proc setme {} {
  set i 0
  set j 1
  set k 2
}

The result of executing this proc is 2. Pseudo-code might 
look like:

TclObject tmp;
tmp = setVar("i", const0);
setResult(tmp);
tmp = setVar("j", const1);
setResult(tmp);
tmp = setVar("k", const2);
setResult(tmp);

The result of this command can never be 0 or 1, so the 
compiler need only emit the third call to setResult(). 
TJC implements specific logic to detect when the result of 
a command is not used. The compiler can then omit 
pointless result set operations. With this optimization 
enabled, emitted code for the example above might look 
like:



setVar("i", const0);
setVar("j", const1);
TclObject tmp = setVar("k", const2);
setResult(tmp);

4.6 Expr Operations

The expr command and expression arguments to the for, 
if, and while commands are particularly important 
because expression evaluation can take up a large 
percentage of the total execution time. So, optimizing 
expression evaluation can have a significant performance 
impact. Consider the following example:

expr {!$v}

This expression consists of a unary not operator and a 
variable operand. Pseudo-code to evaluate this expression 
might look like:

{ // Invoke: expr {!$v}
  ExprValue tmp = new ExprValue();
  tmp.setValue( getVar("v") );
  TJC.exprUnaryOperator(interp,
    TJC.EXPR_OP_UNARY_NOT, tmp);
  TJC.exprSetResult(interp, tmp);
} // End Invoke: expr

Tcl's expression evaluation logic is tricky, the variable 
operand could contain an int, double, or string value. TJC 
handles each of these input types in the 
exprUnaryOperator() method. The logic above is less 
than optimal, since a new ExprValue object is allocated 
each time the expression is evaluated. TJC addresses this 
issue by allocating temporary ExprValue objects at the 
beginning of a compiled proc. Pseudo-code might look 
like:

(At the beginning of the method)

ExprValue tmp = new ExprValue();

...

{ // Invoke: expr {!$v}
  tmp.setValue( getVar("v") );
  TJC.exprUnaryOperator(interp,
    TJC.EXPR_OP_UNARY_NOT, tmp);
  TJC.exprSetResult(interp, tmp);
} // End Invoke: expr

This change might not seem like a big deal, but it can have 
a huge impact on performance. Consider the following 
loop, with an expr command in the body.

for {set v 0} {$v < 1000} {incr v} {
    expr {!$v}
}

Allocating an ExprValue at the beginning of the 
command moves the allocation outside of the loop. Instead 

of allocating and garbage collecting 1000 temporary 
ExprValue objects, a single object is allocated and 
reused. Allocating and garbage collecting lots of 
temporary objects is a serious performance problem, even 
for a modern JVM. This allocation change alone resulted 
in a 5x performance improvement for some examples.

TJC is able to use compile time type information to further 
optimize compiled expressions. Consider the 
exprSetResult() method, it sets the interp result based 
on the type of the passed in ExprValue. TJC knows that 
the result of a unary not operator is always an integer type, 
so int type logic from exprSetResult() can be inlined.

{ // Invoke: expr {!$v}
  tmp.setValue( getVar("v") );
  TJC.exprUnaryOperator(interp,
    TJC.EXPR_OP_UNARY_NOT, tmp);
  setResult( tmp.getIntValue() != 0 );
} // End Invoke: expr

In addition, TJC is able to inline logic from 
exprUnaryOperator(), to optimize the common case 
where the TclObject operand contains an integer value.

{ // Invoke: expr {!$v}
  TclObject otmp = getVar("v");
  if ( otmp.isIntType() ) {
    tmp.setIntValue(
      otmp.ivalue == 0 );
  } else {
    tmp.setValue( otmp );
    TJC.exprUnaryOperator(interp,
      TJC.EXPR_OP_UNARY_NOT, tmp);
  }
  setResult( tmp.getIntValue() != 0 );
} // End Invoke: expr

Applying these expression optimizations results in a 
significant improvement in runtime performance. The 
Hotspot compiler, particularly in the server configuration, 
does a very good job of optimizing the code above. In 
some cases, the code above runs only slightly slower than 
Java code using typed local variables.

5 Regression Testing

TJC has been successful in large part due to the 
effectiveness of the regression test suite designed and 
implemented along with the compiler. The regression test 
suite is called tjcruntime, it is available via CVS. Every 
Tcl language feature is extensively tested by the suite. 
Native Tcl includes a regression test suite, but it could not 
be used directly since TJC supports multiple compilation 
options that need to be tested individually. Instead, many 
tests from the native Tcl test suite were incorporated into 
tjcruntime.

