
AmalGUI:
A User Interface for a Clustered

Programmable-ReconfigurableProcessorSimulator
Chi-Wei Wang,DerekB. Gottlieb, Jeffrey J. Cook, NicholasP. Carter

University of Illinois at Urbana-Champaign�
cwang12, dgottlie, jjcook, npcarter� @crhc.uiuc.edu

Abstract— In order for researchers to cope with the design
developmentof increasinglycomplex processorarchitectures,ar-
chitecture simulators must be able to output more information in
an efficient and concisemanner. AmalGUI is a Tcl/Tk graphical
fr ont-end for the Amalgam architecture simulator, AmalSim.
Its multip le-window interface provides an effective method of
presenting the AmalSim output to the user. Furth ermore, it
shows how Tcl/Tk can be used to create graphical interfaces
for processorarchitecture simulators and presentsa framework
for such a tool.

I . INTRODUCTION

Researchersmust be able to keeptrack of numerous pro-
cessorstatesin order to verify proper applicationexecution
on increasingly complex processorarchitecturesduring design
development. Designverification andperformanceevaluation
of a new processorarchitecture usually requires the creation
of a simulator. Such a simulator can provide the user with
debugging informationontheconfigurationandthestateof the
architecture’s components as the simulatorstepsthrough the
execution of application codeon thearchitecture. Theamount
of state information, though, depends on the complexity of
thearchitecture, which affectsthenumber of components that
the usermustobserve during the execution of an application.
Furthermore,this stateinformationis quickly invalidatedasa
simulatorstepsto anothercycle. As a result, the amount of
informationandoutput generated by thesimulatorcanbecome
substantialandwill only grow as architectures become more
complex.

Text basedcommand-linesimulatorsdo not offer a method
to output complex stateinformation intuitively andcanoften
impedethe user’s ability to comprehendthe informationthey
provide.They especiallylack theability to efficiently represent
complex organizations of components.As a result, thereis a
needfor graphical interfacesthat canpresentthis information
in an effective manner.

AmalGUI is a Tcl/Tk graphical front-end to AmalSim,
our Amalgam architecture simulator, that provides the user
with a multi-window environment. Output from AmalSim
is presentedin the appropriate windows as either text or a
graphical representation(image).AmalSim implements high-
level models for every major component in the Amalgam
architecture in C andrunsasa command-line shell.The shell
supports commandsfor printing debugging information and
steppingthrough theexecution of anapplication on Amalgam.

Bank
 Bank
 Bank
Bank

�

Network

�

PCluster

�

Cache

�

(multi-banked)

�

Memory

PCluster

�

PCluster

�

PCluster

RCluster
 RCluster
 RCluster
RCluster

Fig. 1. AmalgamArchitecture[1]

I I . AMALGAM ARCHITECTURE

Amalgam is a clusteredprogrammable-reconfigurablepro-
cessorthat integratesmultiple memory, programmable, and
reconfigurable units onto a singlechip, asshown in Figure1.
Eachprogrammable or reconfigurableunit is an independent
processingresourceknown asa cluster. Global communication
betweenclusters and the memory systemis handledby a
flexible on-chip network. The global memory systemconsists
of a multi-banked cache and the off-chip memory. Every
cluster also incorporates a 32-entry register file for local
storageandcommunicationwith the network.

Whenexecutinganapplication, theapplicationis distributed
among the clustersin orderto exploit the application’s paral-
lelism. Furthermore,the critical regions of the application are
implementedin the reconfigurable clusters,which can result
in large speedups in performance[2].

However, in order to verify the execution of a distributed
application, the user must track the execution on eachclus-
ter. This increasesthe amount of information the user must
process since each cluster is independent and has its own
registerfile. In addition,AmalSim’s network modelis flexible

Register File

�

i-cache

ALU
 ALU

NIC

�

Network

Fig. 2. ProgrammableCluster [1]

enough to offer different configurationsthat could impact the
performanceof Amalgam. As a result,theusermustalsotake
thenetwork into considerationandobserve its behavior during
application execution.

