

Data Definition and
Code Generation in Tcl

William H. Duquette
Jet Propulsion Laboratory

William.H.Duquette@jpl.nasa.gov

ABSTRACT
This paper discusses the use of Tcl-formatted data definition files
processed at compile time in place of runtime-loaded text tables.
This pattern has been applied many times in the development of
the new Uplink Tracking and Command subsystem for Jet
Propulsion Laboratory's Deep Space Network. For example, data
defining the nature and capabilities of hardware controlled by the
Deep Space Network's Uplink subsystem is placed in a data
definition file. At compile time, the file is read by a tool which
produces HTML documentation as well as C code for inclusion in
the subsystem library. The hardware definitions thus become
available to every aplication task in the subsystem with little run-
time overhead.

1. BACKGROUND
1.1 The Deep Space Network
The Deep Space Network (DSN) is NASA’s primary ground
system for spacecraft telecommunications. A world-wide network
of antennas and related hardware and software, it consists
primarily of an operations center at the Jet Propulsion Laboratory
(JPL), three Deep Space Communications Complexes (DSCC’s)
in California, Spain, and Australia, and the voice and data
networks which connect them. The DSN is primarily used for
tracking NASA spacecraft, but also supports the European Space
Agency (ESA) and others.

1.2 The DSN Uplink Subsystem
Each DSN complex operates a number of "deep space stations",
each of which consists of a dish antenna and related
“subsystems”. Each subsystem is a collection of hardware and
software which supports one element of a successful spacecraft
track. The Uplink subsystem is responsible for the production of
the uplink signal, which is then fed to the antenna by means of the
microwave subsystem. Production of the Uplink signal includes
signal generation, frequency tuning, and modulation of various
forms of data onto the carrier signal. The Uplink hardware
includes an exciter, transmitters, command and ranging
modulation boxes, and a controlling workstation.

The Uplink subsystem's software is mostly coded in C; C99
extensions are not yet available.

1.3 The Exciter
The exciter generates the carrier signal and modulates subcarriers
on top of it. The DSN uses several different types of exciter, each
designed for different frequency ranges; however, all are designed
to be controlled by the same software. Thus, the software must
know the particulars of each exciter type.

An exciter's hardware consists of a number of rack-mounted
boxes called "assemblies". For example, every exciter includes
an Uplink Channel Local Oscillator, or UCLO; this assembly is
responsible for producing a desired sine wave given a number of
reference frequencies as input. Other assemblies are specific to a
particular frequency range and appear only in the exciter types
which produce that frequency range. From a monitor and control
point of view, each assembly consists of some number of
components, which may be attenuators, phase-lock loops, sensors,
and switches.

In order to monitor and control a specific exciter, then, the Uplink
software must know:

• Which assemblies are included in that exciter
• For each assembly precisely which components of the

four different types it contains.
• For each component, the addressing information and

other details that allow the software to take readings
from it, make sense of those readings, and in some
cases control it.

For illustrative purposes, this paper will focus on attenuators, but
the other components are handled similarly.

An attenuator is a device that controls the strength of some signal,
rather like a volume control. It is monitored and controlled via a
serial interface. The signal strength is controlled by setting the
attenuator's value. To monitor and control a specific attenuator,
the subsystem software must know the following:

• Name: A brief name used by the software to refer to the
component.

• Comment: A human-readable name for the component.
• Address: Identifies the specific 64-bit serial interface;

typically there are one or two per assembly.
• Monitor Line: The attenuator's value is read from the

serial interface starting at this bit.
• Control Line: The attenuator's value is set by writing it

to the serial interface starting at this bit.
• Max Value: The maximum attenuator setting.
• Min Value: The minimum attenuator setting.
• Bit Count: Number of bits in the attenuator value, 4 to

7.
• Resolution: The resolution of the least-significant bit, 1

or 10 (decimal).
• Bit Encoding: How the attenuator's value is encoded.
• Bit Order: Least-significant bit first, or most-significant

bit first.

The other component types have similar sets of attributes.

The remainder of this paper concerns how this kind of information
is made available to the application code that monitors and
controls the exciter hardware, and to the developers who write
that code.

2. HANDLING DEFINITION DATA
2.1 Hand Coding
The data defining the exciters' assemblies and components must
be made available to the application software. The conceptually
simplest approach is to hardcode all of the information directly
into the application's source code. This solution is inflexible,
error prone, and ugly, especially in C, where hand-editing nested
structure and array initializers takes great care.

