
VCRI: A groupware application for
CSCL research
Jos Jaspers (j.jaspers@fss.uu.nl)

Marcel Broeken (m.h.broeken@fss.uu.nl)

Educational Sciences

Utrecht University

The Netherlands

Paper presented at the European Tcl/Tk User Meeting

Bergisch Gladbach (Germany), 27-28 May 2005

Abstract
One of the main research topics of the Educational Sciences group at Utrecht University is

Computer Supported Collaborative Learning (CSCL). The CRoCiCL* project1 is a research

project, which focuses on CSCL and the effects of visualization of social aspects of

collaboration processes in CSCL. The project started in September 2003 and will take about

four years to complete. We have developed a groupware environment called VCRI, which

enables users to collaborate and communicate. In this paper we will give an overview of the

development history of the VCRI, its features, problems we encountered, our plans for the

future and of course Tcl's part in all this.

Introduction
Secondary school students in The Netherlands – as a result of recent changes in the

curriculum of the final years (the ‘study house’) – are doing increasingly independent

research in preparation for college studies. The focus has shifted towards working actively,

constructively and collaboratively, as this is believed to enhance learning. We have developed

a groupware computer environment that supports these research activities that should fit well

within this curriculum. The purpose of our research is to investigate the effect of the computer

supported research environment and its tools on the final product through differences in the

participants’ collaboration processes.

* The CRoCiCL project (Computerized Representation of Coordination in Collaborative Learning) is
funded by N.W.O. , the Dutch Organization for Scientific Research, under project number 411-02-121.

1

mailto:j.jaspers@fss.uu.nl
mailto:m.h.broeken@fss.uu.nl

VCRI overview
The VCRI (Virtual Collaborative Research Institute) is a client-server based groupware

environment providing a customizable tool-set. Currently there are about fourteen tools,

ranging from a collaborative text processor (Co-Writer) to an instant messaging client (Chat).

Any subset of tools can be used, to give users true flexibility. Adding new (third-party) tools

is currently not supported but we are working on providing a clear framework for developers

to make this possible.

One of the key ideas behind the VCRI is WYSIWIS (What You See Is What I See). Users

share most tools. A shared tool is continuously synchronized and looks the same to every

user. All users can edit the content of the tool, for some tools even simultaneously. The VCRI

server is in charge of synching all tools. This mechanism of sharing gives the impression of

real-life collaboration, even in cyberspace.

Figure 1 : The VCRI environment

2

Figure 1 shows a screenshot of the VCRI with some of tools. From left to right and from top

to bottom:

• Chat: a synchronous communication tool

• Co-Writer: enables the participants to write the texts for the different assignments

• Sources: contains links to source materials for the assignments

• Participation tool: provides participants with a graphic display of their participation

• Source : a particular source was opened by the student

In this study, students have to collaborate in groups of three participants on a inquiry project

about witches in medieval society based on historical sources. The research question focuses

on the effects of participation awareness on the collaboration of the students. The main

purpose of the VCRI is to enable students to collaborate on research projects, to help teachers

to guide students while they are collaborating, and to enable researchers to collect data on the

process of collaboration. Therefore all significant user events are logged by the server to

enable our researchers to study the effects of our tools on the collaboration process. From the

main log file, MEPA2 files can be extracted. MEPA is an application for the annotation,

coding and statistical analysis of verbal or nonverbal observational data or protocols, making

analysis easier.

A bit of history

The VCRI is the result of years of developing different tools for CSCL research at Utrecht

University. The first version was developed around 1995. This version was written in Visual

Basic. One of the more surprising results was the feedback we received from our subjects.

They actually liked the collaborative writing. One of the problems was the handling of socket

communication. This proved cumbersome and the program was rewritten in Delphi (Pascal).

This provided some improvement.

As we started on a subsequent project we sought an additional programmer to speed up the

development of the next version. We found the company Equi4 willing to assist us. One of

the first decisions was the choice of the programming language. Tcl was chosen for two main

reasons:

1. Our application deals mostly with texts

2. Our application uses networking

This makes Tcl a natural choice. Development on the VCRI is driven by the research

demands. These demands tend to change frequently, making it very important to use a flexible

and interpreted programming language like Tcl. Its tight integration with Tk also makes it

perfect for creating nice GUI's with little effort. Another key feature was cross platform

availability, giving us the ability to run in almost every school. The fact that Tcl is open

3

source also was an important pro. Last but not least Tcl's clear and simple syntax makes

learning Tcl easy.

Architecture

The VCRI is a client-server application. In principle, the client does all the heavy work while

a customized TclHttpd3 server distributes updates and saves the tool content. Distributing the

work over all clients reduces the server's workload and optimizes CPU usage.