Each programmable cluster (PCluster) is a conventional
dual-issuein-order microprocessorasshown in Fig. 2. When
a programmable clusterexecutesaninstruction, thestateof all
the componentsin the programmableclustermay be affected
and will needto be observed. The network interface/buffer
(NIC) directsincoming andoutgoing network data.The dual
arithmeticlogic units (ALUs) and their pipelinesexecute in-
structionsandsendtheresultsbackto theregisterfiles.Finally,
the instruction cachestoresrecentlyexecuted instructions.

Amalgam’s reconfigurable units (RClusters) increasethe
complexity of thearchitecture.Thearchitecture of Amalgam’s
reconfigurableclusteris shown in Fig. 3. At the coreof each
reconfigurable unit is a reconfigurable array (RA). The RA
is a versatilefabric of logic blocks (LB) and wires that can
beusedto implementmultiple circuitsduringanapplication’s
execution. The RA is interleaved with the cluster’s register
file and then folded to form an unbroken ring that allows
computationto flow in a counter-clockwisedirection. This re-
duceswire congestionandwire lengths [1]. EachRA segment
has8 rows andeachrow has32 logic blocks. The segment’s
logic blocksreadinput datafrom the8-entryregisterbankthat
proceedsthe segment(source) andwrite to the register bank
that follows the segment(destination). For example, in Fig 3
Segment 0 readsdata from Register Bank 0 and writes data
to Register Bank 1. Activities on the RClusterare directed
by the cluster’s Array Control Unit (ACU). The ACU also
manages the Configuration Cache(CC), a local memory for

Register Bank 0

Register Bank 3

	

Register Bank 1

Register Bank 2

Segment 0

Segment 1

Segment 2

Segment 3

NIC

�

CC

�

ACU

Fig. 3. ReconfigurableCluster [1]

4-LUT

�

A

�

input crossbar

�

optimized carry chain

B
 D

�

0

� 1

2

3

�

C

OUT

COUT
 CIN

global clk

INV

input muxes

�

secondary

signals

DREG

R

S

CE
 Q

D

Fig. 4. Logic Block Architecture [1]

storingrecentlyusedRA configurations.
The logic blocks (Fig. 4) are the fundamentalcomputa-

tional units of the reconfigurable cluster. Each logic block
can implement any function of its inputs using its look-up
table (LUT). The logic block inputs, which the input muxes
determine by selecting the appropriate wires, serve as the
index of the corresponding output value in the LUT. Around
eachlogic block is a complex and flexible systemof wires,
which areconfiguredto routedatafrom logic blocksandthe
sourceregister bank of the segment to the input muxes of
other logic blocks andthe destinationregisterbank. For each

Fig. 5. AmalGUI Screenshot

application, theconfigurationof thelogic blocks(LUT values,
input muxes, crossbar, and mode) and the wire routing can
varygreatly. In total,eachreconfigurable clustercontains1024
logic blocks and4096wire segments.The complexity of the
reconfigurableclustersdemonstratesthe needfor an efficient
presentation of informationto the user.

I I I . AMALGUI

AmalGUI displays the output from AmalSim as text or
as graphical representations in a multi-window environment.
Suchanenvironment lets theuserquickly find theinformation
pertaining to aparticularclusteror otherAmalgam component.
Rather than outputting all of the AmalSim output in one
window, the information is organizedin specificwindows that
arepositionedon thescreenaccording to theuser’s preference.
AmalGUI primarily consistsof a main window with multiple
component/cluster windows that the user can create (Fig.
5). Eachmajor architectural component in Amalgam has its
own window (clusters,network, andmemory/cache),although
multiple instancesof eachcomponentwindow canbe created
to allow the userto simultaneously query different attributes
for the samecomponent.

The main window, shown in Fig. 6, displays important
information from AmalSim in a text widget while the cycle

andprogram counter (PC) informationis displayedin a label
widget. In addition, a canvas widget is usedto createa map
of the Amalgam architecture.

