
(doc)Tools for a new generation of Tcl package
documentation

Andreas Kupries ActiveState Corp 580 Granville Vancouver, BC CA

andreask@ActiveState.com

ABSTRACT
As part of general work on the ActiveTcl and Tcl Dev Kit
distributions we invented a new documentation system for
Tcl packages and use it to generate the nroff, HTML, and
CHM documentation delivered with these distributions.

This paper describes the formats provided by this system,
the packages handling them, especially their plugin inter-
face, our experiences with these formats, their limitations,
and ideas we have had for the possible evolution of the whole
system in the future.

1. OVERVIEW
To have documentation for Tcl packages and applications

in a single universal format is one of the recurring topics on
comp.lang.tcl [13]. Especially given the high variety formats
currently employed, like the *roff family [8], HTML [7], and
even plain text.

The latest concrete attempt at creating such a format I am
aware of was done for the Tcl-Blast! CD. At that time D. R.
Hipp created TMML, the Tcl Manpage Markup Language
[2], now maintained by Joe English.

The problem I had with TMML is that it is of XML-
ancestry [14] and thus heavyweight in the sense that while

1. processing of such markup in pure Tcl is possible (See
[15], [16]) it is not very efficient, good performance
requires compiled extensions to the Tcl language.

2. editing the markup manually, just with an editor is
possible it also causes the viewer to nearly drown in
the markup versus the actual text. Reducing this prob-
lem requires special editors tailor-made for XML-based
markup languages. It should be noted that compared
to other DTD’s TMML is relatively lightweight in this
regard.

Thus the motivation for a more lightweight format was
born. Lightweight as in easier to process in pure Tcl, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Tcl ’2003 Ann Arbor, Michigan USA
.

easier to edit without special tools. And a more tclish ap-
pearance would not hurt either.

The result of that motivation are the three doc* formats
we describe here.

The remainder of the paper is structured as follows. In
chapter 2 we explain the formats, their ancestry and where
to find (the Tcl sources for processing) them. In the next
chapter, 3 we present the API between the generic core pro-
cessor and the plugins for the generation of the actual out-
put.

Chapter 4 then discusses advanced topics, namely the au-
tomatic creation of keyword indices, tables of contents, pa-
rameterization, plugin hooks, etc.

Then we discuss the limitations of the system in chapter
5, provide conclusions in chapter 6, and at last chapter 7
talks about possible future work in this area.

2. THE DOC* FORMATS
As stated in the introduction the goal was to create a

lightweight, easy to use and still powerful language for the
creation of documentation, mainly manpages.

The result of this effort is the doctools system. The
sources of this system are freely available under the same
license as Tcl itself, as a module of the tcllib bundle of
packages [11]. An application using the doctools packages
is the doctools processor dtp, also freely available [12].

The system defines actually not a single format, but three.
The primary format has the same name as the overall sys-
tem, doctools and is intended for the creation of manpages.
The other two formats are doctoc and docidx, for the cre-
ation of tables of contents, and of keyword based indices.
While all of them can be written manually it is anticipated
that documents in the secondary formats will most likely be
generated automatically out of a set of documents written
in the primary format.

Brief documents written in the defined formats can be
seen in the figures 1, 2 and 3. They were taken from the
documentation for tcllib itself, all of which is written in doc-
tools, thus not only providing the means of processing the
formats, but also serving as a pool of examples.

The result of converting the sha1 documentation in figure
1 into plain text can be seen in figure 4. Other output for-
mats with predefined formatting engines1 are nroff, HTML,
TMML, LATEX [6], and Wiki format [24].

The conceptual ancestor of the three formats is LATEX
and its metaphor of having text as the main part of the
documentation, interspersed with markup commands.

1In other words coming as part of doctools in tcllib

Figure 1: sha1 manpage in doctools
[manpage_begin sha1 n 1.0.3]

[moddesc {sha1 hash}]

[titledesc {Perform sha1 hashing}]

[require Tcl 8.2]

[require sha1 [opt 1.0.3]]

[description]

[para]

This package provides commands to compute a SHA1 digests of arbitrary

messages.

[section COMMANDS]

[list_begin definitions]

[call [cmd ::sha1::sha1] [arg msg]]

The command takes a message and returns the SHA1 digest of this message

as a hexadecimal string.

