
Using Starkits for Easy Deployment of Server Applications
Mark Roseman

CourseForum Technologies
mark@markroseman.com

Abstract
Advances in consumer technology are leading to demand for
network server applications that are being run by less technically
inclined users, making ease of deployment critical. The Starkit
framework makes Tcl deployment in general much easier, but can
be enhanced for servers. Using the CourseForum and
ProjectForum applications as examples, issues such as reducing
dependencies, installation and configuration, starting and
stopping, and various platform specific issues are explored.
Experiences show that in this important application niche, Tcl,
based on Starkits and the techniques described here, provides a
strong deployment advantage.

1. A New Generation of Server Applications
Easy deployment? For server applications? Just the thought of it
seems at odds with reality. We are used to thinking about network
server operations being managed in dedicated centers, composed
of extremely complex hardware, and run by extremely technically
oriented information technology workers. Vast complexity, high
degrees of configurability, and flexibility in the face of unique
network setups are the norm for network server applications,
aren’t they?

Though the impenetrable data centers are still safe, we are seeing
today a new type of environment where an ever-increasing range
of new server applications are being run: in homes, personal
offices, small workgroups. These changes have been spurred on
by dramatic growth in consumer and SOHO (Small Office / Home
Office) networking products like always-on broadband
connections, wireless networks and devices, coupled with
consumer operating systems (e.g. Windows XP, Mac OS X) that
are powerful and robust enough to work as network servers,
alongside regular desktop use.

We are seeing applications like Userland’s Radio or Manilla
products [17], which provide individual and small group weblog
and content management support, or Amphetadesk, a personal
news aggregator [2]. Both run as applications under Windows or
Mac OS X, but work as web servers that are accessed via the
user’s web browser, rather than via a normal application user
interface. We also see a range of calendars, personal web-mail,
document management, file sharing, MP3 streaming, project
management and other similar applications, which run as servers
on users’ desktop computers, but are made accessible via a
network.

Unlike the traditional network administrators found in the bowels
of corporate data centers, users of this new breed of network
server applications are not generally trained in the technical
intricacies of deploying and administering networks. Applications
need to be installed and setup with a minimum of fuss, and they

have limited resources and patience available to fix things if they
go wrong. As with other types of software, free or trial versions of
server applications are now commonly downloaded and
experimented with, rather than being installed and run only after
financial and resource commitments have already been made.

For these users, applications that are hard to install or configure
are simply non-starters. For developers of such applications,
hoping to reach this new audience, easy deployment of their
software is critical.

This paper starts by examining the root causes of hard to deploy
server applications, and details some of the resulting problems. It
then turns to building such applications in Tcl, using the Starkit
technology as a basis. While Starkits get us much of the way
towards a deployment solution, for network server applications
additional issues like reducing dependencies, installation and
configuration, starting and stopping all need to be concerned. As
well, there are many platform-specific issues, particularly on
Windows and Mac OS X, that if addressed can greatly ease
deployment.

Using the CourseForum and ProjectForum applications as
examples, this paper provides a “cookbook” approach to assist
others in developing easy to deploy network applications, building
on the existing Starkit technology. Deployment has been a
particular strength of Tcl when compared with many other
development tools, and this work shows that advantage can be
particularly significant in the domain of network server
applications.

2. Deployment Today
We know that Tcl makes building network servers particularly
easy. Here is the canonical network server application in Tcl, just
a few lines of code that works on any platform.

socket -server Accept $portnum
proc Accept {sock args} {
 fconfigure $sock -blocking 0
 fileevent $sock readable “Readable $sock”
}
proc Readable {sock} {
 # … do something interesting
}

Similarly, tools like Rivet [3], which runs under Apache, or
various CGI packages make writing Tcl scripted web pages as
easy as:

<?
puts "Hello World"
?>

Despite the simplicity in coding, there are still a lot of steps
involved in taking those simple fragments, and getting them to run
smoothly on someone else’s machine.

2.1. How Server Applications are Built
Most of today’s network server applications, most particularly
web applications, are neither short nor simple. They are also
generally not written simply using the facilities of a base
programming language, as in our canonical Tcl example.

Most such applications today are constructed to rely on a myriad
of other technologies, including a mix of web servers, application
servers, middleware, scripting languages, databases, programming
libraries, external tools and applications, protocol handlers, and
plugins. Each requires its own separate installation and
configuration, usually via hand editing of multiple text-based
configuration files. Static HTML files, images, scripts, libraries,
configuration files and data files are scattered in many places
throughout a complex directory structure.

This is not an unreasonable approach, particularly if you are
developing applications to be installed only on your own custom
dedicated computers housed at a central location, as was
traditionally done. While the installation may take some amount
of additional time, that time may be more than made up for by
savings in development time that these various tools provide.

