
The L Programming Language
or

Tcl for C Programmers

Oscar Bonilla, Tim Daly, Jr., Larry McVoy

BitMover, Inc.
300 Orchard City Drive, Suite 132

Campbell, CA 95008

Jeffre y Hobbs

ActiveState Software Inc.
1700-409 Granville Street
Vancouver, BC, Canada

V6C 1T2

l@bitmover.com

ABSTRACT

This paper describes a new programming language called L. L is a compiled-to-byte-code
language with the unusual twist that it compiles to Tcl byte codes and by doing so leverages the
entire Tcl runtime. L is designed to peacefully coexist with Tcl rather than replace Tcl. L func-
tions may call Tcl procs and vice versa. They may also coexist in the same source file. L is a
static weakly typed language with int, float, string, struct, array, and hash as first-class objects.
The L syntax is reminiscent of C with a tiny bit of C++ thrown in.

The implementation consists primarily of a simple compiler that Tcl invokes whenever L
source code is encountered. The L code is parsed by a Bison-generated parser into an abstract
syntax tree (AST), which is type-checked and then translated into Tcl byte code. Upon its execu-
tion, L code is indistinguishable from Tcl code, which makes for easy interoperability.

L is open source software, and it is made available under the same license as Tcl/Tk with
the hope that people will find it useful and it may encourage more people to join the Tcl/Tk com-
munity.

-2-

“It’s like perl without the nastiest bits.”

-- Donal K. Fellows (on the #tcl IRC channel)

1. Introduction

BitMover software is produced using a conservative
development methodology. All development goes
through a stringent process that relies heavily on peer
review and extensive regression tests to ensure quality
products.

Because of the stability requirements of our market,
we read code much more than we write it. Spot
checks indicate that we spend at least 10 times as
much time reading and reviewing as we do writing.
Naturally, we tend to optimize heavily for the read
path rather than the write path.

For years we have used the Tcl/Tk system for our
graphical user interfaces. We periodically consider
the alternatives and have consistently found that short
of doing native implementations, the Tcl/Tk system is
still the best choice from a development cost point of
view. Our estimate is that it would cost roughly six
times as much to develop and maintain native GUIs
instead of using a single Tcl source base for all plat-
forms. However, the maintenance of our Tcl source
base has recently become problematic because two
things happened:

• Our Tcl source base grew past a manageable size
(for us).

• Our peer review system could not handle Tcl code.

We hav e about 25,000 lines lines of Tcl, implement-
ing about a dozen graphical interfaces for browsing
code, checking in code, viewing changes, etc.1 Main-
taining and extending the Tcl source base has become
unmanageable, and when the review process was
added to the mix, the costs became too high.

This has been a problem for us for years and we were
forced to come up with a better answer. We inv esti-
gated the alternatives but in the end the Tcl runtime
and the Tk widgets were too compelling. We solved
our problems by marrying a language syntax we felt
was well suited for fast reviewing and understanding
with what we feel is the best GUI toolkit and runtime
available today.

The rest of the paper is divided into sections that dis-
cuss the following topics: an overview of L, why the L
approach is interesting, why other runtimes were not
chosen, why not pure Tcl, why not native GUIs, L
language details such as types, calling/return

1 This number is artificially low because we have
been holding off on a number of GUIs until we had a
better answer. Had we not been holding back, 100,000
lines is more likely where we would be.

conventions, current status, features we have not yet
done but want to do, licensing and availability, and a
summary. There is an appendix with some small
working program examples.

2. L overview

L is actually a very small addition to the Tcl system.
If we divide the Tcl system into logical parts this
becomes obvious:

Subsection Percentage of Tcl/Tk 8.5

Tcl parser/compiler <= 1%
L parser/compiler <= 1%
Tcl runtime 48%
Tk 51%

The parser and compiler are quite small when com-
pared to the code that implements the runtime and the
libraries (in both Tcl and L it is less than 10K lines of
code). Because the parser/compiler is such a small
part of the system, it is reasonable to add an alterna-
tive parser/compiler to the system and let them both
run side by side. That is L in a nutshell. It is the
small amount of effort required to leverage a large
amount of value embodied in the runtime and
libraries.

The L compiler creates an abstract syntax tree from L
source and compiles that to byte codes. The byte
codes generated are standard Tcl byte codes, follow-
ing Tcl call/return conventions and using Tcl vari-
ables. Because we are careful not to break any Tcl
rules, L functions may call Tcl procs and vice versa.
This allows L to use the extensive, mature Tcl/Tk run-
time and libraries unmodified.