Moreover, because the C code is ugly and hard to read it's
necessary to have a detailed and readable specification of the data.
When changes are necessary it takes extra work to change both
the spec and the code, and it is always difficult to be sure that the
spec and the hardcoded data are consistent. This violates the
"DRY" (Don't Repeat Yourself) principle, which states that
"Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system."1

2.2 Table-Driven Execution
The traditional approach is to put the relevant data into tables
which are read at run-time. This approach has been widely used
in the past in DSN subsystem development, and is often the
correct thing to do. It presents the data in an easy-to-read, easy-
to-edit format, and allows changes to be made without
recompilation. In principle, certain bugs can be fixed by
redelivering the table without redelivering the application itself.

This is a useful technique, and the Uplink subsystem software
uses it as appropriate. But it falls down when the data and the
application logic are so linked that table changes imply code
changes. For example, to properly control an attenuator the
application must know not only that the component exists, but
which signal it controls. This is domain knowledge which will
become part of the application logic. Thus, while details might be
defined in a table, the component's name and type (at a minimum)
must be hard-coded. In addition, the attenuator's essential
attributes are all related to its hardware design; once the definition
is correctly entered, it will not be changed unless the hardware is
changed—and if the hardware is changed sufficiently that the
definition is invalidated, it is extremely likely (in the Uplink
subsystem, anyway) that the software will need to be modified as
well.

Thus, with this technique the application software bears the
burden of parsing the table at startup to provide a flexibility that's
of limited value. Moreover, syntax errors in the table might not be
caught until the software is delivered to operations and invoked on
the target platform.

Surprisingly, the table-driven method also violates the DRY
principle, because there are potentially two copies of the table: the
table you thought you delivered, and the table that's actually being
used. Thus, for the kind of data we're discussing here it might still
be necessary to have a detailed specification that's separate from
the table itself.

2.3 Data-Driven Compilation
The table-driven approach does have one definite advantage: the
data is available in an easily editable form. This advantage can be
retained by processing the table, or data-definition file, at compile
time instead of at run-time. During the build process, the
following steps take place:

• The file is processed by a specially-written tool, which
o Parses and validates the file. Thus, syntax and

logical errors can be caught at compile time.
o Stores the data in memory in an easily queried

form.
o Generates C source code which defines and

populates the required data structures. The code
might also contain access functions, etc.

o Generates any other products of value, e.g., HTML
documentation. The code and documentation are
guaranteed to be consistent, as required by the
DRY principle.

• The generated source code is compiled and linked into a
library.

• Application tasks which need to use the hardware
definition link with the library.

In short, a well designed data-definition file is a configuration-
managed input to the build process that serves (through the
medium of the translation tool) not only as program source code
but also as a readable specification of the data.

3. DEFINITION FILE FORMAT
The data-driven compilation pattern has been applied many times
during development of the DSN Uplink subsystem. The tools
used to process the data files and generate the output have
invariably been written in Tcl, for the following reasons:

• It's a text manipulation job, so the obvious tools are Tcl
or Perl.

• If the file format is properly defined, the Tcl interpreter
itself can be used to parse the file. This eliminates most
of the syntactic processing.

• File formats defined in this way are clear and easy to
edit; they don't look like "program code".

• The developer prefers Tcl to Perl.

In our first application of the pattern we devised a generic file
format which proved so satisfactory that we've retained it for all
subsequent definition file formats. It hinges on the fact that every
definition file is defining some number of entities, each of which
has attributes. That is, it's a sequence of record structures. Each
entity definition looks like this:

<entity-type> <entity-name> {
 <attribute-name> <attribute-value>
 .
 .
 .
}

Normal Tcl quoting is used for the attribute values. Thus, here's a
fragment from an exciter definition file. It defines one assembly,

containing one component, an attenuator. It also contains a
change log entry:

change 6/11/2003 {
 author "Will Duquette"
 description {
 Added the SAT1 component to UCLO.
 }
}

assembly UCLO {
 comment {
 Uplink Channel Local Oscillator
 }
}

attenuator SAT1 {
 comment {S-band Attenuator 1}
 address 7
 monitorLine 1
 controlLine 13
 minValue 0
 maxValue 127
 resolution 1
 bitCount 7
 bitOrder MSB_FIRST
 bitEncoding BINARY
}

Note that the attribute/value list is in each case a list of pairs.

The first entity is a change log entry. Change log entries have no
obvious unique name, so the name parameter was a convenient
place to put the date. We could as easily have done without the
name parameter altogether, and include the date of the change as
another attribute. Each change log entity has two further
attributes, an author (the person who made the change) and a
description (what the change consisted of).