As the deployment of many network applications are now being
decentralized and distributed though, this equation changes. Now
you are asking each of your users, which depending on your
application may potentially be a large number of people, to each
pay the price of additional installation complexity, to cover your
savings in development time. Multiplying out the time, and
factoring in resources available to the users, suddenly this tradeoff
may not be so appealing.

The problems are being exacerbated as we’re seeing traditional
Unix server tools (where most of these applications originated)
being made available on consumer operating systems. Common
infrastructure tools like Apache, MySQL, and PHP are readily
available for modern versions of Windows, and Mac OS X (which
is Unix underneath, after all). Because of this, we’re seeing a great
number of Unix packages being “ported” directly to Windows or
Mac OS X, using the same installation and deployment techniques
that have “worked so well” for years in Unix.

2.2. A Typical Example
A recent O’ReillyNet article [16] described in excruciating detail
the author’s experiences installing PhpWiki [11] on Mac OS X.
PhpWiki is a pretty standard Wiki application written in the
scripting language PHP. Wiki’s are quite familiar to the Tcl
community; they are fairly simple applications, and many Wiki
and Wiki-like tools have been created, using a wide variety of
tools and technologies. They are a very good example of the kind
of personal or small group networked tool that would make sense
to install on a personal computer.

This summary doesn’t begin to do the full description justice, but
here are some of the steps that were involved in doing the
installation:

• download the latest source code
• open up Terminal.app (the Unix shell on Mac OS X)
• unpack the code in your Sites directory with “tar zxf”
• make sure Apache is running (done via a system preferences

panel, since Apache actually is included with Mac OS X)
• via ‘sudo’ open /etc/httpd/httpd.conf in a text editor
• uncomment two lines to activate the PHP interpreter
• add four lines to tell Apache about PHP files
• restart Apache
• download MySQL (luckily someone packaged that one up

nicely for Mac OS X, so its not much more than just a double-
click to install)

• check that its running (another command line)
• set a password for the root account of MySQL
• setup a user for PhpWiki in MySQL
• create a database for PhpWiki to use
• do some other MySQL setup for PhpWiki via a SQL script

provided in the PhpWiki distribution
• edit the index.php file to tell PhpWiki the database name and

password, as well as where to find the database
• open your web browser and type in the address of your

machine, followed by “~” and your username then “/phpwiki/”
and PhpWiki’s home page will load

2.3. Deployment Problems and their Costs
As you might expect, for a platform where the user’s expectation
of running new software is supposed to be drag-and-drop then
double-click, and where most users don’t even need to know how
to get to the Unix shell, let alone how to use it, this kind of
installation is simply just wrong. Unfortunately, its not just
PhpWiki that suffers from this, but many hundreds of other tools,
most originally developed on Unix.

It is probably unfair picking on PhpWiki here, as the same
example could be made of any number of other tools. The
software was never explicitly designed to run on Mac OS X,
which admittedly lives in a world all its own. Many of the steps
above would still be required on traditional Unix platforms
though, and are particularly sensitive to changes in system
configuration (hardly unheard of on Linux for example). For a
software package touted as ready-to-run right out of the box, that
is perhaps stretching the truth somewhat.

Generally, the developers of these tools are very talented
individuals, who have put great effort into their creations. In many
ways it’s a huge shame that complicated deployment options are
keeping their work from benefiting a much broader audience. It’s
a tribute to the quality of the software that enough people are
willing to persevere through complicated installations to get the
benefits of using the software, even like with PhpWiki on Mac OS
X, where it was never explicitly designed to run. But those people
are definitely in the minority, particularly on consumer-oriented
platforms.

The cost of this is a huge amount of wasted time and effort for
many users, and for the developers a lost opportunity to have their
work used by others (critical for a commercial software venture,
but equally valuable for most open source projects). Users are
going to simply abandon their attempts to install such software, or
never attempt it in the first place.

The remainder of this paper discusses strategies for building these
applications in a way that they can be easily deployed. First
though, it introduces the applications built at CourseForum
Technologies where easy deployment was a critical requirement.

3. Case Study: CourseForum / ProjectForum
The remaining sections will often be referring to CourseForum [6]
and ProjectForum [12], two commercial network server
applications that were developed. These virtually identical
applications, shown in Figure 1, provide secure web-based
collaboration forums intended for use by online courses or
corporate/organizational work groups.

Figure 1. ProjectForum Screenshot.

These applications share many common features with Wiki
applications like the aforementioned PhpWiki, or the Tcl based
wikit [18]. They are organized around web pages which can be
edited in a web browser using simple markup, support links,
search, recent changes and so on.