The client is kept as thin as possible, only providing a framework for communicating with the

server and a login window. On user login the server queries a Metakit4 database for the toolset

and lets the client remotely source the corresponding files. This kind of remote sourcing, or

dynamic loading, makes rapid development and bug fixes possible. Users can keep using the

same client while still getting all the updates and bug fixes from the server every time they

log in.

Client and server communication is http based. The client issues http requests with Tcl

commands to be executed by the server. The server returns scripts to be executed on the client

side as result for the http request. The main reason for using this RPC like communication is

firewalls. Until recently, most schools which participated in our experiments used KennisNet,

a government funded intranet. KennisNet blocked almost all ports (incoming and outgoing)

and no exceptions were made. This prohibited a permanent socket connection. Since http

requests and port 80 are always available, VCRI communication also became http based. The

clients poll the server in regular intervals to exchange information.

Packages used

In developing the VCRI we've used some extensions and tools to provide the features pure

Tcl/Tk was missing.

TclHttpd

This easily extensible and lightweight web server written in Tcl was perfect for our VCRI

server. It provides a basic framework for client-server interaction giving us the room to focus

on VCRI’s specific features. VCRI's use of http(s) for server communication also made

TclHttpd a logical choice. At this time, our customized TclHttpd server runs on (SUSE)

Linux, Windows, and Mac OS X.

4

Starpack

Schools are more willing to join when the effort on their part can be made as small as

possible. An easy and straightforward installation is an important way to reduce that effort.

Packaging the VCRI client as a Starpack makes installation equal to drag-and-drop and

removing to delete. A Starpack is a Starkit plus a Tclkit runtime. Starpacks are standalone

executables, which run out of the box, making them even easier to distribute and use than

Starkits.5

Metakit

Earlier versions of the VCRI used plain files for storing persistent data. Increasing complexity

and scale of the VCRI have made maintaining, archiving and tweaking these files more

painstaking and placed a need for more structured and consistent data storage. We have

decided to use a lightweight database for data storage.

We have chosen Metakit as our database because of its small size, efficiency, ease of use, and

its easy to use bindings for Tcl (Mk4Tcl and Oomk6). Currently the VCRI server uses one

Metakit database to store data, although in some cases plain files are still used.

TkHTML

The VCRI has a number of tools, which generate or display HTML. At first, we used OpTcl

which is a Tcl extension to provide connectivity to the resident hosts component model.7

Unfortunately, it only works for COM on Windows, which clashes with our cross platform

objective. Another con is the inability to interact with OpTcl at a low level, handling events

and manipulating the HTML content. Therefore, we decided to move away from OpTcl.

Finally, we have chosen TkHTML8, a Tcl extension written in C for rendering HTML-

content. As a side note, the TkHTML project has recently been revitalized. CSS and XHTML

support are among the project's main priorities.

TkOGL

Some of the tools offer 3D visualizations. Since Tcl/Tk lacks 3D capabilities we've used

TkOGL9 for this purpose. TkOGL is a Tcl extension written in C providing an interface to the

OpenGL framework. It currently works on Linux and Windows but a Mac OS X build is also

planned. TkOGL's most recent version (3.2) makes it possible to use OpenGL commands

without (almost) any modifications.

5

[incr Tcl]

[incr Tcl]10 is a language extension for Tcl enabling object oriented programming by

introducing the notion of classes, objects and other OO related terminology. By adding this

extra layer of abstraction, it's easier to write and maintain large programs.

Problems
During VCRI development, we have come across a number of problems of which a couple

will be highlighted in this paper. In the next paragraph, we will present some of our solutions

to these problems.

Legacy code

As described in A bit of history the VCRI has come a long way since 1995. A lot of features

and tools have been added but design wise things have stayed the same. This unchecked

growth has lead to redundant and duplicate code, overlapping functionality and too many

dependencies. At the beginning of the CRoCiCL project the decision was made to continue

work on the current version of the VCRI instead of starting from scratch. The complexity of

this legacy code has made it difficult to maintain and extend the code. Object oriented

programming has turned out to be the solution to this problem.

User interface

The VCRI lacks eye candy. While this doesn't present a problem to those who are only

interested in functionality, it's an important issue when designing software for teenagers, the

target audience of the VCRI. In our experiments, it's crucial that the students enjoy working

with the VCRI. An appealing user interface is key, especially for those users who have grown

up with cool looking software. Another GUI related problem is the cross platform (and as a

result non-platform) and inconsistent look of the VCRI, making it virtually impossible for

users to make use of their knowledge of GUI conventions on their platform of choice.

Unfortunately, lack of time and know-how makes it hard to fix this problem.

Platform dependencies

One of the main reasons for choosing Tcl is its cross platform availability. As development

continued, shortcomings in Tcl/Tk's functionalities were patched using extensions. Not all of

these extensions were 100% pure Tcl; as a result platform dependencies returned in the VCRI

in the form of binary extensions such as TkHTML and TLS.

