Scripted Debugging : Using Tcl and GDB

to debug C code
Moses DeJong
mdegong@users.sourceforge.net

Abstract

This document describes a Tcl scripting interfaceto the
gdb debugger. Scripting interaction with gdb makesit
possble to debug a number of probems that would be
difficult or impossble to addressusing a mmand line
or graphicd debugger. Examples of bugs that are well -
suited to scripted debuggng will be presented, along
with ashort discusson about implementation and future
diredions.

Keywords

Scripting, Debuggdng, Visudization, Introspedion,
Automation

Introduction

Like aay human endeavor, programmingisa balancing
act. On one side the formidable inertia of the Satus quo,
and on the other, the fads embraced by eager
participants. One muld make a convincing case that
new ideas and new approaches have led to more
productive programming languages and environments.
Unfortunately, similar advancesin debuggng
technology are significantly more difficult to identify
[1,2,3,/4,5,6]. Theredity isthat debuggngisnot a
particularly exciting area of study. Many programmers
would rather do something else, and some even
advocate avoiding debuggers entirely, suggesting that
printt statements are sufficient. Personal experience
has shown that programming methodol ogies like
Extreme Programming [7] and the mnsistent use of
regresson testing [8,9] can dramaticdly reducethe
number of bugs introduced into software in the first
place Despite these advances, bugs continue to sneak
into the mde and programmers continue to need

eff edive debuggng tods to help exterminate them.

Onetod commonly held up asa gred advancein
debuggng tedhnology is the graphicd debugger. A
graphical debugger is useful for displaying source ode
with a @l stack, and valuesin memory can be
displayed with afew clicks of the mouse. While
certainly an improvement over a command line
debugger, there ae avariety of bugs for which a
graphical debugger is of very little help.

This document wil | explore anumber of these difficult
problems and will introduce a debuggng tod written to

solve them. Thetod will be referred to as the GDBMI
package. ItisaTcl li brary that automates interaction
with the gdb debugger using ardatively new gdb
interface @lled the MI (aka GDB Machine Interface).
Each of the examplesinvolves debuggng C code, but
in practice asimilar approach can be used to debug any
language supported by gdb. Implementation detail swil |
be discussed later, but the short explanation isthat the
GDBM I package works by opening a pipe toagdb
processand then sending commands whil e interpreting
results similar to how a user would interact with the
command line version of gdb. Because the interaction is
automated, it is possble to interpret results and take
actions based on Tcl code that is completely separate
from the C code being debugged.

Example 1

The foll owing example demongtrates the basi cs of
interacting with the debugger, querying avaluein the
program being debugged, setting a breakpoint, and
stepping through code. Assume the foll owing C code
has been compil ed with debug symboals, like so:

% cat stepping.c
int main() {
int i=0;
i++;
i++;
i++;
return O;
}

% gcc -0 stepping -g stepping.c

Thefollowing Tcl code will | oad the GDBMI package,
create a pipeto gdb behind the scenes, and step through
the stepping exeautable. The version of gdb on the

path must be 5.1 or newer and the mmands must be
run in wish so that 1/O events are processed at idle time

package require GDBMI

sets[GDBMI::MIPipeStream s]
setd[GDBMI::MIDispatcher d]
$d setStream $s

$d mi_setExecutable ./stepping

$d mi_setBreakpoint stepping.c:2
$d setBreakpointHandler stop 1

proc stop { d brknum tid info } {
puts "stopped at breakpoint"
$d setStepHandler step
$d mi_next

}

proc step { d tid info } {
array set info_array $info
puts - nonewline "(step) in\
$info _array(func) at\
$info _array(file):$ info_array(line)"

if {$ info_array(func) == "main"}{

set i[$d mi_gdbEval i]
puts - nonewline " iis$ "
}
puts "
$d mi_next
}
$d mi_run

When the mi_run command is exeauted, the stepping
exeatable will be started and the foll owing will be
printed.

stopped at breakpoint

(step) in main at stepping.c:3 iis0
(step) in main at stepping.c:4 iisl
(step) in main at stepping.c:5 iis2
(step) in main at stepping.c:6 iis 3
(step) in main at stepping.c:7 iis3
(step)in __ libc_start_main at
..Isysdeps/generic/libc-start.c 192