CourseForum and ProjectForum go beyond the basic Wiki by
supporting multiple forums (wikis) hosted on the same server,
projects (sub-wikis), various authentication and security models,
file and image attachments, user tracking, version management,
advanced administration tools and more (some of which can be
found in other systems, both commercial and open source).

Both systems are designed to run on Unix (particularly Linux and
FreeBSD), as well as Windows (95/98/ME/NT/2000/XP) and Mac
OS X. The target audience is the sort of users described earlier,
who are not necessarily technically proficient when it comes to
software installation, networks, etc.

CourseForum for example is targeted at distance education, and is
most often set up and run by individual instructors for a course.
ProjectForum is most often set up by an individual within a small
company or organization, a user within an individual department
of a larger company or organization, or by individuals wanting to
collaborate on a project with friends or colleagues elsewhere. Less
commonly, but no less effectively, both products are also run by
network administrators in more traditional centralized server
environments.

The software is distributed and sold through Internet distribution.
Potential users typically hear about the software through word of
mouth, a news release, etc., will visit the website, download the
software, and obtain a time-limited demo license to try it out for a
few weeks. Based on a favorable impression during the trial
period, they might then decide to purchase a license to continue
using the software.

Given the background of the target audience, and the importance
of a positive first impression, any problems in deployment would
have significant negative effects.

4. Starkits
Starkits [9,19], an evolution of earlier work on scripted documents
[20], are a set of technologies that solve a number of deployment
related problems for Tcl developers.

Briefly, Starkits can bundle together all the elements of a Tcl
application into a single platform-independent file, which can be
copied onto a user’s machine. The Starkit retains the benefits of
both source and binary distributions. Starkits can be easily
unpacked, changed and repacked to get access to the source. With
the addition of a platform-dependent run-time executable called
Tclkit, the application in the Starkit can be run. A special Starkit,
called a Starpack, can be easily made that combines the platform-
independent Starkit with the platform-specific Tclkit. This
produces a single file executable containing the application,
tailored for that particular platform.

Technically, the Tclkit runtime, which exists for dozens of
platforms, consists of the base Tcl language, the Tk GUI toolkit,
the [incr Tcl] object extension, the Metakit embedded database,
Zlib for compression, and TclVFS, providing a virtual filesystem-
in-a-file. All of these facilities are automatically available to Tcl
applications running in Starkits.

Starkits provide a lot of benefits when it comes to deployment:
platform-independence, easy platform-specific binaries when
required, access to source, many built-in facilities which reduce
the need to depend on other packages, and a convenient way to
effectively mirror your entire development environment and all
the pieces of your application onto a user’s machine, just by
copying a single file.

Because of this, Starkits and Starpacks are the natural basis for
building cross-platform, easily deployable network server
applications in Tcl. But just using Starkits doesn’t guarantee your
application will be easily deployable. The rest of this paper
describes how to leverage Starkit technology to make sure your
application is easy to deploy.

5. Building Deployable Server Apps
This section will describe some of the main approaches that were
taken in CourseForum and ProjectForum to make them easier to
try out and deploy for users. These include removing all external
dependencies, paying attention to installation and configuration,
and building in dual solutions for starting and stopping the server.
The next section will raise several platform-specific issues, which
tend to be refinements of those described here.

As will become clear, thinking about deployment at the outset of a
project is absolutely critical. The earliest decisions about how the
application will be developed can have a critical impact on its
deployment. As with many characteristics of software systems,
factoring in deployment up front can save considerable time and
effort later on.

The techniques and approaches described here are best seen as
suggestions, tips, or recipes. They may provide direct guidance,
but may also be modified, augmented or discarded depending on
the application. Together they form more of a “cookbook” or a
checklist of issues and approaches to be considered, rather than
unique or novel solutions to problems.

5.1. Removing Dependencies
Removing the need for dependencies on external software or a
specific system configuration is clearly one of the most dramatic
steps that can be taken by developers to make their software easier
for end users to deploy.

As an example, note that the Wiki application from earlier
depended on the following software packages, separate from the
application itself:

• Apache web server
• PHP scripting language module for Apache
• MySQL database

It is not unusual to find other similar applications that require
many more other packages, including specific third party utility
libraries or modules, external tools like CVS to provide version
control, etc. This is particularly common given our heavy reliance
on frameworks, application servers and multi-layered
architectures to build web applications today. Further, each of
these packages requires further configuration, and in many cases,
an additional installation.

The presence of each additional package, and usually a very
particular version or configuration of each, provides more
opportunities for mistakes to be made during the installation.
Further, it means that if any of these other packages is modified
(through routine maintenance or updates, or because of use by
another application requiring them), there is the possibility of that
change breaking our application.

