
A SOFTWARE ARCHITECTURE FOR IN-FLIGHT ACQUISITION AND OFFLINE
SCIENTIFIC POST-PROCESSING OF LARGE VOLUME HYPERSPECTRAL DATA

Jason Brazile

Remote Sensing Laboratories
Dept. of Geography, University of Zurich

jason.brazile@geo.unizh.ch

Peter Kohler and Simon Hefti

Netcetera AG
Zurich, Switzerland

{peter.kohler,simon.hefti}@netcetera.ch

ABSTRACT

The European Space Agency (ESA) is sponsoring a
joint Swiss/Belgian/German initiative to design, build, and
deploy an airborne dual prism dispersion pushbroom imag-
ing spectrometer known as APEX (Airborne Prism EXper-
iment) to support earth observation applications at a local
and regional scale. APEX has been designed to acquire
1000 pixels across track (covering 2.5-5 km, depending on
flight altitude) with a maximum of 300 spectral bands si-
multaneously in the solar reflected wavelength range be-
tween 400 and 2500 nm [1]. This coverage of the Visi-
ble/Near Infrared (VNIR) and Shortwave Infrared (SWIR)
spectrum in addition to a rigorous pre-flight and in-flight
calibration and characterization process enable the result-
ing data to be used in a wide variety of applications in-
cluding snow, vegetation, water, mineral, and atmospheric
analysis and monitoring [2].

We discuss the design and ongoing implementation of
the software architectures for both in-flight data acquisi-
tion and offline level 1 scientific data processing which are
based in large part on the extendible and embeddable fea-
tures of the Tcl scripting language to allow for rapid pro-
totyping, hardware simulation and control, automated test-
ing, and modularization and integration of proprietary soft-
ware components as well as foreign domain-specific lan-
guages.

We additionally describe design trade-offs and archi-
tecture modifications that were made to better fit this pro-
gramming model (event driven vs. threaded programming,
“fat” calls vs. “thin” calls, etc.) in order to keep as much
program logic as possible at a simpler higher level. In cases
that require strict performance requirements, we describe
how we built prototype architectural components and in
some cases compared them with versions in C to help de-
termine feasibility and ensure that memory and processing
resource budgets could be met.

Keywords: Embedded Control, Multi-Domain Integration,
Scientific Processing

1. INTRODUCTION

The planning and specifications for the APEX instrument
started in 1997 with a feasibility study [3] and proceeded
through a scientific performance definition and an indus-
trial design phase. The current construction phase of the
instrument began in 2002 and is planned to be final in early
2005, when the first end-user flight campaigns are sched-
uled.

The core of the spectrometer consists of a beam split-
ter separating incoming light into the VNIR (380-1000nm)
and SWIR (930-2500 nm) wavelength ranges where the
beams are spatially and spectrally re-imaged on indepen-
dent, co-registered detector arrays. The detectors both re-
solve 1000 spatial pixels across track and more than 150
spectral rows each, which are then summarized via repro-
grammable on-chip binning into a maximum of 300 spec-
tral rows for both detectors. A subset of the relevant speci-
fications is shown in table 1.

Specified Parameter Value
Field of View (FOV) ±14◦

Instantaneous Field of View (IFOV) 0.48 mrad
Flight Altitude 4,000 - 10,000 m.a.s.l.

Spectral channels VNIR: ≈ 140
SWIR:≈ 145

Spectral Range 400 - 2500 nm
Spectral Sampling Interval 400 - 1050 nm:< 5 nm

1050 - 2500 nm:< 10 nm
Spectral Sampling Width < 1.5× spectral sampling

interval
Scanning Mechanism Pushbroom

Storage Capacity On Board > 300 GByte
Dynamic Range 12 . . . 16 bit

Positional Knowledge 20% of the ground
sampling distance

Attitude Knowledge 20% of IFOV
Navigation system, flight line ± 5% of FOV

repeatability

Table 1. Selected APEX Specifications

The data processing requirements of the APEX instru-
ment can be logically separated into two somewhat inde-
pendent components – on-board data acquisition, and of-

fline scientific post-processing. The first section of this pa-
per addresses the architecture requirements and subsequent
design and implementation used for in-flight data acquisi-
tion, which mainly concerns itself with collection and inte-
gration of data from various sources and arranging for it to
be stored in a safe and timely manner.

This is followed by a section on the requirements of sci-
entific post processing which mainly involves how the col-
lected raw data and previously acquired instrument charac-
teristics can be correlated and calibrated into well-defined
scientific units (i.e. at-sensor radiance in SI units, traceable
to a certified standard (e.g. NIST, NPL)).