The next is an assembly entity. The entity is called UCLO, and
has one attribute defined, a human-readable comment. We will
define our processing code so that the component entities which
follow immediately after will be included within the assembly
(until the end of the file or the next assembly entity).

The last entity is an attenuator; the entity defines values for the
attributes listed in Section 1.3.

This is a small fragment of an exciter definition file. A real
exciter definition file would have many assembly entities, along
with "pll", "sensor", and "switch" entities (the other three kinds of
component), and would also have exciter entities listing the
assemblies that comprise each exciter.

This basic format has proven quite flexible; it handles all kinds of
attribute values, ranging from numbers to enumerated constants to
blocks of HTML text. Most attribute values are simple atomic
data but that's not a requirement; an attribute value can have any
additional syntax we care to define.

It's easy to write a parser for this format in Tcl:
just define a Tcl command for each entity type and use "foreach"
or even "array set" to parse the attribute list.

4. A SIMPLE IMPLEMENTATION
This section describes a simple Tcl solution for parsing definition
files. The solution is similar to our initial implementations, but
has disadvantages which will be described in Section 5.

4.1 A Simple Data Store
Out initial implementation stored all of the parsed data in a single
Tcl array using complex array indices. For the example shown in
Section 3, the data would be layed out in the array as follows:

Array Index Description
data(types) List of entity type names
data(entities) List of entity IDs
data(assemblies) List of assembly entity IDs
data(attenuators) List of attenuator entity IDs
data(changes) List of change entity IDs
data(attrs-$type) List of attribute names for

entity type $type
data(types-$id) List of entity types to which

entity $id belongs.
data(value-$id-$attr) Value of attribute $attr for

entity $id

The first five elements are not strictly necessary, but their values
are easily constructed as the input is parsed, and they make it
easier to iterate over the data later on. Retaining a list of the
attribute names for each entity type is also not necessary, but
simplifies error checking.

This simple data store can be elaborated in a variety of ways; for
example, the single array could store multiple databases, possibly
with different entity types, simply by inserting "-$db" into all of
the above indices.

Note that entity types will often have attributes which never
appear in the parsed input. Each assembly entity, for example,
will have an "attenuators" attribute which at the end of parsing
contains a list of the IDs of the attenuator entities which belong to
the assembly. Similarly, each attenuator entity will have an
"assembly" attribute naming the assembly to which it belongs.

4.2 A Simple Parser
The following script is a simple parser for the example file shown
in Section 3. The name of the file to parse is in argv.

set currentAssembly ""
set counter 0

proc assembly {id attrlist} {
 global currentAssembly
 global data

 set currentAssembly $id
 lappend data(entities) $id
 lappend data(assemblies) $id

 foreach {attr value} $attrlist {
 set data(value-$id-$attr) $value
 }
}

proc attenuator {id attrlist} {
 global currentAssembly
 global data

 lappend data(entities) $id
 lappend data(attenuators) $id

 foreach {attr value} $attrlist {
 set data(value-$id-$attr) $value
 }

 set data(value-$id-assembly) \
 $currentAssembly
}

proc change {date attrlist} {
 global data

 set id "chg[incr $counter]"

 lappend data(entities) $id
 lappend data(changes) $id

 foreach {attr value} $attrlist {
 set data(value-$id-$attr) $value
 }

 set data(value-$id-timestamp) \
 [clock scan $date]
}

source [lindex $argv 0]

Next, query the data and generate
the desired outputs
 .
 .
 .

A Tcl command is written to parse each entity type. Each
command simply takes the input data and stuffs it into the data
array. Finally, the definition file is simply sourced as a Tcl script.

5. A REUSEABLE IMPLEMENTATION
The code presented in Section 4 shows how simple the parsing
and data storage problem is when the possibility of input errors is
ignored. But definition files can be many thousands of lines long
(our largest contains over 17,000 lines), and are edited by multiple
programmers, so input errors are likely, and it's best to catch them
early. Our initial implementations quickly grew to do the
following things:

• Verify that each new entity ID is unique.
• Verify that each new entity's attribute list contains all of

the required attributes.
• Verify that each new entity's attribute list contains no

unknown attributes (e.g. "coment" or "maxValu").
• Verify that all attribute values are valid.
• Verify that any other entity preconditions are met (e.g.,

the first attenuator entity must be preceded by at least
one assembly entity.