It should be clear that making decisions on which if any external
tools to rely on is something that must be done as early as possible
in the overall software development process. It is equally clear
that deciding to restrict use of external packages will usually
require making huge tradeoffs. The reason these packages are so
often used in the first place is because they provide immense
value to developers, saving considerable time and allowing us to
leverage and reuse the expertise and effort of others. Relying on
these packages can be the difference between developing a
successful application or not. Clearly, the many benefits provided
by using external packages must be carefully weighed against the
increased burden that users must bear to deploy the resulting
application. These decisions are complex, and have more to do
with marketing or other outward-looking considerations than
strictly development.

Bundle Everything. One solution to this problem is simply to
bundle everything you need in your application, so that when your
application is installed, so are all the other packages it depends on.
This is of course commonly done, particularly with code libraries,
shared libraries, and so on.

It is also not uncommon in many larger applications (e.g. complex
bulletin board systems, educational course management software),
where an installation will often install private copies of web
servers, database tools, and dozens of other packages within the
main application’s installation directory.

Taking this approach preserves the benefits to developers, who
can rely on all the other packages, and whose only cost is to write
a fairly complex setup application. For users, this complexity is
mostly hidden.

The downside though can often be a considerably larger package
to download and install, often several hundred megabytes, and a
greater impact on the user’s machine. For something like running
a small Wiki on a desktop machine, it may seem overkill to need
to download a 300 megabyte application, which when run starts a
dozen extra processes and daemons running on the machine.

Find Minimalist Alternatives. The other approach is to find
alternatives to external packages that are more minimalist, and
designed to be embedded within other applications (i.e. as Tcl
packages). Do you really need the full power and generality of
Apache and its dozens of modules, or can your application be
developed on top of a framework like Tclhttpd?

Once identified (or developed), these embeddable alternatives can
simply be included in the Starkit that contains the rest of the
application. This is a key benefit we get from using Starkits; using
Tcl packages from within a Starkit is as easy as using those
installed directly on your disk [9].

For CourseForum and ProjectForum, the following minimalist
alternatives were used to provide key functionality normally
provided by external tools:

• Web server: one of the minimalist web servers included in the
Tclhttpd [14] distribution was used, modified to call an
application-provided routine to process all requests; this
routine would then call the various objects in the application

• CGI libraries: our web-page processing was based on a simple
“subst”-based parser, similar to that used for TclHttpd’s TML
files, coupled with several small utility libraries developed in
house for standard components like forms, etc.

• Database: the applications naturally took advantage of the
Metakit database library automatically provided by Tclkit,
rather than using an external database

• Version control: while many systems rely on a separate CVS
installation, the fairly minimal version control needs were
easily met by a small custom Tcl library built using Metakit

Clearly these alternatives are nowhere near as powerful as the
full-featured systems we might conventionally use. But they are
more than sufficient for our application. For the specific
requirements of any single application, the savings in deployment
complexity usually offset the minimal gains a more general
solution would provide.

The resulting applications, including the Tclkit runtime,
dependent libraries, application code, web pages and associated
data files, all fit within a single executable approximately two
megabytes in size.

5.2. Installation and Configuration
A painless initial setup and install is an important part of
deployment. This is especially true for applications where an
initial trial is a key part of the decision for whether or not to use
the application.

Starkits hold the promise of installation being as simple as a copy
and uninstall a delete [20]. However, modern user expectations
that grew from too much complex software dictate that things are
usually not this easy.

To conform to platform expectations, on Unix platforms, our
single binary (a Starpack) is wrapped up in a gzipped-tar file. On
Windows, we install via a simple installer/setup program. On Mac
OS X, we bundle the application binary into a compressed disk
image, where installation actually is nothing more than copying
the file from the disk image to the hard drive. These will all be
discussed shortly.

Extensive configuration is common in web and network based
applications. Limiting most of the dependencies on external
components should minimize that as much as possible. Relying on
sensible defaults, and not necessarily requiring information about
local hostnames or IP addresses — which may have implications
on how the application is coded — can prevent tripping up many
users.

Rather than relying on hand editing of text-based configuration
files, the use of sensible defaults, coupled with web-based
configuration systems built into the main application (see
Figure 2) is preferred.

Figure 2. Web-based configuration in ProjectForum.

5.3. Starting and Stopping
Server applications typically run as “daemons” — “background”
or “faceless” applications that present no direct user interface.
Instead, when started, they simply listen on the appropriate
network ports, and respond to connections and requests from
clients (e.g. web browsers). This makes sense for any number of
reasons, particularly in the conventional data center environment.

For users not as familiar with network server applications though,
this model of use can be problematic. It raises questions like:

 “I double-clicked on the application, and it looked like it
opened, but I didn’t see anything. Did it crash?”

“Is it running?”

“How do I use it?”

“How do I stop it?”