6

Different interests

Finally, there's been the problem of different interests among the project's stakeholders. Many

times interests of users, researchers, and developers have conflicted. For example, adding a

feature for research purposes can lead to unnecessary clutter (from the user's point of view).

Furthermore, keeping everything as lean as possible makes logging all user events a bit tricky.

Luckily, every one in the CRoCiCL team has at least a little experience in both research and

programming, making it easier to resolve these conflicts by looking at the problem from

different points of view.

Printing

One of our more recent problems is printing. For our application, we are looking for a printing

solution to enable users to print the content of any VCRI tool window on any printer on any

platform. Printing can be broken down into different sub problems. The first sub problem is to

create a printable version of a tool's content. The other sub problem is letting the user (or the

VCRI) select a printer and finally sending this printable version to the selected printer.

Unfortunately, existing printing solutions only tackle one of these sub problems and are

almost always platform dependent.

Solutions
In this paragraph we will present solutions to some of our problems mentioned in the

Problems section. Please note that not all problems are discussed.

Object oriented programming

Some of the problems we mentioned earlier are closely related. The problems with

complexity, redundancy and updating and using legacy code have to do with unraveling the

relations between different chunks of code. Key ideas of object oriented programming are

modularity and refactoring. By putting related code in one place (an object) interaction

between different chunks of code is made simpler and more transparent. When all related

functionality is provided by one object, the complexity of an application is greatly reduced.

Instead of maintaining and adding code at different places, just one object needs to be

changed when using an OO design. This also addresses the problem of redundancy because

it's easier to recognize and fix redundancies.

7

Students and Tile

Another problem is the Spartan look of the VCRI, which cripples the user experience a bit.

Since lack of time is still a problem, we have been trying to involve students in information

sciences and interaction design. At the end of June, our application will be used as the subject

of an assignment on user testing as part of the course usability engineering at Utrecht

University. Hopefully, this will provide usable feedback on usability and look of our GUI. In

the future, we hope to be a part of similar projects.

Tile11, an improved themeing engine for Tk, is another possible solution for our GUI related

problems. Tile can use so-called themes to provide a consistent look and feel. Themes

consolidate all GUI options in one place, which minimizes the effort to create customized

themes for different platforms, experiments or users.

The future
The VCRI will be used in at least two more experiments, one in September 2005 and one in

September 2006. After these experiments, the VCRI will be released as free (and maybe open

source) software for educational use. We're also planning to give third party developers the

ability to extend the VCRI with new tools and functionality. Our aim is to release a product,

which is easy to install (both client and server), easy to use, cross platform and fun.

Summary
Using Tcl to create the VCRI has proven to be a good choice. It's perfect for rapid

prototyping, which has proved to be a pro in this research project with constantly evolving

demands and requirements. The few shortcomings of Tcl we have encountered have been

fixed by third party extensions. Being half way in the development of the VCRI in this project

we can state that using Tcl has contributed a great deal to the result!

8

9

References
1. CRoCiCL: Computerized Representation of Coordination in Collaborative Learning,

http://edugate.fss.uu.nl/~crocicl/

2. MEPA, http://edugate.fss.uu.nl/mepa/

3. Tcl Web Server, http://www.tcl.tk/software/tclhttpd/

4. Metakit by Equi4 Software, http://www.equi4.com/metakit.html

5. Beyond Tclkit - simplified deployment of scripted applications by Steve Landers,

presented at the 2002 Tcl/Tk conference, Vancouver,

http://www.equi4.com/papers/skpaper1.html

6. Object-oriented Metakit for Tcl, http://www.equi4.com/oomk.html

7. OpTcl, http://www2.cmp.uea.ac.uk/~fuzz/optcl/default.html

8. A HTML Widget For Tcl/Tk, http://tkhtml.tcl.tk/

9. TkOGL, http://hct.ece.ubc.ca/research/tkogl/tkogl/index.html

10. [incr Tcl] - Object-Oriented Programming in Tcl/Tk, http://incrtcl.sourceforge.net/itcl/

11. Tile: an improved themeing engine for Tk, http://tktable.sourceforge.net/tile/

http://edugate.fss.uu.nl/%7Ecrocicl/
http://edugate.fss.uu.nl/mepa/
http://www.tcl.tk/software/tclhttpd/
http://www.equi4.com/metakit.html
http://www.equi4.com/papers/skpaper1.html
http://www.equi4.com/oomk.html
http://www2.cmp.uea.ac.uk/%7Efuzz/optcl/default.html
http://tkhtml.tcl.tk/
http://hct.ece.ubc.ca/research/tkogl/tkogl/index.html
http://incrtcl.sourceforge.net/itcl/
http://tktable.sourceforge.net/tile/