Then follows a section on the development process and
how it has also influenced the design and implementation
of the APEX system and application software. The final
section summarizes and concludes with the current out-
look.

2. IN-FLIGHT DATA ACQUISITION

APEX in-flight data acquisition is somewhat challenging
from a data processing point of view, as the collection of
raw pixel data from the optical unit needs to be simulta-
neously correlated with high precision data coming from
separate timing, positioning, and inertial data collection in-
struments and written in real time to on-board disk storage.
Additionally, in-flight instrument calibration is performed
between flight strips, requiring control of supporting hard-
ware such as the calibration lamp, filter wheel, and mir-
ror which are all to be centrally and automatically directed
and monitored by the operator via an on-board computer.
These data flow and bandwidth requirements are illustrated
in figure 1.

200KB/s
20KB/s

Instrument Status
and Control Data

Spectroscopy Data Position/Attitude Data

Raw Data Storage Waterfall Image (GUI)

On−board Computer

yaw

pitch

roll

50MB/s

> 50MB/s
78KB/s

Fig. 1. Data Acquisition Requirements

Initial system analysis indicated that there were 3 crit-
ical engineering problems that needed to be addressed to

ensure successful data takes:

Data Throughput Optical data flows into the system at
large volume and needs to be merged in memory
by the processor with incoming “housekeeping” data
flowing into the system from other I/O channels. This
merged data needs to written to disk in a safe and
timely manner - a rate which exceeds single disk sus-
tained write data rates.

Device Interrupt Latency Although incoming “housekeep-
ing” data is not high volume, it does arrive at high
frequency via a serial interface that is typically inter-
rupt driven. The system can never be so busy with
other tasks as to miss servicing one of these inter-
rupts before the next interrupt arrives, otherwise data
is lost.

Time Synchronization There are multiple independent de-
vices (optics, GPS, orientation, etc.) taking data sam-
ples that need to be correlated and rectified with the
notion of a common clock.

2.1. Bandwidth/Throughput

The data path between the optical unit and the on-board
computer is the most difficult path to analyze/predict since
it depends on many different factors. The following items
have to be considered:

• Twice the optical data rate is needed on the PCI bus
since the data is first transferred into on-board mem-
ory and then again from memory to the disk con-
troller.

• In order to achieve PCI transfer rates close to the
theoretical maximum, DMA (direct memory access)
and long data bursts have to be implemented. This
allows devices to read and/or write directly to on-
board memory without needing control of the on-
board CPU - allowing I/O operations to “overlap”
with computation or with one another.

• DMA transactions on a PCI bus can be interrupted
by I/O and event requests. To achieve maximum
throughput, such interruptions have to be minimized
e.g. by limiting the number of PCI devices on the
same bus and/or by limiting the rate at which inter-
ruptions occur.

• A CPU board has a certain maximum I/O capac-
ity which depends on the CPU, the I/O chipset and
the type and speed of the main memory. All run-
ning applications as well as the OS (operating sys-
tem) itself already use a part of that I/O capacity. If
the OS and/or the applications generate heavy I/O or
memory traffic, the throughput of the PCI subsystem
might be affected.

In order to address the above items, a CPU board was
chosen which includes dual processors, up to 4GB DDR
RAM, two integrated ethernet interfaces, and - most crit-
ically - three independent PCI buses. This allows us to
place the optic data PCI board and the PCI disk controller
board each on a bus by themselves - using the third bus
for all other peripheral I/O. The PCI hub of this board’s
I/O chipset would theoretically allow 500MB/s bandwidth
for each of 2 PCI buses during critical data transfer, which
should satisfy the 65MB/s per device requirement with ca-
pacity to spare.

Next, we looked at the sustained write performance of
our disk drives. It was determined that in order to achieve
the target data rate, the video data stream needed to be split
up and written to multiple drives in parallel on the raw de-
vices (i.e. no filesystem).

Armed with this information, we devised a simple ex-
periment to test data throughput along the complete data
path – two small C programs (≈ 300 lines total) imple-
menting a typical producer/consumer scenario. The pro-
ducer DMA transfered data originating from an evaluation
board (in place of the not yet completed optical board)
on the first PCI bus to CPU shared memory. The con-
sumer program consisted of multiple writer threads that
concurrently read from the shared main memory buffer,
then wrote the data through the disk controller on the sec-
ond PCI bus to multiple drives in parallel. The CPU shared
memory was partitioned into multiple semaphore protected
buffers to allow overlapping (i.e. asynchronous) I/O.