On Unix environments, where applications are usually run from
the command-line, this wasn’t much of an issue; users know about
processes, can see if the application is still running in the shell,
and a useful startup message can be enough to tell them where the
server is listening (see Figure 3).

Figure 3. Starting CourseForum on Linux.

On Windows and Mac OS X, where applications are started by
double-clicking (and where no windows coming up after double-
clicking does usually signify a crash!), a small “launcher”
graphical user interface is provided instead (see Figure 4).

Figure 4. Starting CourseForum on Mac OS X.

This window can at a glance provide feedback that the server is
running, where it is running, how to stop it, and provides a way to
immediately access the application, by opening the user’s web
browser and loading the home page provided by the application
(which is done automatically the first time the application is
launched).

Common startup errors (such as a port already in use), port
changes, etc. are also handled directly in the GUI (see Figure 5).

Figure 5. Handling startup errors in the GUI.

In addition to the simple GUI that first time users encounter, it is
also still possible to run these servers as regular background
applications; how to do this is described in the applications’
administration guides and online support resources. The details of
doing this vary by platform, and are discussed shortly.

6. Platform Specific Issues
Tcl and Starkits do a spectacularly good job of allowing
developers to forget about the differences between platforms,
hiding the details of things like networking code that can vary
greatly. However, for network server applications, there are a few
additional details that need to be resolved.

6.1. Unix
Not surprisingly, Unix platforms such as Linux, FreeBSD, Solaris,
etc. do not provide a lot of surprises or challenges for this type of
application. Long-running daemon processes, for example running
at system startup time or out of /etc/inittab, are straightforward.

Privileged ports. The one additional bit of code required has to
do with running on privileged network ports (i.e. those below
1024), which requires root access. However, running everything
as the root user presents security risks that may be unacceptable to
many users.

Rather than having the user run as root, the binaries are marked as
“setuid”, which allows them to temporarily change to root as
needed (i.e. just to listen on the privileged ports), and then to
change back to a lesser-privileged user immediately after.

These features are not built in directly to Tcl; we wrote a tiny C
extension which just serves as a wrapper around the getuid(),
geteuid(), setuid() and seteuid() system calls needed to implement
the appropriate behavior. This extension was then of course
included into the Starkit used to hold our application.

6.2. Windows
Windows (CourseForum and ProjectForum run on versions from
Windows 95 and higher, just like Tcl/Tk) was also quite
straightforward, but again there were a few areas to address.

Launcher User Interface. For the simple graphical start/stop
interface that comes up when the application is double-clicked, we
simply used a short Tk script (see Figure 6), integrated directly
into the main server application.

Figure 6. Launcher User Interface on Windows.

Installers. From the platform that originally brought you “DLL
Hell”, it’s probably no surprise that applications must have
installers and uninstallers to be accepted by users. There are many
tools to help write such programs; CourseForum and
ProjectForum use the scriptable NSIS installer [10].

Windows Services. The accepted way to run long-running
processes (daemons) on Windows platforms, especially on
NT/2000 and above, is to use the “Services” facilities provided by
the operating system. This provides a monitoring facility, the
ability to automatically run the program at startup, start and stop it
via a control panel, and so on.

The ability to have an application run as a service is not directly
built into Tcl, and does require some small code changes. There is
an extension, TclSvc [13], which will provide all the needed
hooks into Windows. You will need to provide for mechanisms to
install and remove the service from the system. Building in
support for services directly into the application is the preferred
approach.

An alternative approach (and the lazy one that we’ve taken to
date) is to require an extra piece of software — introducing a
dependency on another software package — for those who need to
run the software as a service. The excellent FireDaemon package
[8], provides an easy way to turn any Windows application into a
service.

6.3. Mac OS X
The last platform to examine is Apple’s Mac OS X, the newest
major Tcl/Tk port. Most Tcl developers may have only passing
familiarity with OS X. This platform may prove particularly
valuable for developers, but without a doubt requires the most
effort to do well.

A Large Opportunity? Mac OS X [4] is the latest incarnation of
Apple’s user-friendly consumer operating system. A radical
departure from earlier versions, OS X is at its heart BSD Unix,
along with many advanced technologies deriving from the NeXT
acquisition several years ago. A common refrain is that OS X
brings Unix power to the masses.

Though the user base is considerably smaller than Windows
(perhaps about 5% of the market, probably just a bit larger than
Linux and other Unix variants), it can be an attractive market for
small developers. Mac users have a culture of rewarding
innovation, supporting small developers, and making it very easy,
through a variety of online resources, for developers to get the
word out about their applications.

Mac users are also probably the most demanding when it comes to
software working smoothly, and for them “port” is definitely a
four-letter word. Software has to be easy to use, follow platform
conventions, and work well to be successful.