3. Unique design

As we dive deeper into the L syntax and semantics it
would be easy to be drawn into a discussion of why L
is better or why Tcl is better. To do so would be to
miss an important point. Regardless of the merits of
each language, the value of L is that it demonstrates a
new way to leverage and reuse existing code. With a
relatively small amount of effort, we have lev eraged
over 1.4 million lines of source making up the Tcl/Tk
system plus some extensions.

The existence of L opens the door to any number of
domain-specific languages being added to the Tcl run-
time system.

For example, consider the GDB debugger. GDB lets
users type C, C++, etc., at it and run the code. Doing

-3-

so means GDB has to provide an interpreter and a
runtime. Rather than building one, GDB could reuse
the ideas and code pioneered by the L effort. Having
a well maintained runtime with the option of creating
an arbitrary syntax to use that runtime is useful for
any sort of debugger or runtime inspector. L is just
one example of a different syntax leveraging the
Tcl/Tk system; we are confident there will be others.

4. Alternative runtimes

Once the idea of adding a different parser/compiler to
a scripting language is understood, the question
becomes: why Tcl rather than some other runtime
such as Perl, Python, Ruby, Java, or others? We
looked briefly at that question. Our need was for a
well supported, mature runtime that supported script-
ing GUI interfaces and was extensible from C.

We dismissed Java because the runtime is too large
and the GUI toolkits are weak, both in features and in
performance. The other runtimes addressed the GUI
issues mostly by providing Tk bindings (and in some
cases Qt or Gtk bindings). Any system that is using
Tk bindings is already dragging along a Tcl inter-
preter to run the Tk code. It seemed like a waste to
have a different interpreter just for the GUIs. It has
also been our experience that the only way to build
robust software systems is to have the minimum num-
ber of ‘‘moving parts.’’ Having two interpreters is an
unnecessary complication.

But even if there were a good runtime with a good
GUI interface, there was another requirement we felt
was only well addressed by Tcl. Tcl has been
designed from the onset to be an extendable language.
The original vision was that Tcl was glue and all the
heavy lifting would be done by C extensions to the
language. The internal Tcl code is fairly small and
quite pleasant to use; adding extensions is straightfor-
ward and natural. We needed to take advantage of
this feature of the Tcl system and other runtimes made
this difficult.

5. L vs pure Tcl

Many in the Tcl community may question whether
there is any value in an alternate syntax for the Tcl
runtime. After all, Tcl is a powerful, dynamic lan-
guage and many significant applications are based on
Tcl.

We agree that Tcl is powerful, but that power comes at
a cost. Tcl’s dynamic nature makes it impossible to
detect even simple parse errors, such as typos, without
running the program.

Although there are advantages to the dynamic
approach in language design, there are also

drawbacks:

Data structures. Probably the single largest problem
we found with Tcl was the lack of a C-style struct,
i.e., a centralized collection of variables with annota-
tions indicating why they are there. These are com-
monly emulated in Tcl with associative arrays. That
isn’t good enough because the ‘‘struct fields’’ are scat-
tered all over the source base rather than being in one
place, laid out with types and comments. To para-
phrase Fred Brooks: “Show me your code and conceal
your data structures, and I shall continue to be mysti-
fied. Show me your data structures, and I won’t usu-
ally need your code; it’ll be obvious.”Brooks1975a

Lint. It is impossible to write a syntax checker or a
lint-like tool for Tcl that works 100% of the time
unless that tool is actually running the program it is
checking. Even an interpreter-based tool would have
the problem that it is not practical to force the applica-
tion through all possible code paths. It is worth not-
ing that this problem is present in all dynamic lan-
guages and object-oriented languages have the same
problem; you can’t just look at the code and know
what it is doing.

Reviewing. As mentioned previously, at BitMover
we do a lot of peer review as well as other forms of
code reading. For the same reasons that it is difficult
to write a lint-like tool for Tcl, it is difficult for a
human to look at Tcl and understand what it is doing.
The verbose style of basic operations in Tcl, e.g.,

lset fib $i \
[expr \
{[lindex $fib [expr {$i-1}]] +
[lindex $fib [expr {$i-2}]]}]

vs

fib[i] = fib[i-1] + fib[i-2];

tend to obscure what is actually being said in the
code.

