
Scripted Debugging : Using Tcl and GDB
to debug C code

 Moses DeJong
 mdejong@users.sourceforge.net

Abstract

This document describes a Tcl scripting interface to the
gdb debugger. Scripting interaction with gdb makes it
possible to debug a number of problems that would be
diff icult or impossible to address using a command line
or graphical debugger. Examples of bugs that are well -
suited to scripted debugging will be presented, along
with a short discussion about implementation and future
directions.

Keywords

Scripting, Debugging, Visualization, Introspection,
Automation

Introduction

Like any human endeavor, programming is a balancing
act. On one side the formidable inertia of the status quo,
and on the other, the fads embraced by eager
participants. One could make a convincing case that
new ideas and new approaches have led to more
productive programming languages and environments.
Unfortunately, similar advances in debugging
technology are significantly more diff icult to identify
[1,2,3,4,5,6]. The reality is that debugging is not a
particularly exciting area of study. Many programmers
would rather do something else, and some even
advocate avoiding debuggers entirely, suggesting that
printf statements are suff icient. Personal experience
has shown that programming methodologies li ke
Extreme Programming [7] and the consistent use of
regression testing [8,9] can dramaticall y reduce the
number of bugs introduced into software in the first
place. Despite these advances, bugs continue to sneak
into the code and programmers continue to need
effective debugging tools to help exterminate them.

One tool commonly held up as a great advance in
debugging technology is the graphical debugger. A
graphical debugger is useful for displaying source code
with a call stack, and values in memory can be
displayed with a few cli cks of the mouse. While
certainly an improvement over a command line
debugger, there are a variety of bugs for which a
graphical debugger is of very lit tle help.

This document wil l explore a number of these diff icult
problems and wil l introduce a debugging tool written to

solve them. The tool will be referred to as the GDBMI
package. It is a Tcl li brary that automates interaction
with the gdb debugger using a relatively new gdb
interface called the MI (aka GDB Machine Interface).
Each of the examples involves debugging C code, but
in practice a similar approach can be used to debug any
language supported by gdb. Implementation detail s wil l
be discussed later, but the short explanation is that the
GDBMI package works by opening a pipe to a gdb
process and then sending commands while interpreting
results similar to how a user would interact with the
command line version of gdb. Because the interaction is
automated, it is possible to interpret results and take
actions based on Tcl code that is completely separate
from the C code being debugged.

Example 1

The following example demonstrates the basics of
interacting with the debugger, querying a value in the
program being debugged, setting a breakpoint, and
stepping through code. Assume the following C code
has been compiled with debug symbols, li ke so:

% cat stepping.c
int main() {
 int i = 0;
 i++;
 i++;
 i++;
 return 0;
}
% gcc -o stepping -g stepping.c

The following Tcl code will l oad the GDBMI package,
create a pipe to gdb behind the scenes, and step through
the stepping executable. The version of gdb on the
path must be 5.1 or newer and the commands must be
run in wish so that I/O events are processed at idle time

package require GDBMI

set s [GDBMI::MIPipeStream s]
set d [GDBMI::MIDispatcher d]
$d setStream $s

$d mi_setExecutable ./stepping

$d mi_setBreakpoint stepping.c:2
$d setBreakpointHandler stop 1

proc stop { d brknum tid info } {
 puts "stopped at breakpoint"
 $d setStepHandler step
 $d mi_next
}

proc step { d tid info } {
 array set info_array $info
 puts - nonewline "(step) in\
 $info _array(func) at\
 $info _array(file):$ info_array(line)"

 if {$ info_array(func) == "main"} {
 set i [$d mi_gdbEval i]
 puts - nonewline " i is $ i"
 }
 puts ""
 $d mi_next
}

$d mi_run

When the mi_run command is executed, the stepping
executable will be started and the following will be
printed.

stopped at breakpoint
(step) in main at stepping.c:3 i is 0
(step) in main at stepping.c:4 i is 1
(step) in main at stepping.c:5 i is 2
(step) in main at stepping.c:6 i is 3
(step) in main at stepping.c:7 i is 3
(step) in __ libc_start_main at
../sysdeps/generic/libc-start.c :92