For Tcl, one of the easiest to deploy — thanks to Starkit — of all
the scripting languages that originated on Unix, the opportunity to
deploy applications on a popular Unix-based consumer operating
system should be seriously considered.

Developer Tools and Documentation. Developing on the Mac,
even with Tcl/Tk, does require some use of Mac OS X
documentation, and Mac native developer tools. Luckily, both are
free and abundant (if somewhat daunting at first), and can be
found at Apple’s Developer site [5].

Most OS X applications are usually developed using Objective C,
using an application framework (class library) called Cocoa. The
compiler is a version of gcc, though most people encounter it only
from within an IDE called ProjectBuilder. The aptly-named
Interface Builder application provides an easy way to quickly
build user interfaces that follow platform guidelines, and that can
be easily attached to underlying code.

User Interface. The first major issue we encountered was user
interface quality. While Tcl itself is completely solid on OS X,
unfortunately the Tk port for Mac OS X is still very new. While
functional, it lacks much of the refinement expected in typical
Mac applications. As an example, Figure 7 shows the same Tk
launcher script we used on the Windows version, but instead
running on OS X.

Figure 7. Tk Launcher Script on Mac OS X.

Because we had limited GUI needs, we decided to just punt on
Tk, and developed the front end in Cocoa using Objective C and
Interface Builder. Despite being unfamiliar with the tools, this
took less than one day, and the resulting Objective C code is only
about 200 lines long, including all the interconnections with the
actual server program (more on that in a moment). The interface,
which follows platform conventions much more closely, is shown
in Figure 8.

Figure 8. Native Cocoa version of Launcher.

Application Structure. To understand how the Cocoa launcher
GUI fits in to the actual server, it is necessary to understand what
an application on Mac OS X looks like. While it is just Unix
underneath (so regular Unix binaries are present), most
applications that end users deal with are actually application
bundles. An application bundle is not a single file, but an entire
directory, which appears in the Finder (the File Manager) as a
single file. Inside the directory are various resources (icons,
version info, etc.) as well as traditional binary executables. This is
shown in Figure 9.

Figure 9. Application Bundles on Mac OS X.

Looking at the window on the right, the “ProjectForum” file is the
main application executable, which we created in Interface
Builder. This is what is run when the user double-clicks on the
application’s icon. But the “courseforum-server” file is another
executable. In this case, it is actually a Starpack, combining a Mac
OS X version of Tclkit along with our application-specific code
and data files.

The two pieces communicate by opening a pipe between them,
using the Cocoa framework’s facilities to do the equivalent of
Tcl’s “open |” plus “fileevent”. So port changes, status
information, etc. are communicated as simple text messages
written across the pipe. Yes, it’s definitely Unix underneath!

Granting Privileges. Splitting the application into two separate
executables turns out to be the recommended approach to solving
another problem, the issue of running on privileged ports on Unix
systems that was discussed earlier. Under OS X, users do not open
the terminal and manually change permissions with chmod
(though its possible).

Instead, when permissions are first needed, our front-end Cocoa
app makes a system call to prompt the user for the needed
authorization (system password), and then calls a tiny helper
binary (fixpermissions) which actually does the setuid changes on
the courseforum-server binary. This all involves a series of
obscure but well-documented utility routines provided by Cocoa.

Creating a StartupItem. Under OS X, a “StartupItem” is the
equivalent of a Unix daemon that starts at system startup time
(e.g. out of rc.d or /etc/inittab) or a Windows service. This is
simply a directory, placed in a well-known location, containing a
couple of text files (scripts) that point to your Unix-style
executable file (i.e. courseforum-server).

Installers. Mac OS X applications are typically delivered as disk
images. Like TclVFS, a disk image presents a “file system in a
file” facility. The downloaded file is “mounted” and appears much
like a CD or other removable media as a volume on the desktop.
Applications can be run right from the disk image, or copied to
the local machine’s Applications folder. This simple model is
greatly preferred by users. When absolutely needed, there are also
other facilities available for doing more complex installations,
akin to what would be seen in Windows installers.

7. Other Considerations
This section briefly touches on two other areas that are relevant
for building easy to deploy network server applications:
integration with existing web servers, and several build issues.

7.1. Integration
For web-based applications such as CourseForum and
ProjectForum, integration with existing web sites and web servers
is a question that can frequently arise. For example, many people
may already be running a web server on the machine that they are
installing the new application on.

Avoiding Conflicts. By default, our applications listen on ports
not likely to be already used (3455, also above 1024 so that issues
around privileged ports do not arise immediately). This is very
easy to change via the launcher user interface, the web
configuration, or a command-line flag on Unix platforms. If no
existing web server is already running, this can be changed to port
80, the standard HTTP port.