Optimization. Optimizing Tcl is more challenging
than optimizing a ‘‘weaker’’ language such as L.
Many well understood optimization techniques could
be applied to the compilation of L, resulting in a sig-
nificant performance increase for some programs. As
an example, due to the static type system of L, we
believe it’s possible to make L immune to ‘‘shimmer-
ing.’’Wiki2005a

We tend to view Tcl more like assembly language on
steroids. It is a powerful tool and when that power is
needed it is appreciated. But most of the time we are
doing fairly simplistic programming deliberately so it
is easy to read, and we find that a static language with
a static type system is much easier for us to read and
easier for a compiler to optimize and check.

-4-

6. L vs native GUIs

This question gets raised at least once a year here:
why not do native GUIs? It is certainly possible to do
so. We hav e done implementations of several of our
GUIs in other toolkits. The arguments for doing so
are compelling: better look and feel, native behavior,
etc.

The reasons for staying with Tcl/Tk are simple:

Cost. The cost of creating 2-4 different implementa-
tions of each GUI interface is probably 3 times what it
took us to get where we are today. But the cost does
not end there. The cost extends to testing the GUIs on
each platform as well as putting processes in place to
make sure that the GUIs march forward in sync, i.e., if
the Java revtool gets a new feature, that same feature
needs to be added to the Linux, Windows, and Aqua
GUIs. When we add up all the costs, it looks more
like 6 times the effort.

Functionality. Every time we go look at the other
toolkits we find that they are not as powerful as the Tk
toolkit. In particular, the canvas and text widgets are
more useful than any others we have found.

That said, a large drawback of the Tk approach is the
lack of a complete widget set in the core. In order to
get the functionality needed, a ragtag group of exten-
sions, with partially overlapping features, need to be
combined into a Tcl/Tk ‘‘distribution.’’ We look for-
ward to the day that this issue is resolved.

7. L language details

In this section we cover some of the differences from
C, differences from Tcl, types, call/return conven-
tions, expressions, and control flow.

7.1. Extensions to C

Regex. L uses Perl’s syntax for regular expressions in
statements, but it uses Tcl’s regular expression engine.
So you may say:

if (a =˜ /${r}/) {...

to get the same results as Tcl’s

if {[regexp $r $a]} {...

Associative arrays. We call these hashes in L to dis-
tinguish them from traditional C-style arrays. The
keys and values are strings.

Arrays grow. If you assign into an array past the last
element the array grows as needed. Many constructs
that would normally use C pointers, such as linked
lists or trees, can be constructed with an array of
structures linked via indices rather than pointers.

defined(). A built-in that indicates if the variable
passed is defined. The following tests for the exis-
tence of the field in the hash, and the existence of the
array element, respectively.

defined(foo{"bar"})
defined(stuff[3])

Strings. Strings are first-class objects like any other
base type. One implication of this is that unlike C
strings, which are pointers, if you want to pass a refer-
ence to the string you must do so explicitly.

7.2. Unimplemented C features

L does not have bit fields, enums, unions, or C-style
pointers. L currently does not have a C-like prepro-
cessor, though one is planned.

7.3. Extensions to Tcl

Type checking. L has a weak static type system,
which makes it possible to do type checking at com-
pile time. Note that L’s type system is independent of
Tcl’s runtime type system, although the two can inter-
operate. Variables in L may not change types, unlike
Tcl variables, which are strings except when they’re
not (as with floats, ints, lists, etc.)

Structs. C-style structs are part of L. A Tcl API is
provided that supports getting and setting fields as
well as introspection.

References. Pass by reference in Tcl is possible but
awkward. Attempts have been made to improve it in
TclWiki2005b but they are unsatisfying. We think our
syntax is cleaner and easier to read.

Function prototypes. Currently these are used to get
type checking when calling Tcl built-ins. For exam-
ple, we can prototype gets() as

extern int gets(FILE, string &);

to always require gets to be called with two argu-
ments. We could also prototype gets() as

extern string gets(FILE);

to make it return a string. If prototypes are missing, L
treats undefined functions as external Tcl functions
that return poly and take a variable number of argu-
ments of type poly.

-5-

7.4. Types

7.4.1. Simple types

int. Integer types in L are like C integers: they are
sized to the machine’s word size (at least 32 bits and
possibly 64). Integers in L are initialized to 0, even
for local variables.

int a = 5;
int b; // defaults to 0

Any constant that looks like an int is typed as an int.

float. Floating-point numbers in L are at least double-
precision IEEE 754. Floats are initialized to 0.0, even
for local variables.