Credingthe strean and dispatcher objeds, setting the
exeautable, and setting a breakpoint should be self-
explanatory. Theinteresting part of this exampleisthe
ability to create Tcl call backs that are invoked when
something happensin the debugger. The
mi_setBreakpoint method sets the breakpoint in the
debugger and setBreakpointHandle r asciatesaTcl
call back with the breg&kpoint. When mi_ru n is exeauted,
the program being debugged runs until it hits the first
breakpoint at line 2 (thelinewherethe variablei is
dedared). At that point, a allback is evaluated and the
stop Tcl command isrun. The sto p command prints
the text "stopped at breakpoint™" and then sets up
another callback using setStepHandler , SO that the
step Tcl command wil | be invoked when the next gdb
step operation has finished. Finally, the mi_nex t
method isinvoked to tell gdb to step to the next linein
thefile.

Thestep command introduces ome new concepts.
Firg, theinf o argument, which contains information
about the arrent stack framein gdb, is converted from
alist to an array. Second, the mi_gdbEva | method is
used to query the value of thelocal variablei insidethe
program being debugged. This example demongrates
how easily a simple interaction with gdb can be scripted
and how easily the script can be austomized to address
a spedfic neal.

Example 2

Now that we have had some exposure to the basics of
scripted interaction with a program runninginside the
debugger, let's move on to amore cmplex and vastly
more interesting example. Resource management is an
areathat consigently provides programmers with bugs

that can be very difficult to track down. The foll owing
example shows how the GDBMI package can be used
to find aleaking resource In this case, amemory region
that was all ocated but was not freed.

% cat resources.c
#include < malloc.h>
typedef struct Resource { int num; } Resource;
typedef struct Container {

char* ident;

Resource* res;
} Container;

Container* allocContainer
Container* ¢ = (Container *)
sizeof(Container));
c->ident = ident;
c->res = (Resource *)
Resource));
return c;
}

void deallocContainer(Container* c) {
free(c->res);
free(c);

(char* ident) {

malloc (

malloc(sizeof(

}

intmain(int argc, char **
Container *cl1, *c2, *c3, *c4, *c5;

argv) {

cl = allocContainer("cl");
c2 = allocContainer("c2");
c3 = allocContainer("c3");
c4 = allocContainer("c4");
c5 = allocContainer("c5");

/* Do A Bunch Of Stuff */

deallocContainer(c5);

deallocContainer(c4);

if (argc==1)
deallocContainer(c3);

deallocContainer(c2);

deallocContainer(cl);

exit(0);
}

To track the allocation and dedl ocation of Resource
structs in this program, two breakpointswil | be set. The
first breakpoint will be set at line 14, just after the
second malloc Statement in the allocContaine r
function. The second bre&point will be set at line 18in
the function deallocContaine r, just before the
Resource struct pointer is passed tofree . The
following Tcl code aeates the basic stream objeds and
sets the breakpoints.

package require GDBMI

sets[GDBMI::MIPipeStream s]
setd[GDBMI::MIDispatcher d]
$d setStream $s

$d mi_setExecutable ./resources

$d mi_setBreakpoint resources.c:14
$d setBreakpointHandler allocResource 1

$d mi_setBreakpoint resources.c:18
$d setBreakpointHandler deallocResource 2

Now the cdl backs that wil | be invoked when these
breakpoints are hit will need to be defined. Our goal
hereisto track the dl ocation and deall ocation of
Resource structs, so we need to match upthe mallo ¢
call that returns an addresswith thefree cdl for that
same aldress A Tcl array that uses amemory address
as the hash key can be used to solve this problem. The
foll owing call backs wil | query the memory addressof
the Resource struct inside allocContaine r and wse the
result as an index into the global array map.

proc allocResource { d brknum tid info } {
set ptr [$d mi_gdbEval {(void *) c->res}]
lappend ::map($ ptr) allocated
$d mi_continue