Creating the stream and dispatcher objects, setting the
executable, and setting a breakpoint should be self-
explanatory. The interesting part of this example is the
abilit y to create Tcl callbacks that are invoked when
something happens in the debugger. The
mi_setBreakpoint method sets the breakpoint in the
debugger and setBreakpointHandle r associates a Tcl
callback with the breakpoint. When mi_ru n is executed,
the program being debugged runs until it hits the first
breakpoint at line 2 (the line where the variable i is
declared). At that point, a callback is evaluated and the
stop Tcl command is run. The sto p command prints
the text "stopped at breakpoint" and then sets up
another callback using setStepHandler , so that the
step Tcl command wil l be invoked when the next gdb
step operation has finished. Finally, the mi_nex t

method is invoked to tell gdb to step to the next line in
the file.

The step command introduces some new concepts.
First, the inf o argument, which contains information
about the current stack frame in gdb, is converted from
a li st to an array. Second, the mi_gdbEva l method is
used to query the value of the local variable i inside the
program being debugged. This example demonstrates
how easil y a simple interaction with gdb can be scripted
and how easil y the script can be customized to address
a specific need.

Example 2

Now that we have had some exposure to the basics of
scripted interaction with a program running inside the
debugger, let's move on to a more complex and vastly
more interesting example. Resource management is an
area that consistently provides programmers with bugs

that can be very diff icult to track down. The following
example shows how the GDBMI package can be used
to find a leaking resource. In this case, a memory region
that was allocated but was not freed.

% cat resources.c
#include < malloc.h>

typedef struct Resource { int num; } Resource;

typedef struct Container {
 char* ident;
 Resource* res;
} Container;

Container* allocContainer (char* ident) {
 Container* c = (Container *) malloc (
sizeof(Container));
 c->ident = ident;
 c->res = (Resource *) malloc(sizeof(
Resource));
 return c;
}

void deallocContainer(Container* c) {
 free(c->res);
 free(c);
}

int main(int argc, char ** argv) {
 Container *c1, *c2, *c3, *c4, *c5;

 c1 = allocContainer("c1");
 c2 = allocContainer("c2");
 c3 = allocContainer("c3");
 c4 = allocContainer("c4");
 c5 = allocContainer("c5");

 /* Do A Bunch Of Stuff */

 deallocContainer(c5);
 deallocContainer(c4);
 if (argc == 1)
 deallocContainer(c3);
 deallocContainer(c2);
 deallocContainer(c1);

 exit(0);
}

To track the allocation and deallocation of Resource

structs in this program, two breakpoints wil l be set. The
first breakpoint wil l be set at line 14, just after the
second malloc statement in the allocContaine r

function. The second breakpoint will be set at line 18 in
the function deallocContaine r , just before the
Resource struct pointer is passed to free . The
following Tcl code creates the basic stream objects and
sets the breakpoints.

package require GDBMI
set s [GDBMI::MIPipeStream s]
set d [GDBMI::MIDispatcher d]
$d setStream $s

$d mi_setExecutable ./resources

$d mi_setBreakpoint resources.c:14
$d setBreakpointHandler allocResource 1

$d mi_setBreakpoint resources.c:18
$d setBreakpointHandler deallocResource 2

Now the callbacks that wil l be invoked when these
breakpoints are hit will need to be defined. Our goal
here is to track the allocation and deallocation of
Resource structs, so we need to match up the mallo c

call that returns an address with the free call for that
same address. A Tcl array that uses a memory address
as the hash key can be used to solve this problem. The
following callbacks wil l query the memory address of
the Resource struct inside allocContaine r and use the
result as an index into the global array map.

proc allocResource { d brknum tid info } {
 set ptr [$d mi_gdbEval {(void *) c->res}]
 lappend ::map($ ptr) allocated
 $d mi_continue
}

proc deallocResource { d brknum tid info } {
 set ptr [$d mi_gdbEval {(void *) c->res}]
 lappend ::map($ ptr) deallocated
 $d mi_continue
}