Any constant that looks like a float is typed as a float.
Note that this means that assigning an integer to a
float is only legal because of automatic type conver-
sion.

float f = 1; // converts to 1.0
float g; // defaults to 0.0
float pi = 3.14159265;

string. The string type is the same as a Tcl string but
different from a C string. Strings are not null-termi-
nated as they are in C, nor are they arrays of bytes. L
strings are Tcl strings, which are UTF-8 encoded and
have a known length. L strings are initialized to the
empty string.

To iterate over each character in a string, use the
defined() operator:

int i;
string s = "a string";

for (i = 0; defined(s[i]); i++) {
printf("s[%d]=%s\n", i, s[i]);

}

Note that there is no separate character type in L.
When indexing into a string, each character is merely
a string of length 1. This also means that there is no
need to use special single-quoted syntax for character
literals:

str[i] = "c";

L provides a special escape sequence, ${, which
allows embedding code in strings. All the text from
${ to the matching } is collected and evaluated. Its
value is then substituted into the string:

int i = 41;

printf("41 + 1 is ${i + 1}\n");

prints:

41 + 1 is 42

7.4.2. Tclish types

poly. This is a generic type that is like a Tcl variable
on which no type checking is done. Normal variables
cause compile-time errors if they attempt to change
types; a poly variable suppresses the static type check-
ing so that a variable can switch from one type to
another, e.g. float to array or to int, etc. The following
is legal code:

poly unchecked;
string s;

unchecked = 1;
unchecked = "Hey there";
unchecked = 3.14;
// cast is required
s = (string)unchecked;

var. This is a compromise variable type. It is type-
checked but the type is not set until the first assign-
ment. The type is determined from the assignment
and may not change. The following throws an error:

var late_binding;

late_binding = 1;
late_binding = "Hey there";

As we noted above, constant types are intuited. This
might cause problems with var variables. For exam-
ple, this throws an error:

var f = 1; // f is now an int

f = "pi"; // int/string error

but this works fine:

var f = 1.0;

f += 3.14;

7.4.3. Magic

:constant. Many Tcl/Tk interfaces take key/value
pairs that look like

text .t -bg white -fg black

which in L might look like

text(".t",
"-bg", "white", "-fg", "black");

We wanted a way to make the −whatever stand out
from the values being passed as an argument to
−whatever. We decide to do that like this:

text(".t",
:bg, "white", :fg, "black");

When the parser sees an identifier in a function call
that has a leading colon, L treats it as if it were a
quoted string with the colon replaced by a dash.

-6-

7.4.4. Compound types

array. Arrays are like C arrays in syntax but are
implemented as Tcl lists under the covers. Array ele-
ments are homogeneous; all elements must share the
same type. Array assignments in declarations are sup-
ported for globals and locals:

string foo[] = { "Hi", "there" };
int bar[] = { 1, 2, 3, 4 };
int i;
int total = 0;

for (i = 0; defined(bar[i]); i++) {
total += bar[i];

}

Arrays are dynamically grown and cannot be sparse.

int a[2];

a[0] = 10;
a[100] = 20; // allowed

After the previous code has been executed, a has 101
elements. a[1] to a[99] hav e the value 0, which is the
default initial value for integers.

The defined operator is an easy way to check if an
index is outside the array bounds:

// prints ’no’
if (defined(a[101])) {

printf("yes\n");
} else {

printf("no\n");
}

hash. Hashes are associative arrays, indexed by
strings and returning string values. They are imple-
mented by Tcl dictionaries under the covers. Hash
assignments in declarations are supported for globals
and locals and follow the Perl syntax:

hash h = { "key" => "val",
"key2" => "val2" };

h{"foo"} = "bar";
if (defined(h{"blech"})) {

printf("blech is not a key!\n");
}

The defined operator can also be used to check if a
key is present in a hash:

// prints no
if (defined(foo{"k"})) {

printf("yes\n");
} else {

printf("no\n");
}

It is possible to iterate over each value in a hash using
a foreach loop:

foreach (h as k => v) {
printf("%s => %s\n", k, v);

}

struct. Structs are collections of typed variables, as in
C. Declarations are the same as C declarations.
Struct assignments in declarations are supported for
globals and locals:

typedef struct {
int a;
float b;
string c;

} eg;

eg s = { 1, 3.14, "hi there" };

Structures are implemented as Tcl lists just like L
arrays. The names are translated into integer indices
by the L compiler. Since it is just a Tcl list, an L
structure can be passed to any Tcl proc that expects a
list.