This test was run with 5 writers to 5 disks over the en-
tire capacity of the disks, and the throughput was measured
every 5 frames. We were surprised to see such a large
variation in performance depending on which area of the
disk was being written to. However, the maximum perfor-
mance measured was 115.1 MB/s and the minimum was
85.7 MB/s – comfortably above our target of 50 MB/s.
Even better, the CPU load during the test showed 65% idle
time and 35% system time (and 0% user time – no other
applications were running).

When this experiment proved successful, we proceeded
to implement this concept as a Tcl-based prototype for the
system - using the same asynchronous I/O strategy based
on shared memory and semaphore (this time, through the
svipc.so [4] Tcl extension). We kept the single pro-
ducer process (labeledData Acquisition in figure 2) but
used multiple processes for theN writers, instead of a sin-
gle multi-threaded process. Since theN writers are cre-
ated once and long-lived, there is no performance penalty
in making this simplification. To complete the initial pro-
totype, we needed only to develop our own Tcl extension
(veu.so) for accessing the optical interface.

A final non-critical data throughput issue involved a
component of the GUI. While the instrument is acquiring
image data, it is required to simultaneously deliver what is

known as awaterfall image to the operator console. This
mechanism should select 3 of the 300 incoming spectral
data channels and re-sample them to 8 bits per channel to
represent a false color RGB (Red, Green, Blue) compos-
ite image. This allows the operator to use visual cues to
verify that the mission is correctly following the intended
flight line. Since this is a non-critical feature, it was deter-
mined that: (1) we can choose to only display every 1 ofN
lines, if desired and (2) we are allowed to use the unreliable
UDP protocol (through theudp.so [5] Tcl extension) to
transmit waterfall image data to the client since we don’t
care if image data is lost before it is read by the operator’s
browser.

Positioning
Data

Acquisition

Timing Data
Clock

Mapping
Service

Double Buffered Asynchronous I/O

/dev/apex_ctrl

/dev/apex_data

Slot N

Slot 0

State

Header

Shared Memory
/dev/sdb

Control

Acquisition
Data

...Camera

Camera
Control

Status Bus

UDP

W
at

er
fa

ll
im

ag
e

da
ta

Interface

Command Bus

User
Interface

/dev/sde

/dev/sdf

pos.dat

/dev/sdd

/dev/sdc

Writer 0

Writer 1

Writer 2

Writer 3

Writer 4

Fig. 2. Subset of Data Acquisition Architecture

We initially saw some performance degradation with
the Tcl version, but were later satisfied after modifying
Kelsey’s memory-to-disk write routine (shmwrite) to do
a single large write instead of multiple 4K writes.

2.2. Device Interrupt Latency

A second critical engineering problem to be addressed was
the servicing of high rate hardware device interrupts. The
particular problem was that we expected high ratehouse-
keeping data (25 times per second) to arrive over an RS-
422 serial interface – a device typically serviced via an in-
terrupt mechanism. There were two reasons to be wary of
this issue. The first is mentioned above – we expected to
make use of DMA and large burst I/O to fulfill our band-
width/data throughput requirements and servicing device
interrupts at a high rate is detrimental to this goal. The sec-
ond reason to be concerned was our stated goal of trying as
much as possible to keep all implementation in high level
scripting code. One well-known scripting rule of thumb
is to avoid scripted code in inner loops and critical per-
formance sections - these things are better implemented in

lower level code appearing as higher level primitives (i.e.
”fat calls”) at the scripting level.

While the software architects were considering how this
tricky situation could be resolved – maybe by experiment-
ing with a complicated polling device driver – an elegant
solution was proposed by one of the hardware engineers.
Apparently they had enough FPGA processing and mem-
ory budget remaining from the custom optical interface card
that they could implement an RS-422 interface with a large
on-card buffer and a programmable interrupt trigger. Even
more importantly, the high rate housekeeping data could
be rerouted through the optical interface masquerading as
an additional fake spectral channel. This is beneficial not
only for data latency and throughput reasons but also be-
cause it associates housekeeping meta data directly with
the frame to which it belongs thereby reducing part of the
clock synchronization problem. The only remaining data
coming through the RS-422 to generate interrupts is now
low rate control status i.e. command responses resulting
from state change requests sent by the on-board computer
to the instrument.