}

proc deallocResource {d brknum tid info } {
set ptr [$d mi_gdbEval {(void *) c->res}]
lappend ::map($ ptr) deallocated
$d mi_continue

}

Now that everythingis stup, the program can be run
with the foll owing commands:

if {[info exists map]} {unset map}
$d mi_run

When the program finishes, the coll eded information
can be printed:

% parray map

map(0x80496b8) = allocated deallocated
map(0x80496d8) = allocated deallocated
map(0x80496f8) = allocated deallocated
map(0x8049718) = allocated deallocated
map(0x8049738) = allocated deallocated

The above output shows that everything isworking
properly. Each of the resources that got all ocated was
later deallocated. The atentive reader might have
noticed that in the main function presented above, a
Container ~ struct isleaked only when a command line
argument is passed to the program. The foll owing
commands will trigger theleaking bugin main by
passng asingle mmmand line agument and then
restarting the program.

GDBMI: setArgs $d bugon
if {[info exists map]} {unset map}
$d mi_run

Sure enough, one of the resources is now being leaked.

% parray map

map(0x80496b8) = allocated deallocated
map(0x80496d8) = allocated deallocated
map(0x80496f8) = allocated

map(0x8049718) = allocated deallocated
map(0x8049738) = allocated deallocated

At this paint, the scope of the problem is much cleaer.
A Resource struct was all ocated at memory address
0x80496f8 but that memory was never deall ocated.
Something similar could be accomplished using Tcl's
memory trace command o other memory systems like
Purify, but it would take additional work to limit the
resultsto include only Resource structs.

Knowing that one Resourc e struct is being leaked could
be useful. For example, if one found and fixed the
problem, then this approach could be used to verify that
the fix worked. Unfortunately, just knowing the
memory addressof aleakingresource ca be of very
little usein a mmplex system. Often, oneresourceis
tied to another and knowing the memory addressof one
may not lead to the other. For example, the Tk library
will all ocate system resources and asciate them with a
window object that has aname like .top . Knowing that
aleaking system resourceisat memory address
0x8035723 would not be nealy as useful as knowing
that the resource was associated with the .top window.

In the example C code, a Containe r struct holdsa
Resource struct, so the debuggng code neals to find
the container that contains the leaking resource The
foll owing code implements this by making a small
modification to the allocResource cdl back presented
earlier.

proc allocResource { d brknum tid info } {
set ptr [$d mi_gdbEval {(void *) c->res}]
set cid[GDBMI:getString \
[$ d mi_gdbEval {c->ident}]]
lappend ::map($ ptr)$ cid allocated
$d mi_continue

}

Ingtead of just appending the gtring "dl ocated" to the
array, the cdl back also appendsthe string value of the
ident member of the Containe r struct. When the
program isrun again after defining this new call back, it
outputs the foll owing:

% parray map

map(0x80496b8) = c1 allocated deallocated
map(0x80496d8) = c2 allocated deallocated
map(0x80496f8) = c3 allocated

map(0x8049718) = c4 allocated deallocated
map(0x8049738) = ¢5 allocated deallocated

It is obvious from the output above that the Container
with the "c3" identifier isthe onethat isleakingthe
Resource object. While the results of this small

example muld be dugicated usinga GUI debugger, a
pencil, and some paper, it would not be possbleina
red system that contained hundreds or thousands of
Container and Resourc e Structs.

Theresults srown are much more useful than those
from alow-level memory toal that isable to autput only
a file name and line number where aleaked memory

al ocation occurred. Knowing where a leaked all ocation
occurred might get you in the neighborhood, but if a
whole dassof resourcesis allocated at the samelinein
afile, thereisno way to differentiate spedfic instances
of that resource The gproach shown in thisexampleis
not presented as a replacement for alow-level malloc
debuglibrary [10, 11, 12]. Ingtead, the example shows
how spedfic information about aleg can be uncovered
after it isknown that thereis ale&k somewherein a
classof resources.

