
Vlerq + Ratcl = Easy Data Management

Jean-Claude Wippler
Equi4 Software, NL

September 2006

Contents

Introduction 2
Data Management 2
Ratcl 3
Dataflow 6
Persistence 7
Transactions 8
Efficiency 8
Internals: Vlerq 9
Current Status 11
Acknowledgments 11

Abstract

Ratcl and Vlerq (rhymes with “flair”) are new extensions for Tcl which 
provide a general data-querying and data-manipulation foundation 
for in-memory and persistent data, supporting a range of relational 
and set-wise operations. Data is managed as views, which have the 
dataflow-like ability to automatically track changes. Views can be 
stored on file, with full transaction support currently in development. 
Preliminary memory-use and performance results indicate that the 
system is very efficient. Some details about the internal design are also 
provided.

 - 1 -



Introduction
One reason why scripting languages are effective is 
because data is dynamically typed: variables have no 
type, they can refer to any type of data item. Not hav-
ing to declare types (or variables) tends to improve 
productivity and reduce code complexity.

Tcl treats data types specially, in that it maintains the 
“Everything Is A String model”, at least at the script-
ing level. Due to EIAS, any data can be displayed, 
printed, saved to file, and sent across a network as is.

With this convenience comes a higher overhead, both 
in memory use and in performance.

A second aspect common to scripting is the presence 
of a few very general-purpose data structures, called 
lists and arrays in the case of Tcl. Lists are efficiently 
indexable, arrays are good at associative lookup.

While lists and arrays are sufficient to write large 
applications, they are not always optimal. When 
larger amounts of data are involved or highly struc-
tured algorithms are being implemented, it would 
help to have stricter ways to manage that data. This 
strictness, applied to data types and compound data 
structures, helps take advantage of a regularity which 
is present in many application domains anyway.

A distinction can be made between data items - for 
which dynamic type is very convenient - and data 
collections - which consist of items, but which tend to 
benefit from having a well-defined structure.

By making everything totally dynamic, scripting lan-
guages are losing out on various opportunities to 
improve memory use and performance.

Tcl’s EIAS is a trade-off in this respect: there is no 
way to easily store or transfer data other than as text 
strings. The lack of type information makes it impos-
sible to take advantage of type even when known to 
the programmer. Unless one relies on a database li-
brary - but that brings its own set of trade-offs in hav-
ing to leave one language to use another.

This paper presents a conceptual model and an im-
plementation as a pair of extensions for Tcl, which 
shows how one can get the best of all worlds:

• flexible untyped data handling where needed
• structured data which can easily be passed around
• optional strict data types in (nested) collections
• high performance and low memory use
• easy persistence and support for transactions

The difference with traditional database solutions is 
that no new language is being introduced - every-
thing is deeply embedded in Tcl, to the point that 
many optimizations take place without altering the 
way in which scripts are written.

Data Management
As Frederick Brooks wrote over 30 years ago 1:

Show me your flowchart and conceal your tables, 
and I shall continue to be mystified. Show me your 
tables, and I won’t usually need your flowchart; 
it’ll be obvious. 

Or: data structures live forever, code changes. This is 
due to the fact that we tend to store data for a long 
time, beyond the run time of applications. It’s hard to 
revisit data structure design decisions, once code is 
written and deployed.

With scripting languages and dynamically typed data 
this remains just as true as with compiled languages. 
Changes to data structures still affect a lot of code, 
especially if access paths and relationships between 
the data change.

Tcl is very much oriented to element-by-element 
processing. The lsearch command is available for sim-
ple queries but all more complex access and manipu-
lation tasks require iteration based on for or foreach. 

Data handling in Tcl is still quite rudimentary.

Ratcl and Vlerq extend Tcl with a richer data structure 
plus a range of relational, set-wise, and other collection-
oriented data manipulation operators.

Views

A general-purpose data structure called a view is used 
as foundation for all data manipulation:

Bill 12019

Mary 915

3512John

SizeAgeName

ROW COLUMN ITEM

Loosely speaking, a view is like a table:

• a view consists of rows and columns
• rows are accessed by their 0-based position
• columns are accessed by name or by position
• each row/column combination holds an item
• all items in a column have the same data type

The items in a column can be integers, floats, strings, 
or binary data. With strings, this reverts to being able 
to store any Tcl value.

Nested sub-views:

But an item in a view can also be a sub-view:

 - 2 -

1Frederick P. Brooks, The Mythical Man-Month, 1975 - Chapter 9.



John

PhonesName

345-6789Work

123-4567Home

NumberPhone

In this example, the main view has one row, with a 
sub-view in the Phones column. Sub-views them-
selves might again contain sub-views.