AmalGUI uses canvas widgets extensively to efficiently
show the organizationof the architecture and the statusof
its components.This givesAmalGUI the ability to take large
amountsof textual informationandpresent it asa imagethatis
both conciseandunderstandable. The main window’s canvas
mapquickly lets usersbecomefamiliar with the architecture
andits configuration, includinghow many programmable and
reconfigurable clustersarebeingusedby the application run-
ning on Amalgam. Themapalsoallows theuserto createnew
windows corresponding to the component the userclicks on.
Of thesewindows, the programmable cluster, reconfigurable
cluster, andnetwork windows eachusecanvaswidgets.

Programmable Cluster Windows:

Thewindows for the programmableclustersconsistmainly
of a text widget,a canvas widget,andvarious button widgets
(Fig. 7). The canvas is againusedas a map . Once a com-
ponent is clicked, the canvas is hidden andthe corresponding
AmalSim output is sent to the text widget. The buttons can
sendAmalSim commandsthat do not have a logical placein
the mapandalsogrid or ungrid the map.

Fig. 6. AmalGUI Main Window

Fig. 7. AmalGUI ProgrammableCluster Window

ReconfigurableCluster Windows:
Reconfigurable cluster windows (Fig. 8) are similar to

programmable clusterwindows.However, anadditional canvas
widget is often usedin placeof the default text widget. This
secondcanvas andthegraphical representationit createsallow
the userto easilyandquickly comprehendthe large amounts
of RCluster information outputted by AmalSim. The canvas
is especiallypowerful whena single imagecanrepresentthe
output of several AmalSim commands.

The use of graphical representations producesa reconfig-
urableclusterwindow with multiple levels of detail asshown
in Fig. 8. Initially, the user is presented with the top most
level of theRClusterarchitecture (Fig. 8(a)). If theuserclicks
on a component, such as Segment 0, the user goesdeeper
into the architecture andthe canvasis redrawn at a lower and
moredetailedlevel asshown in Fig. 8(b),which shows all the
LB outputs in Segment 0. If the usercontinuesclicking on a
LB, the userwill reachthe lowest level wheredetailsabout
the LB’s configuration and state are displayed(Fig. 8(d)).
Bindings to mouse events allow the user to easily traverse
betweenlevels to attain the level of detail desired.

(a) AmalGUI Reconfigurable Cluster 4 Window

(b) View of RCluster 4’s Segment0

(c) View of Segment0’s LB(2,22) andsurrounding wires

(d) View of LB(2,22) and detailed information

Fig. 8. Exampleof multiple levels in RClusterwindows.

Fig. 9. AmalGUI Network Window

Fig. 10. PClusterWindow with highlighting

Network Windows:
The network windows use a canvas to representthe con-

figuration of the on-chip network as shown in Fig. 9. All
canvas objects are createdas a result of bindings with the
layout engine in AT&T’ s GraphViz Tcl extensions. Using the
network connection information attainedfrom the output of
several AmalSim commands, GraphViz’s graphdatastructure
is created. GraphViz then createsa view of how the graph
should be displayedby using a incremental layout engine
(dynadag,geograph,orthogrid, or fdpgraph) to determine the
proper locationof graphnodesandedges.Creation,deletion,
and changes in the position of a node or edgeare bound to
Tcl proceduresthatcreate,destroy, or move thecorresponding
canvasobject accordingly.

Updating Windows:
After a step or run command, the information in each

window is updated by re-sending the most recent AmalSim
command(s)whoseoutput wassentto eachwindow. If Amal-
Sim output is sentto updatea text widget, the new output is
comparedto the invalidatedoutput storedin the text widget.
Differences betweenthe two are highlighted to let the user
know thatvalueshavechanged.Fig. 10showsaprogrammable
clusterwindow displaying its registerfile after an update.