Example 3

In this next example, the C stack will beinspeded by
Tcl code and interesting values will be displayed. The
program being debugged will adsoincludeaTd
interpreter, so don't confuse the two. Asaume that there
isacrashingbugintheTdl strin g command of the
program being debugged and that the devel oper needs
tofind the Tcl cdl stack before the source of the
problem can beidentified. The following Tcl code will
initialize gdb, have it create the child processto ke
debugoed, set abreakpoint in the C function that is
crashing, and then display the cdl stack after the
breakpoint is hit.

package require GDBMI

sets[GDBMI::MIPipeStream s]
setd[GDBMI::MIDispatcher d]
$d setStream $s

$d mi_setExecutable ./ tclsh

set fd [open
puts $ fd{
proc pl{argl }{
eval "string compare f1 f2"
}

proc p2 { argl arg2 } {
plo

foo.tcl w]

}
p212
}
close$ fd
GDBMI: setArgs $d foo.tcl
Set breakpoint in Tcl's string cmd

$d mi_setBreakpoint tclCmdMZ.c:1214
$d mi_run

At this point the user would wait until the subprocess
had started up, begun processng thefoo.tc 1 script,

and hit the breakpoint. A small helper function is used
to print the C stack in areadable format.

proc print_stack { frames } {
foreach frame $frames {
if {[array exists map]} {unset map}
array set map $frame

puts - nonewline $map(func)

puts - nonewline "("

foreach { varname varvalue} $map(args) {
puts - nonewline"$ varname"

puts ")"

#Ignore __ libc_start_main entry point

if {fmap(func) == "main"} { break }

}
}

% set stack [GDBMI::getStack $d]
% print _stack $stack
0 Tcl_StringObjCmd

1 TclEvalObjvinternal
command length flags)
2 Tcl_EvalEx (interp script numBytes flags)
3 Tcl_EvalObjEx (interp objPtr flags)
4 Tcl_EvalObjCmd (dummy interp objc
5 TclEvalObjvinternal
command length flags)

(dummy interp objc
(interp objc objv

objv)

objv)
(interp objc objv

6 TclExecuteByteCode (interp codePtr)
7 TclCompEvalObj (interp objPtr)
8 Tcl_EvalObjEx (interp objPtrflags)

9 TclObjinterpProc
objv)

10 TclEvalObjvinternal
command length flags)
11 TclExecuteByteCode (interp codePtr)

12 TclCompEvalObj (interp objPtr)

13 Tcl_EvalObjEx (interp objPtr flags)

14 TclObjlnterpProc (clientData interp objc
objv)

15 TclEvalObjvinternal
command length flags)
16 Tcl_EvalEx (interp script numBytes flags)
17 Tcl_FSEvalFile (interp pathPtr)

18 Tcl_Main (argc argv applnitProc)

main(argc argv)

(clientData interp objc

(interp objc objv

(interp objc objv

Unfortunately, the C stack may be of little valueto a
Tcl developer. Often, one neeals to know the state of the
Tcl stack at thetime acrash occurred. This state can be
discovered by poking around in the C stack, but the
processcan take alongtime and it requires detailed
knowledge about how Tcl isimplemented. The

foll owing hel per function automates this process

proc print_tcl_stack { frames d } {
foreach frame $frames {
if {[array exists map]} {unset map}
array set map $frame

if {[array exists args_map]} {
unset args_map
}
array set args_map $map(args)
if fmap(func)==" Tcl_FSEvalFile"}{

set res[$d mi_gdbEval [format\
{(% s)->bytes}\
$args _map(pathPtr)]]
set file [GDBMI::getString $ res]

puts "C stack $map(level) :\
Tcl : source $file"
} elseif {$map(func) ==
" TclEvalObjvinternal"} {
set tcl_args [list]

for {set i0}{$ i<$ args_map(objc)}\
{incr i}{
set res[$d mi_gdbEval\

[format {(%s)[%d]->bytes} \

$args _map(objv) $]
set str[GDBMI:getString $ res]
lappend tcl_args$ str

puts "C stack $map(level) : \
Tcl :$ tcl_args"

}
#Ignore __ libc_start_main entry point
if {fmap(func) == "main"} { break }

}

% print _tcl_stack $stack $d

Cstack 1: Tcl: string compare f1 {2
Cstack 5: Tcl: evalstring

Cstack 10: Tcl:pl10

Cstack 15: Tcl:p212

Cstack 17: Tcl: source" foo.tcl"

In the example above, argumentsto the
TclEvalObjvinternal function are printed along with
any file name passed to Tcl_FSEvalFile . C stack levels
that don't provide useful information about the Tcl

stack areignored. This example of filtering information
from C gack framesis smple, but it shows how easily
a complex data gructure like the C stack can be
inspeded using a script.