2.3. Time Synchronization

The third critical engineering problem to be addressed was
how time synchronization should be handled between the
various independent data delivery components. One of the
synchronization problems was addressed above by imple-
menting an intelligent RS-422 port. The two remaining
timing-related components that need to be synchronized
are the now unified optical data and the position and orien-
tation data. In order to obtain meaningful and reproducible
data, the spectral information and the position information
have to be synchronized (and also serve as a necessary
pre-condition for automated ortho-rectification during sci-
entific post-processing).

In the optical component, the camera sends a line sync
event to the optical interface card at the start of every image
line acquired. It was determined that the best way to obtain
low latency high resolution timing data was to tag the data
directly in the optical interface card as it arrives from the
camera (rather than via the on-board computer). This al-
lows tagging of line sync events within a few nanoseconds.
The implementation of this timer is kept simple by using a
64 bit free running counter driven by a quartz-stabilized os-
cillator. This clock tag is then transferred to the host com-
puter along with the optical data.

It should be noted, however, that there is a certain de-
lay between the optical measurement on the sensor itself
and the reception of the corresponding pixel on the opti-
cal interface card. This delay is caused by the exposure
time, A/D (analog to digital) conversion, serializing and
de-serializing of the pixel data, encoding and decoding for
the physical layer of the optical link as well as the actual
transmission time through the fiber. This delay, as well as

its variation has to be characterized during inter-mission
calibration and used in scientific post-processing.

The positioning component is connected via ethernet
to the on-board computer. The data obtained from the po-
sitioning component is already tagged with two different
timestamps which can be chosen from four different sources:
internal clock, GPS time, UTC time, oruser time. The
latter is calculated by adding a fixed offset to the internal
clock. This offset can be set by the on-board computer
sending atime sync message to the positioning com-
ponent.

To summarize, optical data is tagged by the optical in-
terface card’s clock whereas positional data is tagged with
GPS or its own internal clock. It is these two clock bases
which must be synchronized. Three different methods for
doing this were investigated and in order to improve relia-
bility, it was ultimately decided to implement two of them
concurrently. This requires little additional effort since most
of the steps of these two methods are the same. These pro-
cesses are illustrated in figure 3.

tagged with card time
POS sends data

time from card
Host reads latched

interrupts host CPU
Card latches clock and

Synchronizing POS to card clock

Optical card rcvs 1PPS
pulse from POS

Host converts card
timestamps in video
data to GPS time by
interpolation via map

POS synchronizes
UserTime to card

time by calculating
and setting offset

Host sends
"Time Sync" msg
to POS using card

time of the last PPS

Synchronizing card and POS clocks

of GPS/card times
Host creates mapping

of last PPS from
POS via ethernet

Host rcvs GPS time

time from card
Host reads latched

interrupts host CPU
Card latches clock and

pulse from POS
Optical card rcvs 1PPS

Fig. 3. Time Synchronization

2.4. Other features

Once the above three critical performance problems were
satisfactorily addressed, it was determined that the system
could indeed be mostly implemented at the scripting level.
It was at this time that some additional scripting compo-
nents were defined:

Message BusSince it was determined that multiple pro-
cesses would be interested in sending commands to
the instrument and multiple (possibly different) pro-
cesses would be interested in receiving instrument
status data from the instrument, the concept of a mes-
sage bus was developed. Any process wishing to

listen to messages on a bussubscribe to a par-
ticular topic and then receive (asynchronously) any
messagespublish ed on that topic. The implemen-
tation makes use of event handlers to process asyn-
chronous messages.

Runtime Configurabilty In order to maintain configura-
tion flexibility, it was decided to implement instru-
ment command sequences (e.g. cool to 70deg K, set
filter wheel to position 3, begin recording) as scripts.
The flight management system can for example au-
tomatically trigger these scripts when it reaches pre-
programmed waypoints during a data take. By mak-
ing these sequences scriptable, the full flexibility of
the system is always available to the operator.

Regression TestsRegression tests have been implemented
for individual components throughout the develop-
ment of the system. Additionally, once camera oper-
ation became scriptable, it enabled system wide re-
gression tests to also be scriptable.

2.5. Performance

Complete system wide throughput has not been measured
since the initial scripted proof-of-concept was validated and
put in place. It is planned that the regression testing frame-
work can also be used to maintain a regularly runnable
throughput performance test.

The goal of such a test would be to identify the up-
per limit of the data rate the final system is able to feed
through from the detectors to the disks, while doing cor-
rectly all the modifications on the data block as described
above (merging housekeeping data, rectifying timestamps,
extracting waterfall images). Therefore, performance mea-
surements have to determine that upper bound and its gov-
erning parameters, while ensuring that data integrity and
order is guaranteed.