Now that everything is setup, the program can be run
with the following commands:

if {[info exists map]} {unset map}
$d mi_run

When the program finishes, the collected information
can be printed:

% parray map
map(0x80496b8) = allocated deallocated
map(0x80496d8) = allocated deallocated
map(0x80496f8) = allocated deallocated
map(0x8049718) = allocated deallocated
map(0x8049738) = allocated deallocated

The above output shows that everything is working
properly. Each of the resources that got allocated was
later deallocated. The attentive reader might have
noticed that in the main function presented above, a
Container struct is leaked only when a command line
argument is passed to the program. The following
commands wil l trigger the leaking bug in main by
passing a single command line argument and then
restarting the program.

GDBMI:: setArgs $d bugon
if {[info exists map]} {unset map}
$d mi_run

Sure enough, one of the resources is now being leaked.

% parray map

map(0x80496b8) = allocated deallocated
map(0x80496d8) = allocated deallocated
map(0x80496f8) = allocated
map(0x8049718) = allocated deallocated
map(0x8049738) = allocated deallocated

At this point, the scope of the problem is much clearer.
A Resource struct was allocated at memory address
0x80496f8 but that memory was never deallocated.
Something similar could be accomplished using Tcl's
memory trace command or other memory systems li ke
Purify, but it would take additional work to limit the
results to include only Resource structs.

Knowing that one Resourc e struct is being leaked could
be useful. For example, if one found and fixed the
problem, then this approach could be used to verify that
the fix worked. Unfortunately, just knowing the
memory address of a leaking resource can be of very
li ttle use in a complex system. Often, one resource is
tied to another and knowing the memory address of one
may not lead to the other. For example, the Tk library
will allocate system resources and associate them with a
window object that has a name like .top . Knowing that
a leaking system resource is at memory address
0x8035723 would not be nearly as useful as knowing
that the resource was associated with the .top window.

In the example C code, a Containe r struct holds a
Resource struct, so the debugging code needs to find
the container that contains the leaking resource. The
following code implements this by making a small
modification to the allocResource callback presented
earlier.

proc allocResource { d brknum tid info } {
 set ptr [$d mi_gdbEval {(void *) c->res}]
 set cid [GDBMI::getString \
 [$ d mi_gdbEval {c->ident}]]
 lappend ::map($ ptr) $ cid allocated
 $d mi_continue
}

Instead of just appending the string "allocated" to the
array, the callback also appends the string value of the
ident member of the Containe r struct. When the
program is run again after defining this new callback, it
outputs the following:

% parray map
map(0x80496b8) = c1 allocated deallocated
map(0x80496d8) = c2 allocated deallocated
map(0x80496f8) = c3 allocated
map(0x8049718) = c4 allocated deallocated
map(0x8049738) = c5 allocated deallocated

It is obvious from the output above that the Container

with the "c3" identifier is the one that is leaking the
Resource object. While the results of this small

example could be duplicated using a GUI debugger, a
pencil, and some paper, it would not be possible in a
real system that contained hundreds or thousands of
Container and Resourc e structs.

The results shown are much more useful than those
from a low-level memory tool that is able to output only
a file name and line number where a leaked memory
allocation occurred. Knowing where a leaked allocation
occurred might get you in the neighborhood, but if a
whole class of resources is allocated at the same line in
a file, there is no way to differentiate specific instances
of that resource. The approach shown in this example is
not presented as a replacement for a low-level malloc
debug library [10, 11, 12]. Instead, the example shows
how specific information about a leak can be uncovered
after it is known that there is a leak somewhere in a
class of resources.