GDBMI Package | mplementation

The GDBMI package isimplemented entirely in Tcl
code. A pipetoagdb processis creaed and messages
areread from and written to the pipe. Typically, gdo
will accept an MI command and then return aresult
indicating that the mmand was accepted. The output
bel ow shows a Tcl command and the resulting data that
iswritten to and read from the pipe.

% $d mi_setExecutable ./stepping

- file-exec-and-symbols ./stepping

~done

% $d mi_setBreakpoint stepping.c:2

- break-insert stepping.c:2
"keep",enabled="y",addr="0x080483a6",func="mai
n" file="stepping.c" line="2" times="0"}

% $d mi_run

- exec-run

~running

Asynchronous messages are dso generated by gdb.
These messages are not read from the pipe asthe result
of acommand, instead, they are generated when some
event of interest occurs indde the debugger. For
example, when the bregpoint set in the commands
aboveis hit, the foll owing isread from the pipe.

thread-id="0",frame={addr="0x080483a6",
func ="main",args=[], file="stepping.c",
line="2"}

When an asynchronous messge like the aboveis
receved, aTcl cdlback isinvoked to inform the script
that something of interest happened and that additional
actions can be taken.

Readers familiar with the command line version of gdb
will have noticed a wuple of key differencesin the way
that the M| and the regular command line interfaces
work. Ml commands return aresult right away and then
generate an asynchronous message when an event has
occurred. Theregular command line version of gdb will
block until the requested operation has finished. Ml
commands al so return information in a structured
format that is eadly parsed while the regular command
line gdb interface returns information in a human
readabl e format. The foll owing output shows how the
commands presented above would be entered at the
regular gdb command prompt.

(gdb) file ./stepping
Reading symbols from ./stepping...done.
(gdb) break stepping.c:2

Breakpoint 1 at 0x80483a6: file stepping.c,
line 2.

(gdb) run

Starting program : Istepping

Breakpoint 1, main () at stepping.c 2

2 int i=0;

Writing a parser to interpret the results above would be
significantly more difficult and error-prone when
compared to parsng Ml output. The fact that
commandsin theregular gdb interface block also
causes problems for the program trying to interact with
gdb. Users of the ddd GUI debugger have no doubt
seen ageneric "debugger isbusy” error, which shows
up when the emmand line version of gdb has blocked
the pipe asthe result of some command. Solving the
blocking issue and presenting datain a machine-
parseable format were some of the primary design goa's
of the MI.

Readers familiar with the Indght debugger [13], a
graphical debugger written in Tcl/Tk, will no doubt
wonder how the M1 implementation differs from the
Ingght implementation. Many of the commands
supported by the M1 are modeled after the Tcl

commandsin Ingght. Insight actually predates the Ml
by a couple of years, andlessons leaned implementing
Insght were ansidered when creating the MI. Insight
is certainly a useful tod, but thereality isthat it can't
redly be @lled stable sinceit ishighly crash-prone.
Insght isnot a GUI that talksto gdb via apipe; bath
the gdb code and the Tcl/Tk code eist in the same
process When something goes wrong in Insight's gdb
code, it crashes and takes the GUI down with it. That
leaves the user wondering what happened and makes
reproducing problems extremdy difficult.

Parts of gdb were written with the asaimption that
commands would always block, so spedal code was
needed to get the gdb code in Insight to cooperate with
the Tcl/Tk event logp. These spedal code paths were
used only by Insight and as aresult were not tested as
part of the normal gdb release process That lead to
breakage in the Insght code as aresult of gdb
maintenance The end result isthat Insight tendsto be
highly crash-prone and it isnot clea if or how things
are going to improve in the future.