It is likely that we will extend the struct construct to
have initializers, e.g.,

typedef struct {
int a = 1;
float b = 3.14;
string c = "hi there";

} eg;

eg foo;
puts(foo.a); // prints 1

7.5. Passing semantics

A C programmer, looking at Tcl, would think that the
Tcl model is pass by value. While Tcl has no way to
pass a C-style pointer to an object, it does have a way
to fake it with something called upvar. L wants pass
by value but it also wants to provide pass by refer-
ence. This section describes how we used the Tcl sys-
tem to provide the L passing semantics. It amounts to
a little syntactic sugar on top of upvar.

7.5.1. By value

L obeys Tcl’s semantics for pass by value. Parameter
passing looks like it does in C:

int i = 1234;

foo(i, 0xdeadbeef, "string");

L programs typically do not pass compound types by
value to other L functions (but see the (tcl) cast below
for how to pass them to Tcl procs).

-7-

7.5.2. By reference

The Tcl system has a way of passing by reference that
might appear strange to C programmers.

proc foo {ref} {
upvar $ref pointer

set pointer 1
}

The upvar command creates a reference to the vari-
able in the caller’s context and places it in pointer.
Assignments to pointer are the same as if the assign-
ment were done in the caller’s context (after evaluat-
ing the right-hand side).

We used this mechanism to emulate pass by reference
in L. We call it ‘‘pass by name’’ because the caller is
putting the name of the variable on the stack and the
callee is doing an automatic upvar to create the refer-
ence. The syntax looks like:

void foo(int &ref)
{

ref = 1234;
}

int a = 19;

foo(&a);
puts(a);

and that prints

1234

Arrays and hashes do not take the ampersand because
they are trying to behave like C arrays, i.e., they are
already references.

void clear(int v[])
{

int i;

for (i = 0; defined(v[i]); i++) {
v[i] = 0;

}
}

int junk[] = { 1, 2, 3 };

clear(junk);// junk = { 0, 0, 0 }

Note that strings, unlike in C, are first-class objects
and are not references. If you want to modify a
string, you must pass it by reference. For example, to
use the Tcl built-in for reading a line of input you
have to do this:

string buf;

// buf is an out parameter
gets(stdin, &buf);

7.5.3. L pointers

While the upvar trick works nicely for many cases,
there is still a need for real pointers. When creating a
widget, such as an entry box, it would be natural to
have a struct that contained all the things related to
that widget such as its path, the variable that the entry
box sets, etc., like so:

widgets(entry &e)
{

e.frame = frame(".f");
e.entry = entry("${top}.entry");
e.entry("configure",

:textvariable, &e.textvar);
}

Our trick of making an ampersand mean ‘‘push the
variable name on the stack’’ does not work here for
multiple reasons. First, the variable in this case is a
structure field, which is an element of a Tcl list.
There is currently no way to pass a list element as a
−variable argument; Tcl does not support that. Sec-
ond, −variable arguments must be accessible at the
global scope. There is no guarantee that the name
passed in makes sense at the global scope.

What is needed is a way to take an L variable and turn
it into something that Tcl can find out of the event
loop. The natural answer is some kind of pointer.

We created a new Tcl object type to hold all the infor-
mation related to a pointer. The information looks
like:

struct pointer {
int depth; // upvar #depth
string name; // var pointed to
string index; // optional index

};

The depth field is used to get to the call frame where
the variable being pointed at was declared. For GUI
code like the example above, the depth is almost
always 0, indicating a global. The string is the name
of the variable to which the pointer refers. If the
underlying type of the variable is a list (remember that
structs are implemented as lists) then the index is the
index into that list. The index is a string because in
the future we intend to make pointers into hashes
work.

-8-

There is a new Tcl command, pointer, which may be
used to manipulate pointers from Tcl directly. The
following code creates a pointer, points it at the last
element of the list l, uses the pointer to get the value
of the variable pointed at, and uses the pointer to set
the value of the variable pointed at to foo. When we
are done, $l contains a b foo.

set l [list a b c]
set p [pointer create l]
pointer index $p 2
pointer get $p # prints c
pointer set $p foo

Let’s now consider the widget example above,
remembering that it had a variable reference
&e. textvar. The compiler provides some magic to
treat that construct as an L pointer. When the com-
piler sees a string constant of the form −.*variable2

and the next token is an L variable with a leading
ampersand, the compiler automatically wraps the vari-
able in an L pointer.