Example 3

In this next example, the C stack will be inspected by
Tcl code and interesting values will be displayed. The
program being debugged will also include a Tcl
interpreter, so don't confuse the two. Assume that there
is a crashing bug in the Tcl strin g command of the
program being debugged and that the developer needs
to find the Tcl call stack before the source of the
problem can be identified. The following Tcl code will
initialize gdb, have it create the child process to be
debugged, set a breakpoint in the C function that is
crashing, and then display the call stack after the
breakpoint is hit.

package require GDBMI
set s [GDBMI::MIPipeStream s]
set d [GDBMI::MIDispatcher d]
$d setStream $s

$d mi_setExecutable ./ tclsh

set fd [open foo.tcl w]
puts $ fd {
 proc p1 { arg1 } {
 eval "string compare f1 f2"
 }
 proc p2 { arg1 arg2 } {
 p1 0
 }
 p2 1 2
}
close $ fd

GDBMI:: setArgs $d foo.tcl

Set breakpoint in Tcl's string cmd
$d mi_setBreakpoint tclCmdMZ.c:1214
$d mi_run

At this point the user would wait until the subprocess
had started up, begun processing the foo.tc l script,

and hit the breakpoint. A small helper function is used
to print the C stack in a readable format.

proc print_stack { frames } {
 foreach frame $frames {
 if {[array exists map]} {unset map}
 array set map $frame

 puts - nonewline $map(func)
 puts - nonewline "("

 foreach { varname varvalue} $map(args) {
 puts - nonewline " $ varname"
 }
 puts ")"

 # Ignore __ libc_start_main entry point
 if {$map(func) == "main"} { break }
 }
}

% set stack [GDBMI::getStack $d]
% print _stack $stack
0 Tcl_StringObjCmd (dummy interp objc objv)
1 TclEvalObjvInternal (interp objc objv
command length flags)
2 Tcl_EvalEx (interp script numBytes flags)
3 Tcl_EvalObjEx (interp objPtr flags)
4 Tcl_EvalObjCmd (dummy interp objc objv)
5 TclEvalObjvInternal (interp objc objv
command length flags)
6 TclExecuteByteCode (interp codePtr)
7 TclCompEvalObj (interp objPtr)
8 Tcl_EvalObjEx (interp objPtr flags)
9 TclObjInterpProc (clientData interp objc
objv)
10 TclEvalObjvInternal (interp objc objv
command length flags)
11 TclExecuteByteCode (interp codePtr)
12 TclCompEvalObj (interp objPtr)
13 Tcl_EvalObjEx (interp objPtr flags)
14 TclObjInterpProc (clientData interp objc
objv)
15 TclEvalObjvInternal (interp objc objv
command length flags)
16 Tcl_EvalEx (interp script numBytes flags)
17 Tcl_FSEvalFile (interp pathPtr)
18 Tcl_Main (argc argv appInitProc)
main(argc argv)

Unfortunately, the C stack may be of li ttle value to a
Tcl developer. Often, one needs to know the state of the
Tcl stack at the time a crash occurred. This state can be
discovered by poking around in the C stack, but the
process can take a long time and it requires detailed
knowledge about how Tcl is implemented. The
following helper function automates this process.

proc print_tcl_stack { frames d } {
 foreach frame $frames {
 if {[array exists map]} {unset map}
 array set map $frame
 if {[array exists args_map]} {
 unset args_map
 }
 array set args_map $map(args)

 if {$map(func) == " Tcl_FSEvalFile"} {

 set res [$d mi_gdbEval [format \
 {(% s)->bytes} \
 $args _map(pathPtr)]]
 set file [GDBMI::getString $ res]

 puts "C stack $map(level) :\
 Tcl : source $file"
 } elseif {$map(func) == \
 " TclEvalObjvInternal"} {
 set tcl_args [list]
 for {set i 0} {$ i < $ args_map(objc)} \
 { incr i} {
 set res [$d mi_gdbEval \
 [format {(%s)[%d]->bytes} \
 $args _map(objv) $ i]]
 set str [GDBMI::getString $ res]
 lappend tcl_args $ str
 }
 puts "C stack $map(level) : \
 Tcl : $ tcl_args"
 }

 # Ignore __ libc_start_main entry point
 if {$map(func) == "main"} { break }
 }
}

% print _tcl_stack $stack $d
C stack 1 : Tcl : string compare f1 f2
C stack 5 : Tcl : eval string
C stack 10 : Tcl : p1 0
C stack 15 : Tcl : p2 1 2
C stack 17 : Tcl : source " foo.tcl"

In the example above, arguments to the
TclEvalObjvInternal function are printed along with
any file name passed to Tcl_FSEvalFile . C stack levels
that don't provide useful information about the Tcl
stack are ignored. This example of filtering information
from C stack frames is simple, but it shows how easily
a complex data structure li ke the C stack can be
inspected using a script.