Views are general-purpose containers. There are a 
few important differences between views and rela-
tions as used in relational databases:

• rows in a view are ordered and accessible by their 
ordinal position, tuples in a relation are not

• columns in a view are ordered, whereas the order 
of attributes in a relation is irrelevant

• views may contain duplicate rows, i.e. a view is a 
bag whereas a relation is a set

• views may contain duplicate column names (col-
umns can always be accessed by position)

• relations do not usually support nesting

Views are a superset of relations: a view can represent 
any relation, the converse is not always possible.

Tcl lists can be represented as 1-column views, and 
arrays as 2-column views, for keys and values respec-
tively.

Views can be empty, i.e. contain zero rows. They can 
also have no columns - a zero-column view with N 
rows is very much like the count N.

Meta views

Every view has a meta view associated with it which 
describes the view’s field/column structure. For the 
Name / Age / Size view used as first example, the 
meta view is:

-ISize

I

S

type

-Age

-Name

subvname

Meta views always have three columns, describing 
the name, type, and sub-view structure of the data 
view. Each row in the meta view corresponds to a 
column in the data view, in the same order.

With nested sub-views, the subv column contains a 
meta view describing the corresponding sub-view.

Views and meta views form an inter-twined combo: 
even meta views have a meta view - a meta view can 
be used like any other view.

Ratcl
Ratcl (“Relational Algebra for Tcl”) is a Tcl extension 
which implements views. Ratcl is a pure-Tcl extension 
which wraps the Vlerq extension (written in C). In 

normal use Vlerq does all its work behind the scenes: 
Ratcl adds a friendly layer on top to make it all con-
veniently usable from Tcl.

An example

It’s easiest to introduce Ratcl with an example (some 
lines omitted for brevity, output in blue):
% package require ratcl
% set v [view {Name Age:I Size:I} vdef {
   John 12 35 Mary 15 9 Bill 19 120
}]
% puts [view $v dump]
  Name  Age  Size
  ====  ===  ====
  John   12    35
  Mary   15     9
  Bill   19   120

The main command defined by Ratcl is “view”. It is 
used to construct and manipulate views:
set v [view {Name Age:I Size:I} vdef {
   John 12 35 Mary 15 9 Bill 19 120
}]

This takes a list {Name Age:I Size:I} and applies the 
vdef operator to it, giving it a second list as parameter. 
The result is stored as $v.
puts [view $v dump]

This uses $v as input, and applies the dump operator 
to it. The result is suitable for display: dump pretty-
prints its input view. As you can see, the input for 
vdef is used as the list of column names. The “:I” suf-
fix indicates integer values (the default is strings).

Pipelines

The view command is also used to create pipelines of 
multiple view operators, where the result of the first 
operator gets passed on to the second one, and so on. 
The notation for this is the same as when processing 
pipes in the Unix shell:
view view vop1 ... | vop2 ... | ...

So our example could also be written as:
puts [view {Name Age:I Size:I} vdef {
   John 12 35 Mary 15 9 Bill 19 120
} | to v | dump]

Note that a “to v” operation was added - this assigns 
the view to variable “v” to mimic the original code.

View access

A common task is to get some data out of views. The 
workhorse operator for this is get, which lets you 
extract specific items from a view.

• extract one item from row 0, column Name:
% view $v get 0 Name
John

• extract one item from the last row, column Name:
% view $v get 2 Name
Bill

• another way to specify the last row, end-relative:
% view $v get -1 Name
Bill

 - 3 -



• extract one item from row 0, column 0:
% view $v get 0 0
John

• extract row 0 as a list of values:
% view $v get 0 *
John 12 35

• extract row 0 as a list of tagged values, i.e. a dict:
% view $v get 0
Name John Age 12 Size 35

• extract column Name, as a list of values:
% view $v get * Name
John Mary Bill

• extract all rows, as a list of lists:
% view $v get *
{John 12 35} {Mary 15 9} {Bill 19 120}

• extract all items as one list:
% view $v get * *
John 12 35 Mary 15 9 Bill 19 120

• a shorter way to extract all items as one list:
% view $v get
John 12 35 Mary 15 9 Bill 19 120

To determine the number of rows, use size:
% view $v size
3

Use width to get the number of columns:
% view $v width
3

The get operator can also extract sub-views, meta 
views, and more.

Both size and width are in fact also defined as special 
calls to the get operator.

View operators

There are a large number of pre-defined view opera-
tors, and new ones can be added in Tcl.