When these had been added, the simple commands shown in
Section 4 had grown much less simple. When the second file
format was defined, we simply copied the code for the first and
made the necessary changes. When the third was defined, it was
clear that a certain amount of infrastructure was needed. This
section describes our current software, after several cycles of
abstraction and refactoring done over a period of several years.
The implementation is not discussed in detail; instead, we discuss
the pieces, how they fit together, and the lessons learned.

At base, however, the final implementation is really just an
elaboration of the code shown in Section 4: the data is still parsed
by Tcl commands named after the entity types, and stored in a Tcl
array using the same technique.

5.1 The Pattern
Each definition file format is defined by three things:

• A man page documenting the input format, e.g.,
excdef(5).

• A Tcl package used to parse excdef(5) files into
memory and query the result, e.g., excdef(n). This is
colloquially called the file format's API.

• A tool script which uses the Tcl package to parse
excdef(5) files and generate desired outputs, e.g.,
upl_excdef(1).

In some cases the Tcl package contains code to generate the
typical output files, but more usually such code is in the tool
script.

5.2 The Object System
After implementing several of the API packages, two things
became clear: 1) all the APIs contained much the same set of
commands for loading, parsing, and querying data, and 2) it is
sometimes convenient to have several distinct sets of input loaded
at the same time. Switching to an object interface style was thus a
natural step: one program could then create multiple instances of
each API, and in use all of the APIs looked more or less alike.

At first the interfaces were coded in pure Tcl2; later, a simple
SNIT-like3 package called otype(n) was implemented. Classes
defined using otype(n) have constructors, destructors, instance
variables, and instance methods. There is no inheritance, no class
methods or variables, no automatic delegation, and no
megawidget support. Instance variables are available in all
method bodies without declaration, as is the special "self" variable
which contains the name of the instance command.

5.3 The Data Store
All the file definition APIs are based ultimately on an in-memory
data store called a "recordspace". Given a recordspace(n) object
::rs, the available operations include:

:rs typedef typeId attrNames

Defines a new entity type given its type name and
attribute names. Recordspace does not allow the
specification of default values or value constraints.

::rs new typeIdList recordId attrList
Adds a new record (entity) to the recordspace. The
entity belongs to the types listed in the typeIdList. That
is, its valid attribute list is the union of the attribute lists
for all of the types, and it can be queried as a member of
each of the types.

The attrList is a list of attribute names and values; the
attribute names are validated. Unless an attribute's value
is specified in the attribute list, it will default to the
empty string.

::rs types ?recordId?

If no recordId is specified, this command returns a list
of all defined entity types. Otherwise it returns a list of
the entity types to which the specified entity belongs.

::rs list ?typeId?

If no typeId is specified, returns a list of all defined
entities. Otherwise, returns a list of all entities
belonging to the specified type.

An entity will be returned by ::rs list for each type to
which it belongs. It is sometimes useful to define entity
types which define no new attributes, simply for use as
categories.

::rs get recordId ?attr?

If an attr name is specified, retrieves the value of that
attribute for the given entity. Otherwise, retrieves all
attributes of the entity as a list suitable for use with Tcl's
array set command.

::rs set recordId attrList

Sets one or more values for the specified entity using an
attribute/value list.

::rs exists recordId

Queries whether the entity exists or not.

::rs hastype recordId typeId

Queries whether the entity record is a member of the
specified type or not.

::rs delete recordId

Deletes the specified entity.

The recordspace(n) package was written during the first wave of
infrastructure development; subsequent file format APIs were
developed directly on top of it.

The implementation of this data store is left as an exercise for the
reader; it's based on the same Tcl array indexing scheme shown in
Section 4.1. The important lesson here is that this simple API has
proven sufficient to create and query a database of records of
various types.

5.4 The Parser
The recordspace(n) data store abstracts the data storage problem
quite nicely; it does nothing for the data parsing and validation
problem. Rather than adding these features to recordspace(n) (and
possibly breaking code that depends on it), we defined a reuseable

definition file parser, def(n), on top of it using the otype(n) object
system. def(n) wraps recordspace(n); APIs for specific definition
file formats are then implemented by wrapping def(n) and
defining an entity schema. This section describes the features of
the def(n) parser; Section 5.5 shows how it is used to implement a
file format API.

The def(n) parser has these features, over and above those
provided by the recordspace(n) data store:

• Safe parsing, via a slave interpreter
• Symbol definition, symbol substition, and conditional

processing, similar to that of the C preprocessor
• Improved entity definition, with attribute constraints.
• Standardized error handling

5.4.1 Safe Parsing and Symbol Substitution
Every def(n) object owns a slave Tcl interpreter; definition files
are parsed by sourcing them into the slave interpreter rather than
into the master interpreter, thus protecting the application code.
Commands are aliased into the slave as needed to provide the
necessary parsing capabilities. A def(n) object ::p has the
following methods for managing the slave interpreter:

::p alias alias target

Aliases a target command into the slave interpreter
under the name alias.