Interface: Windows, Buttons, ����� t Widgets, Canvases, etc

AmalSim

AmalGUI

Process_Data

Get_Amalsim
 _Output

Update_Windows

Send_Command_Line

Send_Amalsim
 _Command

 Various
 Processing
Procedures

Command_Q

Fig. 11. AmalGUI Architecture

IV. AMALGUI IMPLEMENTATION

AmalSim is executed as a child processof AmalGUI via
the use of two command pipelines,one for stdin/stdoutand
theotherfor stderr. This allows AmalSimto bekeptasa stand
alonecommand-lineshell.Thegeneralapplication architecture
of AmalGUI is shown in Fig. 11. The interactionsbetween
the userand AmalGUI typically result in AmalGUI sending
commands to AmalSim to get the necessaryinformation it
needs.Thesecommands are executedby AmalSim, which
sendstext output backto AmalGUI. AmalGUI thentakesthe
AmalSimoutput andpresentstheinformationbackto theuser.

Sending AmalSim Commands:
The architecture that AmalGUI useswhen sendingcom-

mands to AmalSim can be describedas a two-tier structure
that allows for efficient checking of a command’s arguments.
Before commands can be sent to AmalSim, they must have
valid argumentsanda destinationwindow for their AmalSim
output. Theargumentsareimportantsincethey areoftenused
to helpAmalGUI directinformationto theproperwindow. The
verification of argumentsanddestinationwindows, aswell as
any otherpreparation neededfor AmalSim output processing,
are managed by two main procedures:SendCommand Line
andSendAmalsim Command (Fig. 11).

Thesetwo procedures take advantage of the fact that the
commandsAmalGUI sendsto AmalSim can be classifiedas
eitherexternal or internalcommands.External commandsare
any commands with at leastoneargumentspecifiedexplicitly
by the user. Typically these are commands that the user
types in and wants to sendto AmalSim through AmalGUI.
AmalGUI’s mainwindow hasanentrywidgetthatallowsusers
to typein commands.However, userscanmakemistakeswhen
entering commandsandasa result,external commandsrequire
verification of the command itself and its arguments.

Internal commandsareAmalSimcommandsthatAmalGUI
generates.All the command’s argumentsare correct and no
verification is required.Generally, whenAmalGUI hasto send

an AmalSim command to get information on the state of
Amalgam, it can generate the proper argumentsitself based
on the configurationinformation andthe window from which
the command was invoked. For example, when a command
is invoked from a cluster’s window, the cluster number can
be determined from the cluster window’s nameand passed
as an argument. The destinationwindow is often the win-
dow that invokes the command. It can also be generatedby
inspecting the command and its arguments. Since internal
commandsarealwayscorrect,they do not needto be verified
by SendCommand Line.

SendCommand Line performs the verification of exter-
nal commands and tries to correct command arguments if
they are incorrect or missing. Basedon the command, the
destinationwindow for the command’s AmalSim output is
also determined. If AmalGUI is unable to determine the
correct argumentsor destinationwindow for a command, the
AmalSim command is not sentand an error messageis sent
to the main window. SendAmalsim Commandsetsup data
structures and performs any other actions neededto process
the command output, suchas the creationof the destination
window. Finally, the commandand its argumentsare placed
in the command pipe and sent to AmalSim (stdin). The
command, its arguments,and the destinationare thenplaced
into a global queue, Command Q.

The CommandQ represents the current AmalSim com-
mands that have been sent to AmalSim, but have not yet
completed.SincemultipleAmalSimcommandscanbequickly
placed into the command pipeline (stdin) and buffered, the
queue allows AmalGUI to correctly associateoutput with the
correct commands. This is very useful when a destination
window requirestheoutputof multiplecommandsor whenthe
userdecidesto queue up subsequentcommandswhile waiting
for the completion of the current command.

ProcessingAmalSim Output:
Once an AmalSim command is sent,AmalGUI waits for

AmalSim’s output to arrive via thecommand pipe(AmalSim’s
stdout).By default, the child process’stdoutis buffered until
it is terminated.However, this would render it uselessfor our
purpose since the two applications must interact with each
other. Whenbuffering wasdisabledthough, the output from a
singleAmalsimcommand wasbrokenup andsentasmultiple
lines of output. AmalSim senta new line to AmalGUI when-
ever a new line characterwas outputted. Sincea command’s
output is received oneoutput line at a time, parameterssuch
as the destinationwindow must be determined before the
command is sent. Otherwise,redundant computations occur
wheneverAmalGUI receives a new line of output.Considering
thenumber of linesprocessed,suchanoverheadcouldquickly
become significant.