On the other hand, the M1 has anumber of regresson
testsincluded in thenormal gdb testing process soit is
lesslikely to be broken at any point. It should not be
difficult to crede areproducible test case for a aashing
bugin the MI, but that issue seems to ke moat sincethe
MI does not appea to suffer from the crashes that
plague Insight. While the Ml isnot perfed, it appeas
that the M1 isand will continueto be amore stable and
easier to use method of interacting with gdb from Tcl.

Future Directions

While the GDBMI package has proven useful in a
number of situations, some aeas could be improved.
Writing to stdout or stderr and reading from stdin by the
processbeing debugged is not implemented properly in
the MI. 1/O of this rt must to ke redireded to a from
fileswhen usng the GDBMI package. Providing a
meansto set a @ntrolling termina for the processbeing
debugged would also be a useful improvement.

Improving regresson testing integration is another area
that deserves further exploration. Currently, breakpoints
are set at aline number in afile, and the line numbers
nedl to be updated when the sourcefil e changes. It is
obvious that having to update line numbersin every
regresson test after a change to the source @de would
be tedious and error-prone. A simple solution to this
problem isto creae anew type of breakpoint that
contains a function name and an offset in lines from the
start of the function. In this way, a breakpoint
spedfication like { my_func + 5} could be given, the
line number of my_func could be queried, and the

breakpoint could be set at the returned line plus five.
Thiswould insulate breakpoints from changesin the
sourcefil e that shift afunction up or down some
number of lines.

Effedive regresson tests are also going to need to ded
with timeouts, programs that get stuck in aloop,
signaled termination, and other unexpeded exit
conditions. The Exped package wuld proveto be very
useful in these situations; further exploration of the
combination of GDBMI commands and Exped is
warranted.

Integration into the Source-Navigator IDE [14] is
another areathat deserves additiona exploration.
Currently, there is some integration of the Source
Navigator IDE and the Insght debugger, but it is far
from ided. Source-Navigator is gred for static source
code analysis, but it islacking any runtime analysis or
visuali zation features. Combining runtime information
gathered using the GDBMI package with existing static
code analysis featuresin Source-Navigator could prove
to ke very useful.

Source Code

The GDBMI package can be downloaded and put to use
today. Sourceisavailable under aTcl likelicense at the
following URL:

http://www.uncounted.org/tcl/gdbmi-0.1.tgz

References

[1] H. Lieberman. The Debuggng Scandal and What to
Do About It.

http://web.media.mit.edu/~li eber/Lieberary/Softviz/CA
CM-Debugg ng/CACM-Debuggdng-Intro.html#ntro

[2] R. Baedker, C. DiGiano, A. Marcus. Software
Visualization for Debuggng
http://web.media.mit.edu/~li eber/Lieberary/Softviz/CA
CM-Debugg ng/SoftViz/SoftViz.html

[3] P. Dibbe. Visualize a Better Debugger.
http://www.embedded.com/story/OEG2002121B0035

[4]
http://www.trnmag.com/Stories’2002/080702 Program
ming_tod_makes bugs sing_08702html

[5] A. Hunt, D. Thomas. The Pragmatic Programmer.
http://c2.com/cgi/wiki?RubberDucking

[6] http://www.lambdacs.com/debugger/debugger.html

[7] http://www.extremeprogramming.org/

[8] D. Libes. Regresson Testing and Conformance
Testing Interactive Programs
http://exped.nist.gov/doc/regressps

[9] http://www-
106.ibm.com/devel operworks/linux/library/l-jacks/

(10
http://www.rational .com/products/pac/index.jsp?SM SE
SYON=NO

(11
http://www.gnu.org/software/gcd projects/bp/main.html

[12] http://www.gnome.org/projeds/memprof/

[13] JIngham. GDBTk: Integrating Tcl/Tk into a

Recal citrant Command-Line Appli cation.
http://www.usenix.org/publi cationg/li brary/proceedings/
tcl2k/full _papers/ingham/ingham_html/index.html

[14] http://sourcenav.sourceforge.net/