7.5.4. Return values

Because returns are by value in L, and Tcl also returns
by value, no changes were required to make returns
work in L.

It is worth noting, especially for C programmers, that
there is a sneaky way to do an allocation. When a
local variable is returned, the return bumps the refer-
ence count. Without that bump, the local variable in
question would have been freed along with any other
locals that were on the callee’s stack. Tcl objects are
reference counted so the variable will get freed when
the caller is finished with it.

string[]
vector(int n)
{

string v[];

// Allocate 0..n-1
v[n - 1] = "";
return (v);

}

string foo[] = v(100);

7.6. Casts

(tcl). There are times when we need to pass a com-
pound object (array, hash) as a string. Any Tcl proc
that expects to see a string on the stack will want this.
The (tcl) cast is used to do this.

2 Remember that : foo token is just syntactic sugar
for ‘‘− foo.’’

string v[] = { "hi", "good day" };

puts((tcl)v);

prints

hi {good day}

(L). There may be times when a Tcl proc is returning
a complex structure to us and we want to cast it from
the Tcl list to our structure:

#lang(tcl)
proc demo {} {

return [list {good day} sir]
}

#lang(L)
v = (L)demo();
printf("%s %s\n", v[0], v[1]);

prints

good day sir

Note: doing this sort of thing puts you at the mercy of
the Tcl code which knows nothing about the L type
system.

7.7. Operators

L supports most of the operators in the C program-
ming language, as well as several of the most useful
operators from Perl. In this section we do a quick run
through all of the operators in L and discuss some of
their more subtle aspects in depth.

Much of this section is cribbed from the C reference
manual.Kernighan1978a

7.7.1. Arithmetic operators

The binary arithmetic operators in L are +, -, *, /, and
% (modulus). They work as in C with the C prece-
dence rules.

7.7.2. True vs. false

All of the relational and logical operators are part of
an expression and that expression evaluates to either
true or false.

In L, there is only one false value. This is different
from Tcl, which allows many false values, such as the
strings ‘‘false’’ and ‘‘off.’’ The false value in L is 0,
or, equivalently, ‘‘0’’. Any value other than 0 is con-
sidered true.

if (0) {
printf("consequent\n");

} else {
printf("alternative\n");

}

prints: alternative

-9-

7.7.3. Numeric Comparison

These all work as in C with the C precedence rules.

Relational operators

expr > expr
expr >= expr
expr < expr
expr <= expr

Equality operators

expr == expr
expr != expr

Logical Operators

The && and || operators short-circuit as in C.

expr && expr
expr || expr
!expr

7.7.4. Regular expression operators

Stolen from Perl, the first form is true if regex is a
regular expression that matches string. The second
form is true if regex is a regular expression that does
not match string. The // construct is an alias for a
double quoted string, which means that all or part of
the string may be an interpolated variable (or expres-
sion). The m|| construct is also from perl; it means
use the vertical bars instead of slashes (frequently use-
ful when dealing with path names).

string =˜ /regex/
string !˜ /regex/
string =˜ m|${expr}|

7.7.5. Increment and Decrement Operators

As in C, with the value returned either before or after
the increment or decrement.

lvalue++
++lvalue
lvalue--
--lvalue

7.7.6. Bitwise Operators

expr & expr
expr | expr
expr ˆ expr
expr << expr
expr >> expr
˜expr

7.7.7. Assignment Operators

lvalue = expr
lvalue += expr
lvalue -= expr
lvalue *= expr
lvalue /= expr
lvalue %= expr
lvalue <<= expr
lvalue >>= expr
lvalue &= expr
lvalue |= expr
lvalue ˆ= expr

7.7.8. Ternary Operator

expr ? expr : expr

7.8. Reserved Words

These are L’s reserved words:

break case continue defined do
else float for foreach if int L
poly return string struct switch
tcl typedef unless until var void
while

7.9. Control flow

Conditional statements

if (expr) statement
if (expr) statement else statement
unless (expr) statement

In all cases expr is evaluated and if it returns anything
other than zero, then the first if statement is executed.
If it returns zero, then the else statement or the unless
statement is executed.