Here are examples of selection:
% puts [view $v where {$(Age) > 12} | dump]
  Name  Age  Size
  ====  ===  ====
  Mary   15     9
  Bill   19   120

… and sorting:
% puts [view $v sort Size | dump]
  Name  Age  Size
  ====  ===  ====
  Mary   15     9
  John   12    35
  Bill   19   120

Here is a partial list of operators:

• Iteration: collect, index, loop
• Sets: except, intersect, union, unique
• Shape: repeat, spread, transpose
• Relational: join, group, project, sort, where
• Vectors: reverse, slice
• Permutation: mapcols, remap
• Synthesis: concat, pair, rename, tag
• Display: dump, html, structure
• Aggregates: avg, count, min, max, sum
• Informative: meta, names, size, types, width

Grouping and Joining

The group and join operators are special in that they 
return nested view structures. The ungroup operator 
is the inverse of group.

Grouping operates on a single view - for example:

Work 543-6543Bill

HomeBill 432-5432

Bill 321-4321Cell

789-7890CellMary

Work

Home

Phone

345-6789John

123-4567John

NumberName

We can group on Name and collect the remaining 
columns into a new Phones sub-view column using:

view $v group Name Phones

The result is this nested view:

Bill

Mary

John

PhonesName

345-6789Work

123-4567Home

NumberPhone

789-7890Home

NumberPhone

Work 543-6543

432-5432Home

321-4321Cell

NumberPhone

Joining can be viewed as “connecting” each row of 
the input view by looking up the common column(s) 
in the argument view. It then adds sub-views to hold 
all the matching rows. Here is an example:

WorkBill

HomeBill

CellMary

Home

Phone

John

Name

Work afternoon

WhenPhone

Work morning

weekendFax

eveningHome

We’ll join these and add a Times column to the result:

set j [view $v join $w Times]

 - 4 -



The resulting view in $j is:

Bill Work

Home

Phone

Home

Cell

Bill

Mary

John

TimesName

evening

When

When

evening

When

afternoon

morning

When

If there is no matching row in the right-hand view 
you get an empty sub-view, while matches on multi-
ple rows end up as sub-views with multiple entries. 
Note that sub-views can deal with all cases in a join 
without requiring NULL support (which SQL needs, 
and which has some controversial consequences).

The inverse operation of grouping is ungroup:

view $j ungroup Times

The resulting view is:

afternoonWorkBill

evening

When

morning

evening

WorkBill

HomeBill

Home

Phone

John

Name

So ungroup “flattens” a view by tying each row of a 
sub-view to the remaining fields in the parent view. 
Rows with empty sub-views are omitted from the 
result, since there is no data to tie them to.

The combination of the above join and ungroup is 
called an inner join in database lingo.

Meta views revisited

The structure of views returned from the different 
operators is not always identical to the input view(s). 
This is where meta views play an essential role: each 
view operator takes care that the meta view of its 
result is properly defined  (with group and join this is 
not a trivial task).

So the meta view of any view, whether constructed 
from data with vdef or constructed by any other view 
operator, is always fully defined. It can be accessed 
using the meta view operator. For example, to obtain 
a list of the column names of a view, you could use:

puts [view $j meta | get * name]

This is such a common operation that it has been de-
fined as yet another operator:
puts [view $j names]

In the above example, the output would be the list 
{Name Phone Times}.

Iteration

The loop operator takes a script which it will then 
execute for all rows in its input view:
view $v loop {
  puts “row $(#) has name $(Name)”
}

The loop operator defines an array while it is iterating, 
providing access to all the columns by name for the 
current row. The name of this array defaults to “”, i.e. 
the empty array name - hence the somewhat strange-
looking “$(Name)”.

Another feature of iteration shown above is access to 
the current row index via $(#).

There are more ways to iterate, such as collect:
set map [view $v collect { $(Age) * 2 }]

This evaluates an expression and returns a list with 
one element for each row in the input view.

Custom views

New view operators can be defined in Tcl using the 
vopdef command:
vopdef myvop {v args} {
  return [view $v remap $args | concat $v]
}

This defines a “myvop” operator which takes a list of 
row positions to prefix to its input view. It could be 
used as follows:
puts [view $v sort | myvop 0 2 4 | dump]

This example is not very meaningful, but illustrates 
how new view operators can be created.More ad-
vanced variants of vopdef are also available.

Changes

There are a number of operators which take an input 
view, apply a “change” and return a modified view:

• set - sets one or more items in a view
• insert - insert one view into another
• delete - omit some rows from a view
• replace - a more general form of insert & delete

For example:
% puts [view $v set 1 Age 16 | dump]
  Name  Age  Size
  ====  ===  ====
  John   12    35
  Mary   16     9
  Bill   19   120

The resulting view is the same as the original, except 
for one item in row 1, column “Age”.

 - 5 -



For insert and replace, the inserted data must have the 
same structure as the input view, i.e. it must have the 
same number and type of columns (but column 
names need not match, all original names will be 
retained in the output).

Mutable state

Until now, all views have been treated as values - all 
operators are purely functional with no side-effects.

This matches the way Tcl lists work: you can only 
“alter” a list by constructing a new copy. 