Closer Integration. Often though, there is a requirement that both
the existing web server and the web server in the new application
be accessible over port 80. This may be simply to present simpler
URL’s (i.e. without the port number included), but is most often
needed when firewalls are an issue. Firewalls may be located on
the network where the machine running the application is kept
(keeping outside traffic away), or on far-away networks where
some users would like to connect from. The strictest of these will
only allow HTTP traffic on port 80, and block everything else.

This can usually be solved through some sort of virtual hosting or
proxy mechanism. We assume the existing web server can
delegate specific requests (e.g. to a particular named host, or to a
subdirectory on the main site), passing them on to another web
server (i.e. our application running on some other port) to handle.

This can be done in Apache using the “ProxyPass” directive, with
Microsoft’s ISA server, with a dedicated proxy server, etc. Our
FAQ [7] contains some notes on how to set this up.

When allowing proxying from a subdirectory (e.g.
“http://www.foo.com/forums/” would proxy to the toplevel
directory of the application), particular care must be taken to rely
on relative URL’s only, and not absolute URL’s (those that start
with a “/”) to refer to resources in your application. Similarly,
applications should not have dependencies on the specific host
name they’re running on, nor the host header passed in by the
browser (which may be the proxy server, not the actual site).
There are many special cases, and extensive testing is required.

Branding. A further level of integration with existing web sites
may be desirable: the ability to match the appearance of the web
application to an existing web site. This may be so it appears to be
part of the same site, retains a standardized corporate look, etc.

To accomplish this, a mechanism to customize the appearance of
your application must be provided. Items to pay attention to
include images, colors, fonts, header and footer graphics, etc.
Ideally, there should be customization screens in your application
to allow for this. A reasonable fallback (since it is rarely needed,
and usually only by more sophisticated users) is to have the
application look in a special directory for customization files.
These may include replacement stylesheets, images, or chunks of
HTML that will be included at specific points in pages (easy if
you programmatically generate your pages using standardized
headers, footers, etc.).

7.2. Build Environment
A well-designed, automated build and test environment can be of
tremendous help to all development teams, no matter the size.
Given the complexities of building cross-platform server
applications, the more that can be automated, the more mistakes
that will be avoided. This section briefly describes the build
environment used for CourseForum and ProjectForum.

Automated Builds. Tcl and Starkits provide a great solution
already; scripts don’t need to be compiled, and using “sdx wrap”
you can package your development environment’s entire directory
structure into a finished Starkit.

However, there can be benefit to automating things further. Our
build script (written in Tcl of course) performs the following
steps, automatically every night on a server machine, and also on
demand:

• Check out a fresh copy of the entire code tree from the version
control repository (CVS) into a new directory

• Delete any unneeded files (e.g. developer notes, CVS
directories)

• Automatically update a build number

• Do any needed code obfuscating (see below)
• Run the full set of automated tests
• Build a (still platform-independent) Starkit
• Built platform-specific binaries and distributions (see below)
• Email a report detailing the build and test results

Platform Builds and Packaging. After the main build script
runs, platform-specific distributions must still be created. Using
the platform-independent Starkit produced from the main build,
Starpacks for the Unix platforms are quickly created, and then the
final distributions packaged into a gzipped tar file. These steps are
actually integrated into the main build (i.e. so it’s one command to
invoke). Also note that all Unix builds are done from a single
(Linux) machine; Starpacks for other platforms can be easily
created if the base Tclkit for the target platform is available.

We perform the finishing touches on our Windows and Mac OS X
builds on separate machines. For Windows, we copy the Starkit
created by the main build, turn it into a Starpack, and then create
the installer via a NSIS script [10]. The resulting setup program is
then copied back to the original machine so that all the builds are
collected in one spot. Mac OS X is similar, but we also need to
compile the launcher program using Project Builder, and build
final disk images. Again, all of these are completely automated, so
are invoked with only a single command.

Testing. CourseForum and ProjectForum rely very heavily on
automated testing, with test cases typically being developed
before starting development of code for new features (test-driven
development), and before fixing bugs. Run automatically every
day in the nightly build, and on demand, the result is an ever-
growing suite of regression tests that can be used to quickly
pinpoint changes that break existing code.

Network server applications can benefit both from unit testing
(white box) on the underlying code modules, as well as higher-
level acceptance testing (black box), where the application’s
features are exercised via the network/web interface. We used
Tcltest, augmented with a set of wrappers around Tcl’s http
package, utilities for cookies, HTML form parsing and
submission, etc. Other alternatives, e.g. tclwebtest [15], are also
available.

The final builds on each platform are subjected to a quick “smoke
test” before being released. They are manually installed on clean
machines (or VMWare virtual machines) and briefly exercised
according to a defined test plan.