[call [cmd ::sha1::hmac] [arg key] [arg text]]

The command takes a key string and a text and returns the hmac of the

[list_end]

[section EXAMPLES]

[para]

[example {

% sha1::sha1 "hello world"

2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

}]

[para]

[example {

% sha1::hmac "our little secret" "hello world"

a7ed9d62819b9788e22171d9108a00c370104526

}]

[keywords sha1 hashing security]

[manpage_end]

Figure 2: Excerpted table of contents for Tcllib
[toc_begin {Tcllib -- Table of Contents} Modules]

[item tcllib/modules/base64/base64.man base64 {Procedures to encode and decode base64}]

[item tcllib/modules/base64/uuencode.man uuencode {encode/decoding a binary file}]

[item tcllib/modules/base64/yencode.man yencode {encode/decoding a binary file}]

...

[item tcllib/modules/crc/cksum.man cksum {calculate a cksum(1) compatible checksum}]

[item tcllib/modules/crc/crc16.man crc16 {Perform a 16bit Cyclic Redundancy Check}]

[item tcllib/modules/crc/crc32.man crc32 {Perform a 32bit Cyclic Redundancy Check}]

[item tcllib/modules/crc/sum.man sum {calculate a sum(1) compatible checksum}]

[item tcllib/modules/csv/csv.man csv {Procedures to handle CSV data.}]

[item tcllib/modules/des/des.man des {Perform DES encryption of Tcl data}]

[item tcllib/modules/dns/tcllib_dns.man dns {Tcl Domain Name Service Client}]

[item tcllib/modules/html/html.man html {Procedures to generate HTML structures}]

[item tcllib/modules/irc/irc.man irc {Create IRC connection and interface.}]

...

[item tcllib/modules/smtpd/smtpd.man smtpd {Tcl SMTP server implementation}]

[item tcllib/modules/soundex/soundex.man soundex Soundex]

[item tcllib/modules/stooop/stooop.man stooop {Object oriented extension.}]

[item tcllib/modules/struct/struct_list.man list {Procedures for manipulating lists}]

[item tcllib/modules/struct/struct_tree.man tree {Create and manipulate tree objects}]

[item tcllib/modules/uri/uri.man uri {URI utilities}]

[toc_end]

Figure 3: Excerpted keyword index of Tcllib
[index_begin Tcllib {Keyword index}]

[key C++]

[manpage tcllib/modules/stooop/stooop.man stooop]

[key CGI]

[manpage tcllib/modules/ncgi/ncgi.man ncgi]

[key DES]

[manpage tcllib/modules/des/des.man des]

[key DNS]

[manpage tcllib/modules/dns/tcllib_dns.man dns]

[key HTML]

[manpage tcllib/modules/doctools/docidx.man docidx]

[manpage tcllib/modules/doctools/docidx_api.man docidx_api]

[manpage tcllib/modules/doctools/docidx_fmt.man docidx_fmt]

[manpage tcllib/modules/doctools/doctoc.man doctoc]

[manpage tcllib/modules/doctools/doctoc_api.man doctoc_api]

[manpage tcllib/modules/doctools/doctoc_fmt.man doctoc_fmt]

[manpage tcllib/modules/doctools/doctools.man doctools]

[manpage tcllib/modules/doctools/doctools_api.man doctools_api]

[manpage tcllib/modules/doctools/doctools_fmt.man doctools_fmt]

[manpage tcllib/modules/doctools/mpexpand.man mpexpand]

[key LaTeX]

[manpage tcllib/modules/doctools/docidx_api.man docidx_api]

[manpage tcllib/modules/doctools/docidx_fmt.man docidx_fmt]

[manpage tcllib/modules/doctools/doctoc_api.man doctoc_api]

[manpage tcllib/modules/doctools/doctoc_fmt.man doctoc_fmt]

[manpage tcllib/modules/doctools/doctools_api.man doctools_api]

[manpage tcllib/modules/doctools/doctools_fmt.man doctools_fmt]

...

[index_end]

Figure 4: sha1 manpage, converted to plain text
sha1 - sha1 hash

Generated from file ’tcllib/modules/sha1/sha1.man’ by tcllib/doctools with format ’text’

sha1(n) 1.0.3 "sha1 hash"

NAME

====

sha1 - Perform sha1 hashing

SYNOPSIS

========

package require Tcl 8.2

package require sha1 ?1.0.3?