When run, the tjcruntime test suite executes about 
17,000 tests. There are 1,900 individual tests, each is 



compiled with 9 different option configurations.

6 TJC vs. Native Tcl

In this section a few simple Tcl procs are presented. 
Execution time for an interpreted version of each proc is 
compared to a TJC compiled version and to the execution 
time in native Tcl. These examples are very simple and are 
by no means a complete comparison. For a detailed, 
feature by feature comparison of TJC and native Tcl, see 
[12].

6.1 Int Sum Loop
proc isum { num } {
  set sum 0
  for {set i 0} {$i < $num} {incr i} {
    incr sum $i
  }
  return $sum
}

% isum 1000
499500

6.2 List Sum Loop
proc lsum { elems } {
  set sum 0
  foreach elem $elems {
    incr sum $elem
  }
  return $sum
}

set elems [list]
for {set i 0} {$i < 1000} {incr i} {
    lappend elems $i
}

% lsum $elems
499500

6.3 Call Command
proc caller {} {
  for {set i 0} {$i < 1000} {incr i} {
    callme "abcdefghijklmnop"
  }
}

proc callme { str } {
  return [string index $str 0]
}

6.4 Timing Results

Timing results are given in uSecs. JDK 1.4.2 (-server) and 
Tcl 8.4.12 (compiled with gcc -O2) were run under 
WinXP. Timing results are gathered after the Hotspot 
compiler has optimized the code.

isum lsum caller

Jacl 7600 3750 26500

TJC/Jacl 125 96 400

Native Tcl 220 181 1250

7 Java Scripting Languages

In this section, timing results from some other scripting 
languages implemented in Java are compared to plain Java 
and to TJC. The isum, lsum, and caller examples from 
the previous section were coded in each language. Only 
the timing results (in uSecs) are presented here, see [13] 
for full source code.

isum lsum caller

Java 6 12 25

TJC/Jacl 125 96 400

Jython 120 100 390

Pnuts 146 880 550

Groovy 2100 1250 2650

Beanshell 4087 9100 11200

Both Groovy and Beanshell lack the ability to compile to 
bytecode at runtime. Groovy (JSR-06) includes a batch 
mode compiler, but it generated classes that did not pass 
the bytecode verifier. An attempt to evaluate Jruby 0.9.0 
was made, but it did not work with JDK 1.4. Both Jython 
and Pnuts contain a bytecode compiler and both turned in 
performance numbers comparable to TJC.

8 Future Directions

Performance of TJC compiled code is good, but could be 
improved significantly. Many additional optimizations 
have been identified, but they require time and funding to 
implement.

For example, all expr operators should be inlined, but 
only the unary operators are inlined in the current 
implementation. Command invocations could be 
accelerated by saving argument arrays on the stack. 
Invocations that set a variable to the result of an inlined 
command could be optimized by emitting logic to skip 
setting the interp result. Many scripts would run more 
quickly if the regexp and regsub commands were 
inlined, since regular expression patterns could be 
compiled ahead of time.

It may also be possible to significantly reduce the size of 
emitted Java bytecode by using code templates that cover 



the most common Tcl command invocations. Additional 
research is needed to determine if these and other 
optimizations would make TJC compiled code execute 
more efficiently.

9 Conclusions

The TJC compiler project has been an unqualified success. 
The compiler is functionally complete, it supports both 
batch and runtime compilation, and emits Java source 
code that is easily understood. Comparing execution times 
for interpreted Jacl to TJC shows that compiling results in 
an order of magnitude improvement. TJC outperforms 
native Tcl in many cases, sometimes by a wide margin. 
Timing results show that TJC tied both Jython and Pnuts 
as the fastest scripting languages implemented in Java.

The TJC project is an effective example of how 
corporations can benefit from open source software. In 
this case, porting the infrastructure from a legacy system 
to the Java environment was significantly less expensive 
than reimplementing thousands of scripts. TJC has been 
thoroughly tested and contains no known defects. The 
compiler is currently being evaluated for deployment in 
productions systems.

10 Availability

Jacl 1.4.0 includes the TJC compiler, runtime modules, 
and complete documentation. Jacl can be downloaded 
from:

http://tcljava.sourceforge.net

Both Jacl and TJC are licensed under BSD like licenses. 
For details, see the license.terms and license.amd 
files included in Jacl.
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