Get Amalsim Output is bound to the event of new data
arriving in thecommand pipelines,aswell asbrokenpipes.If
the output line is a messagefrom a watchpoint or breakpoint,
it is sent to the main window’s text widget. Otherwise,it is
the output of the command at the headof the CommandQ
and is sent to ProcessData, which directs the processingof

output lines. ProcessData also is responsible for initiating
window updates.ProcessData sendsthe output line to the
appropriateprocessingproceduresbasedonthesentcommand,
its arguments,and the destinationwindow. The processing
procedures,which use regular expressionsextensively, send
the output line to the destinationwindow’s text widget, parse
the output line for the dataneededto createcanvas objects,
or set their attributes, such as color. Sometimes,multiple
commandsneedto besentin orderto gatherall thedataneeded
to createa canvas. Once all the data is gathered,AmalGUI
createsor updatestheentirecanvas.If thewindows needto be
updated,Update Windows is calledandsendsthemostrecent
AmalSim Command(s) for eachwindow. Suchinformation is
stored in a global array with window namesas the index.
Output lines thatarenormally sentdirectly to a window’s text
widget are insteadcomparedto the existing text lines in the
text widget.Using text tags,thenew output line is highlighted
whenit is differentfrom thecorresponding text thatit replaced.

Oncea command’s output is finished,a marker is outputted
that lets AmalGUI know that the command at the front of
Command Q is doneexecuting andcanbe removed.

V. CONCLUSION

For this application, Tcl/Tk hasmany advantages.As many
have statedbefore, Tcl/Tk is a powerful language for mak-
ing user interfaces. It provides most of the necessarydata
structures and commands for such a task. One of Tcl/Tk’s
greatestadvantagesis the number of widget operations and
attributes each widget has. This allows AmalGUI to have
greatcontrol over eachwidget,which is necessaryfor creating
a successfulinterface.This is especiallytrue for the canvas
widgets,which AmalGUI extensively used.For our approach,
Tcl/Tk’s support for efficient regular expressionsis alsovery
important, sincemany different lines of AmalSim output are
parsedfor information.Finally, asAmalGUI’s codesizegrew,
Tcl/Tk wasstill able to run with reasonable speed.

However, by calling AmalSim as a child process and
maintaining AmalSim’s command-line shell, AmalGUI is de-
pendent on the format of AmalSim’s output. Changes in
AmalSim’s output format could causeAmalGUI to function
incorrectly. Another drawback is with double substitution.
Many global variables are specific to a particular window,
especiallythe bindings for the buttons, canvas, and mouse
events. Sincemany windows have the sameset of variables,
the variable namesoften included the nameof the window
they are relatedto in order to distinguishthem apart.As a
result,whenbeingusedasanargument,thenameof a variable
would often contain the value of another variable(i.e. name
of the window). Arrays were sometimes usedinstead,since
the embedded variable, suchasa window name,canserve as
the index.

A problem with creatingmany differenttypesof windows is
that the codesizebecomesratherlarge becauseeachwindow
type is so different. A general approachwhereoneprocedure
could produceall the windows was initially attempted.How-
ever, it was soonrealizedthat therewas too much variance

betweenparameters. This includedthe names,attributes,and
number of widgets,bindings, andwindow layouts.

Overall, Tcl/Tk was suitablefor creatinga user interface
for processorarchitecture simulators. AmalGUI helped reduce
the architecture and application development time by being
effective at organizinglarge amounts of information in a way
that the usercanquickly understand.

REFERENCES

[1] J. D. Walstrom, “The design of the amalgamreconfigurable cluster,”
Master’s thesis,University of Illi nois at Urbana-Champaign, 2002.

[2] D. B. Gottlieb, J. J. Cook, J. D. Walstrom, S. Ferrera, C.-W. Wang,
andN. P. Carter, “Clusteredprogrammable-reconfigurableprocessors,” in
Proc. of the 1st IEEE International Conference on Field Programmable
Technology (FPT), Hong Kong, China, Dec. 2002.