Obfuscating Code. For commercial applications, code
obfuscation may also be an issue. Our build script automatically
byte-compiles all Tcl scripts using procomp from ActiveState’s
Tcl Dev Kit [1] before packaging the entire directory into the
Starkit. The Starkit contains versions of tbcload for all of our
supported platforms, and our main program tries to load the
appropriate version at application startup time. The byte-compiled
files are drop-in replacements for the original Tcl files, so the
application’s structure on disk is preserved, but the original code
is not shipped.

8. Our Experiences
Deploying CourseForum and ProjectForum for our users has been
much easier as a result of applying the techniques described here.
The applications are very small and therefore quick to download,
in line with users’ expectations for this sort of application. Once
downloaded, they are very easy to get started with, and work like
other applications developed natively for the platform in question.
Users just run the application and it works for them; they don’t
necessarily know that underneath it happens to use Tcl, Metakit,
etc.

Perhaps an appropriate way to summarize the results in terms of
deployment might be by noting a comment from the author of the
O’ReillyNet article about installing PhpWiki on Mac OS X. On
being pointed to ProjectForum, he gave it a quick try and then
responded:

I've got one of those if-only-I'd-known-that-before sort of
feelings...

Nice work. You're right, it couldn't be simpler.

These sorts of network server applications, run and managed by
end users rather than network admins, represent an important and
growing new niche. Tcl, probably more than any of the other
available cross-platform scripting languages, has the potential to
play a very strong role, because of its ability to be easily
deployed.

With Starkit providing a solid foundation for Tcl deployment, this
paper has suggested some additional techniques, many particular
to this application domain, which build on the existing Starkit
technology. Some are conventional and unsurprising, such as
worrying about platform-specific packaging and installation.
Others, such as adding a GUI interface to a server, may be less
common. Most importantly, dependencies on external packages
must be reduced in favor of Tcl-based embedded tools. While this
goes against the trend today in web development to layer on more
and more packages, it is critical when building network server
applications that are oriented towards average consumers rather
than network administrators.

Thinking about deployment early in design and development is
very important. Tcl and Starkit, enhanced with some of the
strategies discussed here, provide a great foundation for building
powerful network server applications that anyone can install and
use.

Acknowledgements
Thanks to Jean-Claude Wippler and Steve Landers for many
useful discussions on this topic, and for feedback on earlier drafts
of this paper. They have, along with many other users of the
software described here, helped to both motivate and refine this
work.

For any additional resources that may be available on this topic,
please see http://www.markroseman.com/tcl.

References
[1] ActiveState. Tcl Dev Kit Home Page.

http://www.activestate.com/Products/Tcl_Dev_Kit/.
[2] AmphetaDesk Home Page. http://www.amphetadesk.com.

[3] Apache Rivet Home Page. http://tcl.apache.org/rivet/.
[4] Apple Computer. Mac OS X Home Page.

http://www.apple.com/macosx/.
[5] Apple Developer Connection Home Page.

http://developer.apple.com.

[6] CourseForum Home Page. http://www.courseforum.com.

[7] CourseForum and ProjectForum FAQ.
http://www.courseforum.com/faq/.

[8] FireDaemon Home Page. http://www.firedaemon.com.

[9] Landers, S. Beyond TclKit – Starkits, Starpacks, and other
*stuff. Proceedings of the 9th Annual Tcl/Tk Conference.
Vancouver, Canada. September, 2002.
http://www.digitalsmarties.com/Tcl2002/tclkit.pdf.

[10] Nullsoft. NSIS Home Page.
http://www.nullsoft.com/free/nsis/.

[11] PhpWiki Home Page. http://phpwiki.sourceforge.net.
[12] ProjectForum Home Page. http://www.projectforum.com.

[13] Sensus Consulting. TclSvc (download and home page).
http://www.sensus.org/tcl/.

[14] TclHttpd Home Page. http://tclhttpd.sourceforge.net.
[15] Tclwebtest Home Page. http://tclwebtest.sourceforge.net.
[16] Turnbull, G. Installing a Wiki on your iBook. O’ReillyNet

6/05/2003. http://www.macdevcenter.com/
pub/a/mac/2003/06/05/wiki.html.

[17] Userland Software Home Page. http://www.userland.com.

[18] Wikit Home Page. http://www.equi4.com/wikit/.
[19] Wippler, J.C. Repositories, deployment factories, binary

code, and CDROM’s. Proceedings of the European Tcl
Conference. Munich, Germany. June, 2002.
http://www.equi4.com/docs/munich/eurotcl2002.html.

[20] Wippler, J.C. Scripted Documents. Proceedings of the 2000
Tcl/Tk Conference. Austin, TX. February, 2000.
http://www.equi4.com/docs/austin/scripdoc.html.