::p eval command

Evaluates the command (which might be an entire
script) in the context of the slave.

::p define name value

Defines a symbol, like a C preprocessor symbol.
Symbols are used to control conditional processing, and
may also be substituted into parsed text. Symbols are
implemented as global variables in the slave interpreter.
define is aliased into the slave, and thus can be used in
input to be parsed.

::p undef name

Undefines a symbol. undef is aliased into the slave.

::p subst text

Substitutes symbols into text, returning the result.
Symbols appear in the text using standard Tcl "$"
notation. Literal "$" characters must be backslashed;
command substitution is not allowed.

::p ifdef name thenclause ?else elseclause?
::p ifndef name thenclause ?else elseclause?

Evaluates the thenclause or the elseclause based on
whether symbol name is defined or not. These are
aliased into the slave to support conditional processing.

::p parsefile filename

Parses the named file by sourcing it into the slave
interpreter. The file may contain standard Tcl
commands, along with any commands aliased in by the
alias or entitytype methods. If an input error is detected,
parsefile will throw an error stating the file name and
the nature of the error.

5.4.2 Entity Definition and Management
A def(n) object provides a superset of the recordspace(n)
operations. Given a def(n) object ::p,

::p entitytype name command attrDefs

Defines an entity type. The new type has the given
name; the specified command will be aliased into the
parser's slave interpreter to parse entities of this type.
The attrDefs parameter is a block that defines the
entity's attributes and their properties.

The attribute definition consists of comments and
attribute definition lines. Each attribute definition line
has this syntax:

attr name ?options?

 The following options are available:

-required 0|1
If 1, the attribute is required, i.e., must not be
the empty string. The default is 0.

-symbolsubst 0|1
If 1, def(n) will attempt to substitute symbols
into the attribute's value at entity creation and
whenever the attribute's value is changed.
The default is 0.

-strippedline 0|1

If 1, the attribute's value is constrained to be a
single line of text. All leading and trailing
whitespace is trimmed, and any internal
whitespace is normalized to single space
characters. The default is 0.

-regexp expression

The attribute's value is constrained to match
the regular expression.

::p new typeList id ?prettyName? ?attrList?

This method extends the recordspace(n) method in two
ways: it handles the attribute options listed above, and it
allows the specification of a "pretty name", which will
be used to identify the entity in error messages if an
error is detected. For example, the pretty name of an
assembly might be:

 assembly UCLO {...}

Since an attenuator is part of a component, the pretty
name for the attenuator might be:

assembly UCLO, attenuator SAT1 {...}

Since it's difficult to pinpoint the line number of an
input error, a properly defined pretty name helps the
developer find the error.

::p types ?id?
::p list ?type?
::p get id ?attr?
::p exists id
::p hastype id type
::p delete id

These are equivalent to the recordspace(n) commands of
the same name.

::p set id attr value

Sets one attribute value for the specified entity, taking
into account the attribute options.

::p setlist id attrList

Sets one or more attribute values for the specified entity
using an attribute/value list, taking into account the
attribute options.

::p gensym code

Generates a unique entity ID of the form "_code:nnn",
where nnn is an integer.

5.5 Wrapping The Parser
A new file definition format API is defined by wrapping the
def(n) API; usually the otype(n) object system is used, though that
isn't required. The following methods are typically delegated to
the def(n) object: types, list, get, exists, hastype, define, undef,
delete, and parsefile. In addition, it will do at least these two
things:

• Define an entity creation method for each entity type.
• Define each entity using the def(n) entitytype method,

which will alias the entity's creation method into the
def(n) parser's slave interpreter.

5.5.1 Entity Creation Methods
The exciter hardware definition format API is called excdef(n).
Here is the entity creation method for the assembly entity:

method assembly {name attrList} {
 $self.p new assembly $name \
 "assembly $name {...}" $attrList

 set currentAssembly $name

 return $name
}

In the otype(n) object system, instance methods are defined using
the method keyword. Every instance method has immediate
access, without declaration, to the self variable and to all defined
instance variables. By convention, the underlying def(n) object is
always created as $self.p. So this method is calling the def(n)
object's new method to create an assembly entity called $name
with the specified $attrList, and saving the currentAssembly
name. If an error is detected, the entity will be identified in the
error message as "assembly $name {…}".