::sha1::sha1 msg

::sha1::hmac key text

DESCRIPTION

===========

This package provides commands to compute a SHA1 digests of arbitrary messages.

COMMANDS

========

::sha1::sha1 msg

The command takes a message and returns the SHA1 digest of this message

as a hexadecimal string.

::sha1::hmac key text

The command takes a key string and a text and returns the hmac of the

EXAMPLES

========

| % sha1::sha1 "hello world"

| 2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

| % sha1::hmac "our little secret" "hello world"

| a7ed9d62819b9788e22171d9108a00c370104526

KEYWORDS

========

hashing, security, sha1

Another concept borrowed from that ancestor and TMML
is that of semantic markup. This means that all markup
defines what a component of the document is, but not its
appearance. This is left to the conversion into an output
format. The opposing term is visual markup which declares
the appearance of the content without giving it structure.
Examples for that are HTML, or naked TEX2. The use of
semantic markup is important as it is this feature which
allows the creation of tools which extract meta information
from a document and use that to generate other documents,
like an index of keywords. From the point of view of the
system itself the extraction of meta data is actually nothing
more than just another output format.

The full specifications of the three formats are part of the
doctools module in tcllib and are not iterated here.

3. FORMATTING ENGINES
The implementation of the format processors is based

upon the macro processor expand [20], combined with a
plugin architecture for flexibility.

A more detailed picture of the internal architecture can
be found in figure 5. This general setup is used for the
processors of all three formats.

The most important feature is that various parts of the
system are placed into their own interpreters, encapsulating
them, making tampering difficult, allowing communication
only through guarded APIs. The communication between
the interpreters is done through command aliases.

At the beginning of the pipeline is an expander object.
This reads the input, parses it into text and macros, and
then executes the macros it found in the syntax checker.
This interpreter knows the specification of the formatting
language and checks the input for conformance.

As a secondary task it also directly executes some format-
ting commands which are independent of the output format,
i.e [include] and [vset] (File inclusion and document vari-
ables). If the macro processor finds commands in the input
which do not belong to the doc* formatting language they
will currently also be handed to the syntax checker. This
may allow input documents to wreak havoc with the syntax
checking through the use of normal Tcl commands. In the
future we may insert another interpreter between expander
and checker to segregate the execution of such commands
from the checking itself.

The syntax checker will hand all formatting commands
conforming to the syntax and not handled by itself over to
the last interpreter in the pipeline. This is the formatting
engine. It contains and executes the code for the generation
of the chosen output format, loaded into it during the ini-
tialization of a processor object for doc*. To prevent this
(untrusted) code from inadvertent (or malicious) tamper-
ing with the environment is the main reason for the chosen
multi-interpreter architecture. To further this goal a safe
interpreter is used here.

When looking for a plugin implementing a format the sys-
tem will first check if the specified name of the format is
actually also the name of a file in the filesystem. If so, it
will assume that this file contains the code for the format-
ter. Otherwise it will construct the name of a file from the
name of the format and then search this file in a number of
directories. The standard directories are setup so that the

2TEX without additional macros on top of the base language

predefined formats are found, but any user of the system
can extend this list according to her needs.

The main API commands which have to be implemented
by any plugin for doctools for successful communication with
the generic framework are listed in table 1. The remainder is
documented in the manpages coming with doctools and will
not be iterated here. The APIs for the other two languages
are similar.

Beyond that the plugin is free in its activities, restrained
only by the restrictions placed on the safe interpreter it is
running in.

One of the most simplest plugins / output formats is list.
Its code is shown in figure 6. This output format extracts
just the meta data from the document and returns it for
further processing by other tools.

4. INDICES AND TABLE OF CONTENTS
In chapter 2 it was said that while documents in the

doctoc and docidx formats can be written manually their
generation from documents written in doctools is more
likely. In figure 7 we find a shell script showing the ba-
sics for doing so. This particular script is part of the dtp

application and can be extracted from it by executing dtp

script. In the future this may be converted into Tcl code
and become a regular method of dtp.