Just like Tcl, Vlerq uses copy-on-write and maximizes 
data sharing where possible by tracking reference 
counts. But with views and sub-views, this approach 
is actually taken a bit further: all change operators are 
implemented on top of mutable views - this is a special 
kind of view based entirely on “smoke and mirrors”. 
Instead of applying changes, a mutable view works 
by keeping a list of differences along with a reference 
to the original view. Yet from the outside the effect is 
indistinguishable from a view which has actually 
been copied and then modified.

The way to have real state changes is just as with lists 
in Tcl: use variables (scalars or array elements). So 
you could do something like:
set v [view $v set 1 Age 16]
set v [view $v insert 2 $w]
set v [view $v delete 3]

Or - equivalently - by using the to operator:
view $v set 1 Age 16 | to v
view $v insert 2 $w | to v
view $v delete 3 | to v

Or even:
view $v set 1 Age 16 | insert 2 $w | \
        delete 3 | to v

Since multiple changes are optimized in such a way 
that all changes end up being accumulated into a 
single mutable view, there is no serious performance 
penalty for doing this, even repeatedly inside loops.

View references

When state changes are common, it gets tedious to 
work with views as values and hence to always have 
to save changes back with an explicit set or to. This is 
where references come in:
% set r [view v ref]
% puts [view $r dump]
  Name  Age  Size
  ====  ===  ====
  John   12    35
  Mary   16     9
  Bill   19   120
% view $r set 0 Size 30
% puts [view $r dump]
  Name  Age  Size
  ====  ===  ====
  John   12    30
  Mary   16     9
  Bill   19   120

Explanation: $r is defined as a reference to $v. What 
this means is that $r can be used as a synonym for $v, 
with one important difference:

     changes to $r cause $v to be adjusted

In a way, $r adds a level of “indirection”, because it 
knows about the name of variable “v”. So accesses 
will perform a dereference and be transparent, and 
changes will make sure that the new result is stored 
back into that variable.

References do need to take scoping rules into account 
- usually global or namespace variables will need to 
be used to store mutable state.

Dataflow
Views based on references are special in that they will 
continue to track changes after being created:
% set s [view v ref | where {$(Age) > 16}]
% puts [view $s dump]
  Name  Age  Size
  ====  ===  ====
  Bill   19   120
% set v [view $v set 0 Age 17]
% puts [view $s dump]
  Name  Age  Size
  ====  ===  ====
  John   17    30
  Bill   19   120
%

Note that $v is the base view, which gets changed 
and that $s is set to a selection of $v.  Changes to the 
variable “v” affect the view in $s.

Caveat

Knowing that changes propagate, you might be 
tempted to set a write trace on “s” in this last exam-
ple, to update a widget for example. 

   That won’t work: the trace will never fire!

It is important to understand why, because this also 
illustrates how Ratcl works under the hood. Let’s first 
examine what $s contains:
% set s [view v ref | where {$(Age) > 16}]
where {ref v} {$(Age) > 16}

Huh? How can “view $s dump” possibly produce the 
output shown earlier?

The explanation is that a view is really nothing but a 
(nested, tree-like) description of how to obtain the un-
derlying data. What $s contains is:

• a request to dereference v: “{ref v}”
• rules to apply on the result: “where ...”

So the magic is not in the view as Tcl sees it, but in 
the operators which are applied to them. A view as a 
string looks trivial - it was the dump operator which 
caused the Vlerq extension to interpret that string in 
such a way that the information got extracted.

Back to the explanation of why traces won’t fire:

    $s does not change when variable “v” changes

 - 6 -



In other words: the description remains constant - it is 
the data behind that description which changes. In a 
way, a view in Tcl is a little program, one which the 
“view” command and all its operators happen to  
know how to execute - so it is not the program which 
changes, but its output when executed.

Real dataflow!

So how can we have real dataflow in Tcl, i.e. changes 
to views “rippling through” to all views defined on 
top of them, and then possibly firing custom scripts 
to act upon such changes?

The answer lies in distinguishing a view definition 
from its data - the “little program” mentioned above.

To make dataflow work, Ratcl defines an extended 
form of the to command:
view ... | to <name> operator...

An example:
% view v ref | to t get * Name
% puts $t
John Mary Bill
% set v [view $v set 0 Name Joe]
% puts $t
Joe Mary Bill

Now, $t no longer contains a view description but all 
the rows of column “Name”. So $t is a list of actual 
values. With actual values, the problem of description 
versus data is gone.

This also works for the size of a view:
% view v ref | to t size
% puts $t
3
% set v [view $v delete 1]
% puts $t
2

And for meta-view details like column names:
% view v ref | to t names
% puts $t
Name Age Size
% set v [view $v project Age Name]
% puts $t
Age Name

Now dataflow will work fine - in the sense of causing 
traceable state changes in Tcl - when a view change 
leads to actual data getting stored in a Tcl variable.