Note that this method is simpler even than the naïve
implementation shown in Section 4.2. That's because def(n) and
recordspace(n) are doing all of the necessary error checking.

The attenuator entity's creation method is more complicated than
the assembly creation method shown above, because it has many
additional error conditions to check:

method attenuator {name attrList} {
 # FIRST, create the entity
 set pretty \
 "assembly $currentAssembly,
attenuator $name {...}"

 $self component $name $attrList \
 attenuator $pretty attenuators

 # NEXT, validate unique fields
 $self CheckRange $name $pretty \
 controlLine 0 64
 $self CheckRange $name $pretty \
 maxValue 1 127
 $self CheckRange $name $pretty \
 minValue 0 127

 if {[$self.p get $name minValue] >
 [$self.p get $name maxValue]} {
 error "$pretty: minValue > maxValue"
 }
}

The CheckRange method simply verifies that the named attribute's
value is within the desired range, and throws a pretty error
message otherwise.

Note that the attenuator isn't created using the def(n) object's new
method. Much of the needed creation code can be shared by all
four of the component types, and this is implemented by the
component method, which in turn will call new.

The most important thing to note in the above code is that all of
the explicit error checks are truly part of the definition of the
attenuator entity, and can't easily be abstracted away.

method change {date attrList} {
 ::Cu::try {
 set clockTime [clock scan $date]
 } catch msg {
 error "change $date {...}: \
invalid date '$date'."
 }

 set id [$self.p gensym "CHG$clockTime"]

 lappend attrList dateseconds $clockTime

 $self.p new change $id \
 "change $date {...}" $attrList

 return $id
}

This change entity creation method is rather more complicated
than the naïve implementation in Section 4, but it does more. It's
validating the date string; it's also generating a unique ID such
that sorting a list of change entity IDs will put them in
chronological order.

5.5.2 Schema Definition
The following is a portion of the schema definition for the exciter
hardware definition file; it is executed in the excdef(n) object's
constructor. The most important thing to note is the "component"
entity type definition. It doesn't include a command to alias into
the slave interpreter, because it's an abstract entity type.
However, it does define all of the attributes shared by the four
component types. Each attenuator component will be created first
as an attenuator entity, and second as a component entity.

$self.p entitytype assembly \
 [list $self assembly] {
 # Input attributes
 attr name -regexp {^[A-Za-z0-9_]+$}
 attr comment -required 1 \
 -symbolsubst 1 -strippedline 1

 # Computed attributes:
 # lists of included entities.
 attr components
 attr attenuators
 .
 .
 .
}

$self.p entitytype component "" {
 # Input Attributes
 attr name -regexp {^[A-Za-z0-9_]+$}
 attr comment -required 1 \
 -symbolsubst 1 -strippedline 1
 attr address -regexp {^[0-9]+$}
 attr monitorLine -regexp {^[0-9]+$}

 # Output Attributes
 attr assembly -required 1
}

$self.p entitytype attenuator \
 [list $self attenuator] {
 # Input Attributes
 attr controlLine -regexp {^[0-9]+$}
 attr maxValue -regexp {^[0-9]+$}
 attr minValue -regexp {^[0-9]+$}
 attr resolution -regexp {^(1|10)$}
 attr bitCount -regexp {^[4-7]$}
 attr bitOrder \
 -regexp {^(LSB_FIRST|MSB_FIRST)$}
 attr bitEncoding \
 -regexp {^(BINARY|KAT1|KAT2)$}
}

$self.p entitytype change \
 [list $self change] {
 # Input Attributes
 attr author -required 1 \
 -symbolsubst 1 -strippedline 1
 attr description -required 1 \
 -symbolsubst 1

 # Output Attributes
 attr dateseconds
}

6. PRODUCING OUTPUT
Once the data is loaded into memory, it's necessary to generate the
desired output. Generation of text is a normal Tcl activity, and
would ordinarily be too trivial to discuss in a paper like this. But
we've put a few spins on it that may be of interest.