The flow of information inside of the script is shown in
figure 8. There are three important concepts buried in these
figures.

For one we have the extraction of the metadata from the
set of manpages, just another output format from the point
of view of the engine. This format is actually a Tcl script
by itself. See figure 9 for an example. Here we use it to
generate the table of contents of the keyword index, first by
generating them in doc*, then converting that into the final
output format, here HTML.

The second concept has not been talked about before.
All the references to other documents listed in either a ta-
ble of contents or a keyword index are based on symbolic
names and not physical ones, in conformance with the idea
that these documents are independent of any output format.
And embedding file names which are specific to some out-
put format would destroy this property. This on the other
hand means that a generator for a particular output format
has to be told how to map from the symbolic to the actual
file names. This is the second branch in the data flow, first
creating the mapping and then using it anywhere a doc*

document is transformed into the final output.
At last the script demonstrates the use of engine param-

eters. Any engine can export named parameters through
which the user can influence its behaviour. In the case of
the HTML engine we demonstrate there are mainly three,
named meta, header, and footer. When set the engine will
assume that their contents are raw HTML and inject them
in specific places of the output. Here we use only the header
to inject a navigation bar just before the actual contents of
any document, be it table of contents, index, or manpage.
Another parameter, xref, is not directly visible in figure 7,
but internally used by dtp to pass in the information about
command and keyword cross references, thus allowing the
engine to properly create links which are between manpages,
and links between manpages and the index.

At ActiveState a more fancy version of the shown script
additionally inserts references to the company’s stylesheet

Figure 5: Internal architecture of doctools

Table 1: Main plugin API
fmt numpasses This command is called immediately after the formatter is loaded and has to

return the number of passes required by this formatter to process a manpage.
This information has to be an integer number greater or equal to one.

fmt initialize This command is called at the beginning of every conversion run and is re-
sponsible for initializing the general state of the formatting engine.

fmt setup n This command is called at the beginning of each pass over the input and is
given the id of the current pass as its first argument. It is responsible for
setting up the internal state of the formatting for this particular pass.

fmt postprocess text This command is called immediately after the last pass, with the expansion
result of that pass as argument, and can do any last-ditch modifications of
the generated result. Its result will be the final result of the conversion. Most
formats will use identity here.

fmt shutdown This command is called at the end of every conversion run and is responsible
for cleaning up of all the state in the formatting engine.

fmt plain text text This command is called for any plain text encountered by the processor in the
input and can do any special processing required for plain text. Its result is
the string written into the expansion. Most formats will use identity here.

fmt * Implementations of all the formatting commands as specified in the language
specification, but prefixed with the string “fmt ”. The sole exceptions to this
are the formatting commands vset and include. These two commands are
processed by the generic layer and will never be seen by the formatting engine.

Figure 6: List output
-*- tcl -*-

#

-- Extraction of basic meta information (title section version) from a manpage.

#

Copyright (c) 2001-2002 Andreas Kupries <andreas_kupries@sourceforge.net>

Copyright (c) 2003 Andreas Kupries <andreas_kupries@sourceforge.net>

#

##

Take the null format as a base and extend it a bit.

dt_source fmt.null

global data

array set data {}

proc fmt_numpasses {} {return 1}

proc fmt_postprocess {text} {

global data

foreach key {seealso keywords} {

array set _ {}

foreach ref $data($key) {set _($ref) .}

set data($key) [array names _]

unset _

}

return [list manpage [array get data]]\n

}

proc fmt_plain_text {text} {return ""}

proc fmt_setup {n} {return}

proc fmt_manpage_begin {title section version} {

global data

set data(title) $title

set data(section) $section

set data(version) $version

set data(file) [dt_file]

set data(fid) [dt_fileid]

set data(module) [dt_module]

set data(desc) ""

set data(shortdesc) ""

set data(keywords) [list]

set data(seealso) [list]

return

}

proc fmt_moddesc {desc} {global data ; set data(shortdesc) $desc}

proc fmt_titledesc {desc} {global data ; set data(desc) $desc}

proc fmt_keywords {args} {global data ; foreach ref $args {lappend data(keywords) $ref} ; return}

proc fmt_see_also {args} {global data ; foreach ref $args {lappend data(seealso) $ref} ; return}