While/until statements

while (expr) statement
until (expr) statement

The expr is evaluated and statement is executed
repeatedly while expr is non-zero in the while case, or
zero in the until case.

do statements

do statement while (expr)
do statement until (expr)

statement is executed repeatedly while expr is non-
zero in the while case, or until non-zero in the until
case.

-10-

for statement

for (exp1opt; exp2opt; exp3opt) statement

All expressions are optional. Other than the continue
statement, which in this case executes exp3, this is the
same as

exp1;
while (exp2) {

statement
exp3;

}

foreach statement

foreach (h as key => val) statement
foreach (p in v) statement

The first statement iterates over each key/value pair in
the hash h. The key/value pair is placed in key and
val and then statement is executed. Behavior is unde-
fined if keys are inserted or deleted in h in statement.
The second statement sets p to each element of v,
calling statement once per element.

switch statement

switch (expr) statement

expr must evaluate to an int or a string. Any state-
ment within statement may contain one or more
labeled statements of the form

case constant − expr: statement
case /constant − expr/: statement
case <constant − expr>: statement

There may be at most one statement of the form:

default: statement

When the switch statement is run, expr is evaluated
and jumps to the case label that matches. Case labels
may be double-quoted string constants, integer con-
stants (not floats), constant regular expressions
(/.*.[ch]/), or constant globs (< *.[ch] >). If no label
matches, then if the default label exists, a jump to the
default label occurs. As in C, control continues to
flow past labels; see the “break statement” for exiting
from a switch.

break

break ;

causes termination of the smallest enclosing while,
until, do, for, or switch statement.

continue

continue ;

causes control to pass to the loop-continuation portion
of the smallest enclosing while, until, do, or for loop.

return

return;
return (expr);

In the first case the return value is undefined. In the
second, the return value is expr.

7.10. Changes to Tcl

In the course of implementing L, two small but impor-
tant changes were made to Tcl that could affect all Tcl
programs, although we don’t expect the effects to be
visible.

7.10.1. Top-level Compilation

Top-level code in Tcl, i.e., code that isn’t contained in
a proc body, is now passed to the byte-code compiler.
We require this so that the L compiler can emit byte
code for top-level L code. It could be useful in the
future for saving Tcl byte code between invocations,
similar to the TclPro compiler.

7.10.2. Changes to the Tcl Parser

The #lang(tcl) string forces the language to be Tcl,
the #lang(L) forces the language to be L. It is
allowed to have snippets of both L and Tcl in the
same source file.

When Tcl starts up with a file argument, if the file
ends in . l then #lang(L) is implicit. The default is to
start up in Tcl mode.

Tcl’s Tcl_ParseCommand has been modified to rec-
ognize a comment with a special form. Whenever the
parser sees #lang(L) it stops normal parsing and
inserts two tokens into the token stream. The first
token is a call to the LCompileCommand function and
the second is the text after the #lang(L) comment up
to the next #lang(tcl) comment or end-of-file.

8. Status

The L language is under active dev elopment and the
speed of development is increasing. Our expectation
is that we will have a usable system in 1-2 months.
Our goal is to be rewriting our GUI tools in L early in
2007. There is a mailing list, l@bitmover.com,
and an IRC channel, ##l on Freenode. People are
welcome to join either.

9. Future work

9.1. Scoping

Like a C source file, a scope provides a container for
private and/or public variables and/or functions. This
could be used to provide a self-contained ‘‘class.’’

-11-

9.2. Pre-compiled modules

Imagine that each scope is a module and each module
can be pre-compiled. The on-disk format is in sec-
tions: there is a byte-code section and a sort of table
of contents which can be thought of as a header file
containing function prototypes.

9.3. Optimizations

The dynamic nature of Tcl means that many tradi-
tional compiler optimization techniques cannot be
used. L compiles the source to an abstract syntax tree
and could take advantage of a number of well known
optimizations. These include: constant subexpression
elimination, dead code removal, strength reduction,
loop invariant code motion, tail-call optimization,
code hoisting, and others.Muchnick1997a

The lack of general C-like pointers in L greatly sim-
plifies alias analysis and makes it possible to be more
aggressive when applying optimizations.Hind2001a, Mar-

lowe1993a

9.4. Debugging

The static nature of L code would make it possible to
create a mapping between L source code and Tcl byte
codes such that traditional debugging techniques
could be used. One possible approach would be to
instrument the generated byte code to invoke a debug-
ger every time an L statement completes.