In the case of the exciter hardware definition, this consists of C
data structures and query functions, and of HTML documentation.
The nature of the generated C code is complex, and though of
great interest to the exciter software developers has little appeal
for anyone else. Consequently, I'll use a simplified problem:
creating an HTML list of assemblies. The output should look
something like this:

<html>
<head>
<title>Exciter Assemblies</title>
</head>

<body>
<h1>Exciter Assemblies</h1>

 UCLO: Uplink Channel
 Local Oscillator

</body>
</html>

6.1 Text Generation with Append
The usual implementation would involve creating the HTML
output as a string using the append command, and then writing it
to a file or to standard output. This code assumes that we've
already parsed the hardware definition file into an excdef(n)
object called "::ed".

proc assemblydoc {} {
 set title "Exciter Assemblies"
 set text "<html>\n"
 append text "<head>\n"
 append text "<title>$title</title>\n"
 append text "</head>\n\n"

 append text "<body>\n"
 append text "$<h1>$title</h1>\n\n"

 append text "\n"
 foreach id [ed list assembly] {
 append text "$id:"
 append text [ed get assembly comment]
 append text "\n"
 }
 append text "\n"
 append text "</body>\n"
 append text "</html>\n"

 return $text
}

puts [assemblydoc]

Now, this code has a number of shortcomings, the most notable of
which is that it's hard to picture the expected output. This is
hardly unusual; most text generation code shares it. But in Tcl we
should be able to do quite a bit better.

There are any number of things one might do to beautify this
code; for example, one might use an HTML generation package to
create all of the HTML tags. Most such efforts, however, result in
code that's not much easier to read than that above, and which
obscures the expected output at least as badly—one has simply
substituted Tcl markup for HTML markup. The code shown
above at least has the virtue of simplicity.

6.2 Text Generation with Subst
One appealing change is to use the Tcl subst command to format
the text. This allows us to create a kind of picture of the desired
output:

proc assemblydoc {} {
 set title "Exciter Assemblies"

 subst {
 <html>
 <head>
 <title>$title</title>
 </head>

 <body>
 <h1>$title</h1>

 [set text ""
 foreach id [ed list assembly] {
 set comment \
 [ed get assembly comment]
 append text "$id:"
 append text "$comment"
 append text "\n"
 }
 set text]

 </body>
 </html>
 }
}

puts [assemblydoc]

In this version, it's easy to see what the output should look like;
yet there are problems. First, it's difficult to control the output of
whitespace; every line will be indented eight spaces. This isn't a
big deal for HTML, where excess whitespace is automatically
removed, but it can be a serious problem for other kinds of output.
One could simply move the template text over to the left margin,
but this just obscures the Tcl code (as well as confusing the auto-
indenter in the text editor of one's choice).

The second problem is the loop in the middle, which after all is
the most significant part: as soon as we need to loop over a
number of items, we're stuck using append again.

Fortunately, both of these problems can be solved with the use of
a little sugar.

6.3 Text Generation with Templates
The following example shows how to format the same HTML
document using a template:

template assemblydoc {} {
 set title "Exciter Assemblies"
} {
 |<--
 <html>
 <head>
 <title>$title</title>
 </head>

 <body>
 <h1>$title</h1>

 [tforeach id [ed list assembly] {
 $id: [ed get $id comment]
 }]

 </body>
 </html>
}

puts [assemblydoc]

A template is a command that returns a formatted string based on
a template string, possibly given some arguments. In this case, all
of the necessary information is in the ::ed object, so no arguments
are needed. In this version, the template string closely resembles
the expected output from start to finish, and the control logic is
both clear and concise.

The template command defines a proc that returns a string. The
template has two bodies. The first is an optional initialization
body; it contains standard Tcl code, and is used to define variables
for substitution into the second body, which is the template string
proper. A modified version of subst is used to substitute local
variables, template arguments, and commands into the template
string, and the result is returned.

The "|<--" at the beginning of the template string is a special
notation; it indicates the left margin. All whitespace in the
template to the left of that is automatically deleted before the
substitution is done. (The line containing "|<--" is also
removed, of course.)

The tforeach command is an extended foreach whose body is a
template string. It iterates over a list, assigning values to the
index variable (or variables) just as foreach does; in each
iteration, it substitutes its index variable(s), any other local
variables or arguments, and commands into the template string
using the same modified subst command. The results are
concatenated and returned. Like template, tforeach can optionally
include an initialization body; the loop shown above could also be
written as follows:

 [tforeach id [ed list assembly] {
 array set a [ed get $id]
 } {
 $id: $a(comment)
 }]

6.3.1 The tsubst Command
The tsubst command is the basis for template and tforeach. It's
equivalent to subst except that it has a simplified syntax (it always
does all three kinds of substitution), and it looks for and handles
the "|<--" indent marker, if present. It's implemented as
follows:

proc tsubst {tstring} {
 # If the string begins with the indent
 # mark, process it.
 if {[regexp {^(\s*)\|<--[^\n]*\n(.*)$} \
 $tstring dummy leader body]} {