GDBMI Package Implementation

The GDBMI package is implemented entirely in Tcl
code. A pipe to a gdb process is created and messages
are read from and written to the pipe. Typicall y, gdb
will accept an MI command and then return a result
indicating that the command was accepted. The output
below shows a Tcl command and the resulting data that
is written to and read from the pipe.

% $d mi_setExecutable ./stepping
- file-exec-and-symbols ./stepping
^done
% $d mi_setBreakpoint stepping.c:2
- break-insert stepping.c:2
^done ,bkpt={number="1",type="breakpoint",disp=
"keep",enabled="y",addr="0x080483a6",func="mai
n",file="stepping.c",line="2",times="0"}
% $d mi_run
- exec-run
^ running

Asynchronous messages are also generated by gdb.
These messages are not read from the pipe as the result
of a command; instead, they are generated when some
event of interest occurs inside the debugger. For
example, when the breakpoint set in the commands
above is hit, the following is read from the pipe.

* stopped,reason="breakpoint-hit",bkptno="1",
thread-id="0",frame={addr="0x080483a6",
func ="main",args=[], file="stepping.c",
line="2"}

When an asynchronous message li ke the above is
received, a Tcl callback is invoked to inform the script
that something of interest happened and that additional
actions can be taken.

Readers familiar with the command line version of gdb
will have noticed a couple of key differences in the way
that the MI and the regular command line interfaces
work. MI commands return a result right away and then
generate an asynchronous message when an event has
occurred. The regular command line version of gdb will
block until the requested operation has finished. MI
commands also return information in a structured
format that is easil y parsed while the regular command
line gdb interface returns information in a human
readable format. The following output shows how the
commands presented above would be entered at the
regular gdb command prompt.

(gdb) file ./stepping
Reading symbols from ./stepping...done.
(gdb) break stepping.c:2
Breakpoint 1 at 0x80483a6: file stepping.c,
line 2.
(gdb) run
Starting program : ./stepping
Breakpoint 1, main () at stepping.c :2
2 int i = 0;

Writing a parser to interpret the results above would be
significantly more diff icult and error-prone when
compared to parsing MI output. The fact that
commands in the regular gdb interface block also
causes problems for the program trying to interact with
gdb. Users of the ddd GUI debugger have no doubt
seen a generic "debugger is busy" error, which shows
up when the command line version of gdb has blocked
the pipe as the result of some command. Solving the
blocking issue and presenting data in a machine-
parseable format were some of the primary design goals
of the MI.

Readers familiar with the Insight debugger [13], a
graphical debugger written in Tcl/Tk, wil l no doubt
wonder how the MI implementation differs from the
Insight implementation. Many of the commands
supported by the MI are modeled after the Tcl

commands in Insight. Insight actually predates the MI
by a couple of years, and lessons learned implementing
Insight were considered when creating the MI. Insight
is certainly a useful tool, but the reality is that it can't
reall y be called stable since it is highly crash-prone.
Insight is not a GUI that talks to gdb via a pipe; both
the gdb code and the Tcl/Tk code exist in the same
process. When something goes wrong in Insight's gdb
code, it crashes and takes the GUI down with it. That
leaves the user wondering what happened and makes
reproducing problems extremely diff icult.

Parts of gdb were written with the assumption that
commands would always block, so special code was
needed to get the gdb code in Insight to cooperate with
the Tcl/Tk event loop. These special code paths were
used only by Insight and as a result were not tested as
part of the normal gdb release process. That lead to
breakage in the Insight code as a result of gdb
maintenance. The end result is that Insight tends to be
highly crash-prone and it is not clear if or how things
are going to improve in the future.