Behind the scenes a lot of caching and dependency 
tracking goes on to maintain the perception of auto-
matically updated dynamic views.

Sub-views

Dataflow also works with sub-view changes: when a 
sub-view is changed, it is the parent view which gets 
modified. Assuming $w is a reference to a suitably 
nested view, the following changes are equivalent:
% view $w get 0 Phones | set 1 Phone 234-5678

and
% view $w set {0 Phones 1} Phone 234-5678

In other words, the set operator accepts a list as row 
position, which is then interpreted as access path into 
a nested view. It does not matter whether the path 
has been traversed explicitly using get or is being 
specified as a set path. Both cases end up doing the 
same: record a sub-view change in its parent view.

Barriers

There is a limit to dataflow, however:
% view $w sort | set 0 Name Alan

The above will not change $v - changes do not travel 
upwards in a calculated view hierarchy.

While there are a variety of scenarios where such a 
change can be meaningful, this is not always the case. 
For this reason, the current implementation of Ratcl 
considers almost all view operators to be a dataflow 
barrier - only changes to the top-most view and all its 
sub-views will “percolate” back through to view ref-
erences. In practice, this means that changes only 
traverse back through immediate references and 
through sub-view accesses, i.e. the get operator.

In cases such as sort, changes act by inserting a new 
mutable view after the sort, and applying the change 
there. You can change a sorted view, since it acts as a 
value, but the change will not have side effects: it will 
only be visible in the view returned by the change.

Changes to derived views do not break the value-
based semantics of views. All changes are imple-
mented in a virtual way: a change to a sorted view 
does not lead to data copying, it gets recorded as a 
difference relative to the (virtually) sorted view.

Persistence
Views can be saved to file and loaded back later on. 
Loading is instant, because memory-mapped files are 
used to bring data in only when actually used. Views 
are not “read” from file in the traditional sense but 
swapped in using hardware-assisted on-demand 
paging. In modern operating systems, this is very 
efficient regardless of file size - even when the data 
file size exceeds the amount of available RAM.

Here is how to save a view to file:
view $v save myfile.db

And here’s an example of how to use it again:
puts [view myfile.db open | dump]

To serialize to a Tcl channel instead of a file:
view $v save -channel $socket

To serialize a view as a binary string:
set data [view $v save]

To read a view from a channel (reads to EOF):
puts [view $socket channel | dump]

To use a saved string as a view:
puts [view $data load | dump]

 - 7 -



Since views can contain nested sub-views, the above 
also works for collections of views. One way to save 
multiple views is to create a view with one row and 
several different sub-views, and to then save/load 
that top-level view instead.

Data files created in this way are very compact, port-
able across architectures with different byte orders, 
and in fact fully compatible with the Metakit embed-
ded database library 2.

There is a freeze view operator, which takes an arbi-
trary view, converts it to an optimally-packed binary 
string, and then uses that string to reconstruct an 
identical view. It is defined as follows:
vopdef freeze {v} {
  return [view $v save | load]
}

This is useful to create a permanent copy of a view 
which was constructed from other views with other 
view operators, and it also allows you to release the 
memory used by the original view and replace it with 
a maximally compact in-core representation.

Persistence includes all sub-views: nested views can 
be saved in the same way as simple “flat” views. 

Transactions
With only a snapshot-like load/save mechanism, 
Ratcl could not be called a “real” database - one of the 
distinctive features of a database is that it efficiently 
deals with large amounts of data, and loading all data 
into memory before use will not scale well.

However, due to the use of memory-mapped files, 
“opening” a data file is actually already instant in 
Ratcl regardless of the amount of data in that file. 
What remains is the requirement to save changes 
quickly and 100% reliably under all circumstances.

The database term for this is ACID-compliance - ACID 
stands for Atomicity, Consistency, Isolation, and Du-
rability 3.

It should now become clear why the decision to store 
view changes as differences was made: to commit a 
transaction, what we need to do is save those differ-
ences in such a way that they get re-applied on open.

And this is precisely how a recent implementation of 
Ratcl works: all changes are collected as differences in 
memory, and on commit a single write operation is 
used to append the total set of changes in one go.

The file format used is the same as in Metakit - it was 
specifically designed to support atomic appends. This 
has another advantage on modern journaled file sys-
tems that one does not need to use fsync system calls 
to enforce fail-safe storage. The way writes are per-
formed is such a way that on a properly configured 

journaled file system such as Ext3, changes to a data 
file are guaranteed to either complete fully or to be 
rolled back fully after catastrophic system failures 
(including power outages).