##

Figure 7: TOC and Index generation
#!/bin/sh

Arguments: Package directory, Destination directory, optional label

src=$1 ; shift

dst=$1 ; shift

lbl=$1

if [x$src = x -o x$dst = x] ; then

echo 1>&2 usage: $0 source destination

exit 1

fi

if [x$lbl = x] ; then lbl=‘basename $src‘ ; fi

rm -rf $dst

mkdir -p $dst

echo Find and map sources ...

dtp map -ext html -out $dst -trail 2 ‘find $src -type f -name ’*.man’ | sort‘ > $$.map

echo _index_ $dst/index.html >> $$.map

echo _toc_ $dst/toc.html >> $$.map

echo Fixed nagivation bars ...

dtp navbar $$.map _toc_ _toc_ ’Table Of Contents’ /off _index_ ’Index’ /on > $$.nb_toc

dtp navbar $$.map _index_ _toc_ ’Table Of Contents’ /on _index_ ’Index’ /off > $$.nb_idx

dtp navbar $$.map _index_ _toc_ ’Table Of Contents’ /pass _index_ ’Index’ /pass > $$.nb_page

In the last command _index_ is a dummy, but has to be a valid symbolic filename.

echo Meta information ...

dtp meta $$.map > $$.meta

echo Table Of Contents ...

dtp toc \

-title "$lbl -- Table of Contents" \

-desc Modules \

$$.meta \

> $$.toc

dtp gen-toc \

-varfile header $$.nb_toc \

html $$.map $$.toc > $dst/toc.html

echo Index ...

dtp idx \

-title $lbl \

-desc "Keyword index" \

$$.meta \

> $$.idx

dtp gen-idx \

-varfile header $$.nb_idx \

html $$.map $$.idx > $dst/index.html

echo Pages ...

dtp gen-doc \

-varfile header $$.nb_page \

-subst header _toc_ $dst/toc.html \

-subst header _index_ $dst/index.html \

html $$.map $$.meta

rm $$.*

exit

Figure 8: Dataflow in gendoc.sh

Figure 9: Excerpt of extracted meta data
manpage {

desc {Handle text in Emacs ChangeLog format}

fid changelog

file input/tcllib/modules/doctools/changelog.man

keywords {changelog emacs doctools}

module {}

path input/tcllib/modules/doctools/changelog.man

section n

seealso {}

shortdesc {Documentation tools}

title doctools::changelog

version 0.1

}

manpage {

desc {Handle text in ’cvs log’ format}

fid cvs

file input/tcllib/modules/doctools/cvs.man

keywords {cvs changelog {cvs log} log}

module {}

path input/tcllib/modules/doctools/cvs.man

section n

seealso {{}}

shortdesc {Documentation tools}

title doctools::cvs

version 0.1

}

as a means of altering the visual appearance of the output
without having to modify the engine, and copyright infor-
mation.

The navigation bar itself also contains symbolic document
references which are substituted with the correct reference
while formatting each document. This is necessary because
the relative position of the document containing the refer-
ence and the document referred to can change from docu-
ment to document. The details of this are described in the
command line help for dtp.

5. LIMITATIONS
Doctools and its formats are not big document processing

systems, although they may come near with their ability to
generate indices and tables of contents.

For example support for template text blocks and param-
eterization of such is limited to the very basics, i.e. the
abilities to include a document into other documents and to
set and get the value of document variables. There are nei-
ther conditionals nor looping constructs. Nor is it possible
to define format specific text, i.e. it misses the ability to
define different texts for web and print presentations.

The above, while possibly annoying in some situations, is
not a very significant problem in my eyes. More serious to
me is image support, or rather, the lack of it. While it is
possible to use [uri] commands to insert a link to image
into the text this will mean nothing to most output format,
and in the case of HTML the result will be a regular a link
to the image, and not an img tag. In other words the image
will not be shown inline, but as clickable link to it.

There are some ideas floating around on how to remedy
this, they will be discussed in chapter 7 about future work.

6. CONCLUSIONS
In this paper we have shown (yet another) language for

writing documentation in, designed to fit into the Tcl world,
with a tclish visual appearance, easy to write manually, also
easy to process in pure Tcl, yet powerful and flexible enough
to cover not only the most basics of needs of a documenta-
tion writer, but most of them.