As outlined above, the on-board computer must buffer
data coming from multiple sources and write them to disk
via multiple writers. This is a data flow problem similar to
determining how long it takes to fill a bathtub when it has
a leak.

Note that both incoming and outgoing data rates may
vary over time, e.g. due to user programmable frame rate
changes or even differing disk zones during writing. The
governing parameters therefore are:

incoming data rate governed by DMA block size and PCI
bus business

outgoing data rate governed by bus speed and write ca-
pacity of the disks

CPU load governed by merging, extracting, rectification
tasks on the buffer itself as well as other running ap-
plications and the operating system itself.

Therefore, the performance measurements should mea-
sure the incoming data rate and use that as the independent
variable for all following measurements:

• Measure the outgoing data rate depending on:

– the incoming data rate (i.e. by DMA buffer
size, assuming that we can control the PCI load,
since it is a dedicated PCI bus)

– the size of the buffer (i.e. the number and sizes
of slots in shared memory)

– CPU load

• Determine the failure rate for that same parameter
set, calculated from:

– any deviations of data order on the final system

– difference between sent-in and written-to-disk
data blocks

3. SCIENTIFIC POST-PROCESSING

It is expected that individual flight campaigns will collect
data on the order of 100s of GB that need to undergo an
offline chain of data correction and characterization pro-
cesses based on previously acquired and in-flight calibra-
tion parameters [6]. This processing chain includes con-
version of raw data values into SI units, bad pixel replace-
ment, and correction of smear, straylight, smile and frown
anomalies. Higher-level processing is also planned, such
as correction of at-sensor radiance values to ortho-rectified
ground reflectance considering atmospheric and geometric
effects [7], [8]. However, this higher level processing will
be addressed in a later phase of the project and the current
phase needs only ensure that the parameters and data re-
quired for that level of processing are produced and made
available.

A simplified block diagram of the planned processing
is illustrated in figure 4. The data acquisition process de-
scribed in the previous section produces the top four com-
ponents on the left side in theRaw Data column. The
lower two components are produced during inter-mission
calibration of the instrument which takes place in a labora-
tory known as theCalibration Home Base.

At this point all of the raw data is still present in the on-
board computer and needs to be transferred to the off-line
processing and archiving facility (PAF) computer. During
this data transfer, quick consistency checks are made, and
some simple constant-time operations can be performed
such as bad pixel detection as well as generation of a high-
resolution composite RGB pseudo-colorquicklook image.
During this data download phase, some intermediate files
are created for use during scientific data calibration pro-
cessing phase which ultimately produces what is known as
the level 1B data product.

Calibration

Data
Cube

Transformation

Data Calibration:

Band
Quality
Report

Consistency
Check

Calibration
Files

Creation

− Smear
− Radiometric
 response
− Bad pixel repl.

DGPS

Hi−Res

GPS
INS

Aircraft

Data
Hyperspec.

Raw

Attribute
Data

Sensor
− Straylight

− Smile/Frown *

Attitude

Sync.
Position

− PSF *

Attitude

* Optimization Target

Level 0B

Laboratory

Data &
Quicklooks

Archived

Raw Data Level 1B

Laboratory
Calibration
Parameters

Data Download:
− Segregation

Position
Attitude

Transformed

− Sync.
− Bad pixel

Radiometric
Calibration
Parameters

 detection

Data

Position
& Attitude

Calibrated

Fig. 4. Post Processing Requirements

3.1. Key Algorithms in Foreign Language

Essential post-processing algorithms for hyperspectral data
calibration and analysis are usually developed by scientists
using special purpose high-level data modeling languages
such as TMW’s MATLAB and RSI’s IDL. Because many
of these correction and calibration algorithms are an ac-
tive topic of research, it was strongly desired to leave sci-
entifically sensitive processing algorithms in their original
modeling language as much as possible to facilitate peer-
reviewed validation as well as the ability to easily incor-
porate updates according to the latest advances. But while
these languages are often ideal for their domain, they of-
ten don’t provide convenient interfaces to interesting exter-
nal software components such as relational database man-
agement systems, web servers, and cluster framework li-
braries.

However, these modeling languages do often provide a
C programming interface to their internals allowing them
to be embedded into other applications. This is certainly
true in the cases of MATLAB and IDL.

A small experiment was developed to investigate the
feasibility of embedding an IDL interpreter inside a Tcl in-
terpreter in order to allow program logic to be developed in
Tcl, while allowing scientific algorithms to be processed in
IDL.