The file  format has also been designed in such a way 
that Ratcl can deal with multiple-readers / single-writer  
without any file locks. The end of the file determines 
the state of the data file, and since that only changes 
in atomic ways, readers always see a consistent state.

For less robust file systems, fsync system calls can be 
inserted to enforce absolute durability. There is a per-
formance trade-off: with fsync, the rate of commits is 
bounded by the rotational latency of hard disks.

Due to the way in which all changes get appended to 
a file, files will grow after each commit. There is a 
need to compact files so that data areas which are no 
longer in use can be reclaimed. This is currently not 
implemented - the simplest way to compact a file 
which has grown for some time is to save it to a new 
file and replace the original (this needs to be done 
while the data file is not is use by others).

More sophisticated solutions are possible to reclaim 
unused data, but none of these have been imple-
mented or even explored so far.

Note that files grow in size proportional to the 
amount of new data committed, not to the size of 
views or of columns in those views, as in Metakit 
(which does reclaim unused free space, by the way).

The status of transactions is still very much in flux, 
now that dataflow capabilities are being added to 
Ratcl. For this reason, the most recent version of the 
code does not support transactions any more. See the 
Current Status section later on for more details.

Efficiency
There are a different sides to efficiency.

Memory use: data

In Tcl, memory use for various data types and struc-
tures is as follows (in a 32-bit machine):

• integers and floats: 24 bytes per value
• strings: 24 + length of string in UTF-8
• lists: 24 + 4 * #-of-items + items themselves

More memory is consumed when both the internal 
form of a value and its string version are in use.

With Ratcl, memory use is as follows:

• integers: 0..64 bits per value
• floats: 4 bytes, doubles: 8 bytes
• strings: 4..8 + length of string in UTF-8
• views: fixed overhead of around 32 bytes per col-

umn + the items themselves

 - 8 -

2 See the Metakit home page at http://www.equi4.com/metakit.html

3 See the definition of ACID in Wikipedia at http://en.wikipedia.org/wiki/ACID



As you can see, the overhead per item is low for most 
data types, especially for numbers.

Memory use: operators

In Ratcl, most view operators are virtual. They do not 
copy their input data but track the original as well as 
any additional information they need - the actual 
requirements depend on the operator. 

Some examples (overhead in bytes):

• sort - 4 x # of rows in the original view
• where - 4 x # of rows in the result view
• join - roughly 8 x total # rows in both views
• group - roughly 8 x # rows in original view

There is also some fixed overhead for each view, but 
it is not related to the number of rows in the view.

Constructing new views from existing ones is very 
efficient in memory use: views with a million rows 
can often easily be dealt with in today’s standard 
desktop machines.

Speed: item access

The time to access an item in a view depends on a 
number of factors:

• data type: it takes more time to fetch a (variable-
sized) string item than a number

• view nesting: because many views are virtual, ac-
cess into a deeply nested view will be slower than 
access to a base view with data

Timing results show that for a base view, access to an 
item is about 3x as slow as lindex on a list in Tcl. This 
is a bit tricky to estimate, since Tcl bytecode-compiles 
lindex whereas the view command always has to go 
through a C extension call.

Compared to Metakit, i.e. the Mk4tcl extension, Ratcl 
access is at least 3x faster. No timing comparisons 
with other database systems have been made so far.

Speed: operators

Performance-wise, view operators tend to be as fast, 
or sometimes considerably faster than Tcl. One reason 
for this is that view operators are coded in C and do 
not need to go through the Tcl C interface for each 
item access.

Sorting is between 2x and 4x faster in Ratcl than it is 
in Tcl (depending on the data types) for simple keys. 
For compound keys,  Ratcl’s sort is faster still. Com-
pared to Mk4tcl, sorting appears to be around 15x 
faster with Ratcl.

Note that Tcl’s sort is coded in C, it too does not need 
to go through the C interface for each item access, 

although it does internally call the C equivalent of 
lindex.

Grouping and joins have no direct equivalents in Tcl - 
other than coding them as scripts, which would be at 
least an order of magnitude slower.

Nevertheless, it is possible to get an impression of the 
very high performance of both group and join in Ratcl 
by noting that it takes roughly 1 second to apply 
these operators to views with a million rows (in the 
single-key case). These timing results were obtained 
on a 3-year old machine with a 1 GHz PowerPC G4 
CPU - more modern hardware will surely exceed this.

Why is Ratcl fast?

It might be surprising to see such good results for a 
relatively simple data management extension in Tcl, 
but there are in fact two explanations for this and 
they appear to complement each other:

First of all, both Ratcl and Vlerq were designed from 
the ground up for high performance. All the key 
loops are coded in C, so there is no Tcl overhead at 
all: a view operation is often a single call to a C primi-
tive inside Vlerq.