We have shown the current implementation of the lan-
guage, its internal organization, and especially its plugin
mechanism which allows for a multitude of output formats
and thus allows us to keep the system current with any
changes in the environment which may and will come in the
future. In line with the paradigm of Tcl as glue to anything
else.

At last we have shown and discussed a tool based upon
the doctools system and its actual use in a production envi-
ronment, the build system for ActiveState’s ActiveTcl and
Tcl Dev Kit distributions [23].

With that we can now go on and try to take a look into
the future and what we can and may do to enhance and
extend the system even further.

7. FUTURE WORK
The limitations discussed in chapter 5 are obvious places

where more work can be done in the future to enhance the
doctools system.

With regard to image support for example I currently see
two possible alternatives on implementing it. One method
is simpler to implement in doctools, leaving the main part of

the burden in the users hand. This method is implemented
in the rendering system for TIPs [17]: Links to images are
given in symbolic form, and the actual mapping from symbol
to image data is then given to the format engine through
means outside of the format itself. In the case of TIPs this
is actually semi-automatic, each renderer uses the symbol
as base path and then looks for a file with the proper file
extension.

The alternative would be to extend doctools beyond text
formatting by incorporating commands for the creation of
vector and raster graphics [25]. This is more difficult to do,
simply because all relevant formatting engines have to be
extended to understand the input. And for those that don’t
or can’t do graphics we either have to extend them so that
the graphics commands do nothing, are the generic layer has
to be able to detect if an engine is able to do graphics and do
the skipping of graphics on its own. A question to consider
before the implementation is: How far can we actually go
with this?

A preliminary answer is: Quite far. In the XML world we
have Scalable Vector Graphics, this can be combined with
TMML. And in the *roff world we have the ’pic’ language
[8] for the same purpose3. Which means that it is possi-
ble to incorporate at least vector graphics into manpages.
And that is actually the most we will most likely need. As
for the TEX/LATEX world, graphics can be incorporated ei-
ther through PostScript, or a special sub-language for the
description of vector graphics. In other words the same as
proposed here.

A last note on this topic: The two alternatives discussed
above do not exclude each other. They are actually quite
orthogonal, one geared towards stronger vector graphics 4,
the other more usable for raster images.

A less visible change would be to rewrite the interface
between generic framework and formatting engines in an
object-based manner. Actually this would be, for the sake
of backward compatibility, rather the addition of an object-
based interface to the system instead of replacing the exist-
ing interface completely. The point here is that the object-
based approach makes a number of customization task a lot
easier, by creating new engines by either derived them from
an existing one, or by wrapping the custom code around
it, i.e. delegation [19]. Even if this change is not done for
the core system itself it is something writers of formatting
engines should consider for their code.

Again more obvious work, extend the number of prede-
fined formatting engines. Useful formats are, for exam-
ple, DocBook [3] for connectivity to Linux documentation,
Python’s ReST (structured plain text, [5]), and Tcl’s TIP
format [17]. And beyond that an engine converting doctools
into a format usable by Tk’s text widget would allow for
the portable display of our documents without the requiring
additional extensions, like TkHTML [21].

And now looking at things from a completely different
angle, consider the writing parsers which read formats like
TMML, DocBook, ReST and return doctools. This way
we can import existing documentation into the unified for-
mat. The most beneficial parser right now would be one for
TMML. This is because Joe English already has a suite of

3Please note that this requires the use troff. nroff is not
able to handle this.
4Encoding of raster images is also possible, see Richard
Suchenwirth’s strimj’s [18]

applications which read *roff manpages and convert them
into TMML, using a number of heuristics to guess the se-
mantic markup. A TMML to doctools then simply com-
pletes the chain allowing the import of preexisting Unix
manpages.

A simpler application would be to read doctools, and then
write it back, in other words a pretty-printer.

The general theme the above is falling under is the (au-
tomatic, or semi-automatic) generation of documentation,
using doctools as the generic intermediate language. In the
discussion above the source is simply other existing docu-
mentation. A seed for this is already present in the doctools
module, two packages parsing the output of cvs log and
of emacs ChangeLog files, thus extending the generation of
user-visible documentation from texts written by develop-
ers.