 # Determine the indent from
 # the position of the indent mark.
 if {![regexp {\n([^\n]*)$} \
 $leader dummy indent]} {
 set indent $leader
 }

 # Remove the indent spaces from the
 # beginning of each indented
 # line, and update the template
 # string.
 regsub -all -line "^$indent" \
 $body "" tstring
 }

 # Process and return the
 # template string.
 return [uplevel 1 [list subst $tstring]]
}

6.3.2 The template Command
The template command implementation is simple in concept; it's
complicated by only two things: the desire to make the
initialization body optional, and the need to do the substitution in
the proper context. It is implemented as follows:

proc template {
 name arglist initbody {template ""}
} {
 # FIRST, have we an initbody?
 if {"" == $template} {
 set template $initbody
 set initbody ""
 }

 # NEXT, define the body of the new
 # proc so that the initbody, if any,
 # is executed and then the
 # substitution is.
 set body "$initbody\n"
 append body "tsubst [list $template]\n"

 # NEXT, define
 uplevel 1 \
 [list proc $name $arglist $body]
}

6.3.3 The tforeach Command
The tforeach command implements a subset of the normal foreach
functionality in that it iterates over a single list. It suffers from the
same complications as the template command. It is implemented
as follows:

proc tforeach {
 vars items initbody {template ""}
} {
 # FIRST, have we an initbody?
 if {"" == $template} {
 set template $initbody
 set initbody ""
 }

 # NEXT, define the index variables.
 foreach var $vars {
 upvar $var $var
 }

 set results ""

 foreach $vars $items {
 if {"" != $initbody} {
 uplevel $initbody
 }
 set result [uplevel \
 [list tsubst $template]]
 append results $result
 }

 return $results
}

6.3.4 The tif Command
The tif command is a templated if, just as tforeach is a templated
foreach—it has a thenbody and an optional elsebody, each of
which is a template string. Either the one or the other is
substituted and returned based on the value of a condition. For
example, the following code supplies a default title:

template assemblydoc {title} {
 |<--
 <html>
 <head>
 <title>
 [tif {"" != $title} {
 $title
 } else {
 Exciter Assemblies
 }]
 </title>
 </head>
 .
 .
 .
}

puts [assemblydoc]

The tif command is less often needed than tforeach; in the
example shown above, it would be more natural to set the value of

title in an initialization body. It is implemented as follows; note
that elseif clauses are not supported.

proc tif {
 condition thenbody
 {"else" ""} {elsebody ""}
} {
 # FIRST, evaluate the condition
 set flag [uplevel 1 \
 [list expr $condition]]

 # NEXT, evaluate one or the other and
 # return the result.
 if {$flag} {
 uplevel 1 [list tsubst $thenbody]
 } else {
 uplevel 1 [list tsubst $elsebody]
 }
}

7. CONCLUSIONS
During the course of development of the DSN Uplink subsystem
software to date, we've found compile-time data definition files to
be extremely useful; at present we are using four different
definition file formats; all but one use the new infrastructure.

We've found that while conceptually simple Tcl implementations
exist, more sophisticated infrastructure provides better error
handling, easier coding, improved maintainability, and reduced
code size. The excdef(5) format and tools described in this paper
were written using the new infrastructure to begin with, but in
another case a definition file API and tool originally written using
a "naïve" implementation were rewritten to use our latest
infrastructure. After the rewrite the API code shrank by 25%
from 923 lines to 703 lines of code, and the tool script shrank by
20% from 1975 lines to 1589 lines of code.—at the same time as
additional features were added.

In the case of the tool script, much of the improvement resulted
from the deletion of proc header comments. Using the old-style
"append"-based text generation, the code to produce a single
document was typically broken for clarity into many routines.
There was usually at least one for each section, with many helper
procs as well. Using templates, it's feasible to put an entire
document in one template with perhaps one or two helper
routines—and no loss of clarity. Thus, the new version contains
fewer procs, and thus fewer proc header comments. As our
coding standard calls for fairly large header comments, the effect
on code size—and on code readability—is substantial.

8. REFERENCES

1 Hunt, Andrew, and David Thomas, "The Pragmatic

Programmer", pg. 27, Addison-Wesley, 2000.

2 Duquette, William H., "Guide to Creating Object Commands",
http://www.wjduquette.com/tcl/objects.html.

3 Duquette, William H., "Snit's Not Incr Tcl",

http://www.wjduquette.com/snit.

9. ACKNOWLEDGEMENTS
This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