The second reason is the choice of internal data struc-
tures: Ratcl and Vlerq are based on a highly vectorized 
architecture. Not only are all items in a view repre-
sented in an efficient form, they are also organized in 
column-wise form, i.e. the opposite of how one nor-
mally tends to look at collections of structured data. 
So while views look and act like rectangular struc-
tures, they are in fact internally stored as (a few) col-
umns with all items end-to-end, i.e. in vector format.

This has a huge impact on how various algorithms 
can operate - many of them have been optimized to 
take maximum advantage of the locality of reference 
which is inherent in a vectorized data representation. 
As it turns out, modern CPU’s really soar when this 
is done properly: one of the limiting performance 
factors nowadays is memory access. The trick is to 
get lots of relevant data into the CPU’s hardware 
caches. Then, with vectors, iterating across all their 
elements in sequential order leads to massive per-
formance gains.

Surprisingly, there seem to be only very few other 
database packages which use this same “inverted” 
column-wise approach: MonetDB 4 and Kdb 5. Both 
offer blazing performance, by the way.

Internals: Vlerq
Vlerq is the engine underneath Ratcl which imple-
ments the concept of views and many basic opera-
tions on them. It is written in C and a large part of it 
independent of the Tcl language and interpreter.

 - 9 -

4 See the MonetDB home page on the web, http://monetdb.cwi.nłHome/

5 See the Kx Systems home page on the web, http://kx.com/



Nevertheless, Vlerq was designed to work optimally 
with Tcl - and several design choices reflect this.

Value-based data handling

Tcl is a value-based language: scalars and containers 
are not modified but copied and then modified, so 
that changes to data do not have side-effects. This is 
done using copy-on-write with the optimization that 
data structures which are not shared can omit the 
copy and be modified in-place. All side-effects in Tcl 
come from changes to variables (and procedures).

Views adopt this same approach: a view is a value 
which will never “suddenly” change. All modifying 
operators work by (conceptually) creating a copy and 
then applying the changes to that copy. To model a 
permanent state change, you have to assign the new 
value to a variable.

Since views can be nested, the value-based approach 
is carried through all the way: a change to a sub-view 
will not change the sub-view itself, nor the parent view 
owning this sub-view. Instead, a new parent copy is 
made, with the sub-view change applied to it.

One reason why this approach is not very costly in 
terms of speed or memory use, is that all changes are 
tracked as differences. Change overhead is relative to 
the amount of change, not the size of views.

A second reason why this works well, is that  all 
changes can share the same original view - regardless 
of its size or the level of sub-view nesting. There is 
even more sharing between views than with Tcl lists.

Because original structures are kept intact, this also 
means that views loaded from file can be modified 
without immediately modifying the file. Better still, 
views do not have to be loaded to be changed: all we 
need to do is remember the differences!

Column-wise data representation

Vlerq uses an unusual approach to representing tabu-
lar data: a table is represented as a collection of col-
umns, not rows. The “N-th row” is a virtual concept, 
it gets mapped internally to the N-th item in each of 
the columns. Vlerq fully hides this mechanism and 
presents a normal rectangular row/column model.

The column-wise approach has been used in Metakit 
for many years. When properly used, it can lead to 
very efficient operation. Having data in “inverted” 
column-wise form is a little as if every column is an 
index - all the time, and without requiring the con-
struction of separate indexes.

When rows are kept in sorted order (sorted on one or 
more key columns, that is) then binary search can be 
used to locate rows by key value.

A “blocked” view structure can be added on top of 
these purely linear views to get the same locality-of-
reference benefits as B-trees. This too is shamelessly 
copied from Metakit. It is very effective is keeping 
performance high when views contain many rows.

For those cases where brute force scanning is not 
good enough, lookup maps can be created which 
map a key value to a row number (using a second 
view with two or more columns). This is the column-
wise equivalent of a secondary index. Ratcl supports 
this approach, but like Metakit it is not yet automatic.

Virtual operators, no data copying

The term “view” was chosen very deliberately in 
Metakit and in Vlerq: views can be either real data 
(i.e. a set of columns) or virtual. In the latter case, the 
view access function will return values as if the data 
is actually stored that way, but it can be represented 
in a completely different way.

Or not at all, even. For example, the sort operator 
takes an input view and returns a new view. That 
new view is not a copy of the original in a different 
order. Instead, a sorted view consists of a single col-
umn of integers, used as permutation over the origi-
nal data. So when you get the N’th item in a view, the 
sorted view will translate the “N” to another index 
via the permutation vector, and then ask the original 
input view to return that value instead.

This has profound implications for memory used and 
for data access patterns in general. 