On the other hand, the MI has a number of regression
tests included in the normal gdb testing process, so it is
less li kely to be broken at any point. It should not be
diff icult to create a reproducible test case for a crashing
bug in the MI, but that issue seems to be moot since the
MI does not appear to suffer from the crashes that
plague Insight. While the MI is not perfect, it appears
that the MI is and will continue to be a more stable and
easier to use method of interacting with gdb from Tcl.

Future Directions

While the GDBMI package has proven useful in a
number of situations, some areas could be improved.
Writing to stdout or stderr and reading from stdin by the
process being debugged is not implemented properly in
the MI. I/O of this sort must to be redirected to or from
files when using the GDBMI package. Providing a
means to set a controlling terminal for the process being
debugged would also be a useful improvement.

Improving regression testing integration is another area
that deserves further exploration. Currently, breakpoints
are set at a line number in a file, and the line numbers
need to be updated when the source file changes. It is
obvious that having to update line numbers in every
regression test after a change to the source code would
be tedious and error-prone. A simple solution to this
problem is to create a new type of breakpoint that
contains a function name and an offset in lines from the
start of the function. In this way, a breakpoint
specification like { my_func + 5} could be given, the
line number of my_func could be queried, and the

breakpoint could be set at the returned line plus five.
This would insulate breakpoints from changes in the
source file that shift a function up or down some
number of lines.

Effective regression tests are also going to need to deal
with timeouts, programs that get stuck in a loop,
signaled termination, and other unexpected exit
conditions. The Expect package could prove to be very
useful in these situations; further exploration of the
combination of GDBMI commands and Expect is
warranted.

Integration into the Source-Navigator IDE [14] is
another area that deserves additional exploration.
Currently, there is some integration of the Source-
Navigator IDE and the Insight debugger, but it is far
from ideal. Source-Navigator is great for static source
code analysis, but it is lacking any runtime analysis or
visualization features. Combining runtime information
gathered using the GDBMI package with existing static
code analysis features in Source-Navigator could prove
to be very useful.

Source Code

The GDBMI package can be downloaded and put to use
today. Source is available under a Tcl li ke li cense at the
following URL:

http://www.uncounted.org/tcl/gdbmi-0.1.tgz

References

[1] H. Lieberman. The Debugging Scandal and What to
Do About It.
http://web.media.mit.edu/~lieber/Lieberary/Softviz/CA
CM-Debugging/CACM-Debugging-Intro.html#Intro

[2] R. Baecker, C. DiGiano, A. Marcus. Software
Visualization for Debugging
http://web.media.mit.edu/~lieber/Lieberary/Softviz/CA
CM-Debugging/SoftViz/SoftViz.html

[3] P. Dibble. Visualize a Better Debugger.
http://www.embedded.com/story/OEG20021217S0035

[4]
http://www.trnmag.com/Stories/2002/080702/Program
ming_tool_makes_bugs_sing_080702.html

[5] A. Hunt, D. Thomas. The Pragmatic Programmer.
http://c2.com/cgi/wiki?RubberDucking

[6] http://www.lambdacs.com/debugger/debugger.html

[7] http://www.extremeprogramming.org/

[8] D. Libes. Regression Testing and Conformance
Testing Interactive Programs
http://expect.nist.gov/doc/regress.ps

[9] http://www-
106.ibm.com/developerworks/linux/library/l-jacks/

[10]
http://www.rational.com/products/pqc/index.jsp?SMSE
SSION=NO

[11]
http://www.gnu.org/software/gcc/projects/bp/main.html

[12] http://www.gnome.org/projects/memprof/

[13] J Ingham. GDBTk: Integrating Tcl/Tk into a
Recalcitrant Command-Line Application.
http://www.usenix.org/publications/library/proceedings/
tcl2k/full_papers/ingham/ingham_html/index.html

[14] http://sourcenav.sourceforge.net/