The next obvious step here is the extraction of documen-
tation directly from the Tcl code, in other words, support for
various types of literate programming. Examples of tools do-
ing this are AutoDoc [9] and zdoc [10]. Inside of AutoDoc for
example we have derivations of class genericFormatter, en-
abling it to write its result not only in HTML but any other
format a class exists for. These parts could be rewritten to
simply generate doctools and thus leverage of the format-
ting engines and tools already present for it. For a differ-
ent approach in the same area see the User Documentation

Project on the Wiki [1], which is thinking about using either
doctools formatting directly for the embedded documenta-
tion or at least something very close it. Stepping further
we come to tools which perform complex analyses on the
source code of packages and application and have to report
the results in some manner. An example of these class of
applications is Source Navigator [22].

The last line of thought I wish to discuss here is the pos-
sibility to make the formatting language itself extensible.
Look for example to the beginning of this chapter, where
we talked about the support for images. One of the ap-
proaches discussed was to extend the language to support
vector graphics. Is it possible to generalize such work ? I.e.
to create a framework where language extensions itself can
be plugged into the system, loaded on demand when used in
a document ? Is this actually useful, or is graphics support
the only important thing missing, language-wise ? This is
also related to the topic of better support for templating and
parameterized macros as described in chapter 5. For what
else are such macros and templates than extensions of the
formatting language itself ?

APPENDIX

A. REFERENCES

[1] User Documentation Project
http://wiki.tcl.tk/8948

[2] The Tcl Manpage Markup Language, Dean
Richard Hipp, Joe English
http://wiki.tcl.tk/TMML

http://tmml.sourceforge.net

[3] The DocBook Format, Norman Walsh
http://www.docbook.org/

http://wiki.tcl.tk/Docbook

[4] Plain Old Documentation
http://aspn.activestate.com/ASPN/Reference/

↪→Products/ActivePerl/lib/Pod/

↪→perlpod.html

http://aspn.activestate.com/ASPN/Reference/

↪→Products/ActivePerl/lib/Pod/

↪→perlpodspec.html

[5] ReStructured Text
http://docutils.sourceforge.net/

[6] TEX and LATEX, Donald E. Knuth, Leslie
Lamport
http://www.tug.org/

http://www.latex-project.org/

[7] HTML Specification
http://www.w3.org/MarkUp/

[8] nroff and companions (tbl, eqn, pic, ...)
http://groff.ffii.org/

http://docs.rinet.ru:8083/UNIXi/ch08.htm

[9] Autodoc; Extractor for documentation
embedded in Tcl, Andreas Kupries
http://www.purl.org/NET/akupries/soft/autodoc/

[10] zdoc; Extractor for documentation embed-
ded in Tcl
http://www.oklin.com/zdoc/

[11] Tcllib, Doctools module
http://wiki.tcl.tk/doctools

http://tcllib.sourceforge.net/doc/#DIVd0e138

[12] Tcllib, Doctools Processor
http://wiki.tcl.tk/dtp

[13] comp.lang.tcl
news:comp.lang.tcl

[14] XML Specification
http://www.w3.org/XML/

[15] TclXML, Steve Ball
http://tclxml.sourceforge.net

[16] TclDOM, Steve Ball
http://tclxml.sourceforge.net

[17] Tcl Improvement Proposals
http://www.purl.org/tcl/tip/

http://www.purl.org/tcl/tip/3.html

http://sourceforge.net/projects/tiprender/

[18] Strimj, Richard Suchenwirth
http://wiki.tcl.tk/strimj

[19] SNIT, Will Duquette
http://wiki.tcl.tk/snit

[20] Expand, Will Duquette
http://wiki.tcl.tk/expand

[21] TkHTML, Dean Richard Hipp
http://wiki.tcl.tk/tkhtml

[22] Source Navigator, RedHat
http://wiki.tcl.tk/890

[23] ActiveState’s ActiveTcl, Tcl Dev Kit
http://www.ActiveState.com/Tcl

[24] Tcler’s Wiki Format
http://wiki.tcl.tk/Formatting%20Rules

[25] TclMagick binding to ImageMagick
http://wiki.tcl.tk/tcl-magick

	Overview
	The doc* formats
	Formatting engines
	Indices and Table Of Contents
	Limitations
	Conclusions
	Future Work
	References