10. Licensing and availability

The license is the Tcl license; L is part of Tcl as far as
we are concerned.

The source is maintained in a BitKeeper repository
which is an import of the CVS Tcl repository. For the
3 people in the world who won’t use BK, we will do
nightly tarballs and make them available on our FTP
server.

11. Conclusion

This paper has described the L programming lan-
guage. The L language is unique in that it is an alter-
nate syntax which peacefully coexists with the Tcl/Tk
system and leverages all of that system.

Over the course of the next year we expect to use L to
rewrite our GUI systems. Given that L is a young lan-
guage, we expect that it will continue to evolve as we
use it. It is likely that we will publish an updated ver-
sion of this paper after the language stabilizes.

12. Acknowledgements

The L language draws heavily from the C language.
It’s hard to imagine that Brian, Dennis and Ken want

any more pats on the back, but here is one more. We
are definitely C fans.

Rob Netzer, Brian Griffin, and Mark Roseman were
helpful in talking over various language problems and
ideas.

John Ousterhout for Tcl/Tk, introduced in 1988 and
still going strong.

Kennan Rossi for being there as always with editorial
help.

This paper was typeset using groff and as always we
thank Joe Ossana for troff and James Clark for groff.

References

Brooks1975a.
Fred Brooks, The Mythical Man Month (1975).

Wiki2005a.
The Tcler’s Wiki, “shimmering,”
http://wiki.tcl.tk/3033 (Dec 2005).

Wiki2005b.
The Tcler’s Wiki, “use_ref,”
http://wiki.tcl.tk/15120 (Dec 2005).

Kernighan1978a.
Brian W. Kernighan and Dennis M. Ritchie, The
C Pro gramming Language, Prentice-Hall, Inc.
(1978).

Muchnick1997a.
Steven S. Muchnick, Advanced Compiler
Design and Implementation, Morgan Kaufmann
(1997).

Hind2001a.
Michael Hind, Pointer Analysis: Haven’t We
Solved This Problem Yet?" (2001).

Marlowe1993a.
Thomas J. Marlowe, Jong-Deok Choi, William
G. Landi, Michael G. Burke, Barbara G. Ryder,
and Paul Carini, “Pointer-Induced Aliasing: A
Clarification,” ACM SIGPLAN Notices, Volume
28, No. 9 (September 1993).

-12-

Appendix - code samples

A simple cat
int
main(int ac, string av[])
{

int i;
FILE fd;

if (ac == 1) {
puts(:nonewline, read(stdin));
return (0);

}
for (i = 1; defined(av[i]); i++) {

fd = open(av[i], "r");
puts(:nonewline, read(fd));

}
}

A simple grep
int
main(int ac, string av[])
{

int i, rc;
string regex;
FILE fd;

if (ac < 2) {
// Tcl’s [error]
error("Not enough arguments.");

}
regex = av[1];
ac--;
if (ac == 1) {

rc = grep(regex, stdin) ? 0 : 1;
return (rc);

} else {
rc = 1;

for (i = 2; i < ac; i++) {
fd = open(av[i], "r");
if (grep(regex, fd))) rc = 0;
close(fd);

}
return (rc);

}

}

int
grep(string regex, FILE in)
{

string buf;
int matches = 0;

while (gets(in, &buf) >= 0) {
if (buf =˜ /${regex}/) {

printf("%s\n", buf);
matches++;
}

}
return (matches);

}

Fibonacci
main()
{

int fib[] = fib(100);

for (i=0; defined(fib[i]); i++) {
printf("%d\t%d\n", i, fib[i]);

}
}

int[]
fib(int n)
{

int fib[] = { 0, 1 };
int i;

for (i=2; i<n; i++) {
fib[i] = fib[i-1] + fib[i-2];

}
return (fib);

}

Quicksort
/*
* qsort:
* sort v[left]...v[right]
* into increasing order.
* From K&R C, verbatim.
*/
void qsort(int v[], int left, int right)
{

int i, last;

if (left >= right)
return;

swap(v, left, (left + right)/2);
last = left;
for (i = left+1; i<= right; i++)

if (v[i] < v[left])
swap(v, ++last, i);

swap(v, left, last);
qsort(v, left, last-1);
qsort(v, last+1, right);

}

/* swap: interchange v[i] and v[j] */
void swap(int v[], int i, int j)
{

int temp;

temp = v[i];
v[i] = v[j];
v[j] = temp;

}