When you load a view from file, only a small amount 
of administrative information is actually set up - the 
returned “view” is really more an algorithm which 
knows where to read the data from when needed. To 
sort such a view, a scan through all keys is used to 
determine the sort order. This requires a scan over a 
few columns of the view on disk (a merge sort, actu-
ally), and an in-memory integer array to store the sort 
permutation. No keys are copied, nor is any other 
data even read off the disk.

Only when the resulting sorted view is accessed, will 
the actual data transfer off the disk take place. Again, 
since the file is memory-mapped, this happens with 
no copying until the very last moment: when the 
value is needed in the Tcl code.

This explains why it takes so little overhead to “load” 
a view from disk (not much happens on open). It also 
explains why iteration over all rows in a view has the 
same overhead regardless of the number of columns 
in that view (only the data needed is read).

Views are highly virtual - they often simply represent 
the knowledge of how to access data. Actual accesses 
and I/O only takes place when the data is used. With 
many set-wise operations, those accesses then often 
take place in large streaming batches, i.e. taking 
maximal advantage of the vector-like storage form.

Dual representations & delayed evaluation

With Tcl, there is one additional level of indirection. 
As shown before, views are described (via Ratcl) as 
trees of simple accesses and view operations.

 - 10  -



These descriptions are in string form (or as lists) and 
do not even trigger the underlying access mecha-
nisms of Vlerq right away.

You could open a file, load a view, and sort it using:
 set v [view dat.db open | get 0 addr | sort]

Note that at this stage not a single data access opera-
tion has been performed, $v will contain the string:
sort {get {open dat.db} 0 addr}

A trivial string, created instantly.

Note: This is a slight misrepresentation of how 
things really work (the open and get operators are 
performed right away), but for the sake of argu-
ment, let’s assume that the above is accurate.

Now, we can do:
puts [view $v dump]

At this point, the situation changes completely. We 
need the actual size, structure, and contents of the 
view to be able to dump it. All the above will cause 
Vlerq to convert these strings to an internal view rep-
resentation. First the file will be opened, then all the 
keys in the “addr” sub-view will be traversed to sort 
them, then all data will be accessed, and lastly all 
values will be formatted and dumped as a string.

Dataflow implementation

With this approach, dataflow turns out to be simple: 
when changes in underlying variables are detected, 
Vlerq will go through all the Tcl_Obj’s of views de-
pending on that variable, and will invalidate their 
internal representations. That’s enough, because sub-
sequent accesses will reconstruct views again as be-
fore, but based on the variable’s new contents.

There is a fair amount of complexity in tracking all 
the dependencies between views and their opera-
tions, but this does describe the basic mechanism.

Current Status
Over a million dozen more-or-less complete rewrites 
have been performed for Ratcl and Vlerq in the past 
several years as the software evolved substantially.

About five iterations of Vlerq have been developed:

• version 0 - a Forth-like VM in C++ (vintage 2000)
• version 1 - VM coded in C, added Thrill language
• version 2 - new “boxes & cells” data structures
• version 3 - new Tcl-specific version, started in 2006
• version 4 - simplified fast C core, separate Tcl layer

Most of the details described in this paper were im-
plemented in version 3, but a rewrite was required to 
implement a more general dataflow mechanism.

The code in version 3 is quite stable, it passes some 
500 tests coded in Tcl. The code can be downloaded 
as a source snapshot - it includes Ratcl and Vlerq and 
is packaged as a TEA3-compliant Tcl extension.

The performance figures mentioned so far are based 
on the v3 implementation.

Version 3 was also (somewhat frivolously) called 
“Take 42”, because that’s about the number of at-
tempts it took to write this implementation. Details 
for downloading can be found on the web at:

http://www.vlerq.org/vqr/347

There is no documentation for version 3, the best 
source of information is probably the set of tests in 
the tests/ subdirectory.

Version 4 is in “frantic” development mode right 
now. The core data structures have been extended to 
handle dataflow from the ground up. Some 60 tests 
are working, more are being added every day.

The major task ahead is to carry all the functionality 
of versions 2 and 3 over into version 4. This is de-
pendent on first getting dataflow working 100%.

An early version of difference-based transactions was 
implemented in version 2, it will need to be adjusted 
to work again in the current v4 code base.

The latest news about Ratcl and Vlerq can always be 
found on the website, at http://www.vlerq.org/

Acknowledgments
First and foremost, I would like to thank Mike Doyle 
and Eolas, Inc. for funding my work on Vlerq since 
early 2005. Without their generous support, and the 
permission to release all work as open source, I could 
never have invested as much time in this project.

I am also grateful to Brian Theado for his continued 
feedback and encouragement. It takes some serious 
perseverance to track a highly-evolving project like 
this, as it moved from being a minimally-functional 
research project to a reasonably usable first develop-
ment version.

Lastly I would like to thank Mark Roseman for his 
patience and help in going through this paper and 
offering many valuable suggestions.

 - 11  -