The experiment involved developing anidl.so Tcl
extension which allowed creation of an interpreter and in-
vocation of commands as strings, and combining it with
thewebsh.so [9] Tcl extension in order to implement an
interactive web interface to an IDL command line. The
user was able to enter arbitrary IDL commands into a form
entry screen which was processed by the embedded IDL
interpreter and the results formatted in HTML for display
in a web browser.

When this experiment proved successful, additional com-

mands for importing and exporting numerical arrays to/from
IDL were added to theidl.so extension in order to be
able to directly pass data to other Tcl extensions.

3.2. Additional Components

The proof-of-concept mentioned above was extended to al-
low access to an RDBMS (relational database management
system) by way of themysql.so [10] Tcl extension to
allow for browsing and/or querying the hyperspectral data
archive. It was then extended with thetdom.so [11] to al-
low for parsing, manipulation, and writing of XML based
meta data for information that is expected to be shared with
other (external) processing systems.

It has been determined that even with the large data vol-
umes involved, most of the basic scientific level 1 process-
ing can be performed within the allowed time constraints
using a single server class computer. However, it is possi-
ble that smile/frown and point spread anomalies that need
to be corrected by re-sampling in both the spatial and spec-
tral dimensions simultaneously might require enough pro-
cessing power to merit the use of cluster processing. Inves-
tigation of the particular problems and possible correction
algorithms are currently underway. In the case that pro-
cessing would benefit from cluster computing, experimen-
tation with a Tcl extension to allow access to the MPI-C
(Message Passing Interface) library is tentatively planned.

The current version of the prototype kernel is illustrated
in figure 5.

Optimizations (C)

Archive (SQL)
RDBMS

Files

Config &

Cluster (MPI−C)
Command line

other nodes

Single Unix process (via shared library interfaces) External processes

Multi−lingual kernel

Web (Websh)

GUI (Tk) Driver (Tcl)

Research Algorithms (IDL)

Parameter

I/O (XML−SAX)

Fig. 5. APEX Post Processing Architecture

An additional ESA driven requirement of the process-
ing system is that key calibration algorithms should be doc-
umented and that this documentation should be updated
whenever the algorithm is updated. While some argue that
IDL is a high enough level language to be self-documenting,
this argument doesn’t meet typical ESA definitions. There-
fore, an IDL documentation system similar to Java’s javadoc
was developed to allow programmers to embed documen-
tation inside comments in the code itself. This includes
standard tags for things such as describing inputs, outputs,
and side-effects. However, it additionally allows arbitrary

LATEXcode to be embedded in a description field so that ac-
companying mathematical formulas can be easily expressed.
Automatically generated documentation from the code is
then included into an overall algorithm description docu-
ment that accompanies the processing software.

3.3. Development Process

Another factor involved in the development of a software
architecture for scientific computing is that many of the de-
velopers are scientists. Ideally, all software development
team members would be equally able to implement all tasks
independently and asynchronously – and with roughly equiv-
alent efficiency. However it is more common to find that
decomposed subproblems have an interdependence on each
other, and that different scientific developers have different
development strengths and weaknesses and levels of devel-
opment efficiency.

One way to mitigate problems in this area and to en-
sure coherence in the overall design is to adopt a prototype-
based iterative development model [12]. The first iteration
consists of simulating program flow using a high level pro-
totyping paradigm and subsequent iterations involve refin-
ing the simulated steps by gradually replacing them with
more realistic pieces.

This is the model we prefer and has driven the architec-
ture and design of all the software described in this paper.
Trouble spots are predicted, experiments are developed to
investigate them, and then prototypes are initiated accom-
modating the solutions to the trouble spots while making
way for the remaining tasks to be filled in.

Development efficiency, which is different from and of-
ten more important than run-time efficiency is also further
improved by allowing continued use of multiple develop-
ment environments from the prototype phase throughout
the development process. The key enabling technology
for this concept is attempting to arrange automatic inter-
operability between these different runtime systems. This
allows, for example, one scientist to develop a particular
calibration algorithm independently from other team mem-
bers using his most efficient language and development en-
vironment (e.g. IDL) while allowing another team member
to independently develop the inner loop of a cubic convolu-
tion re-sampling algorithm in C or Fortran, and yet another
developer to work on web-based form driven GUI code or
SQL access to the database management system. If the re-
sulting system has been architected to support interfaces
between each of these pieces at runtime, the efficiency of
the development and maintenance of the code should be
high.

In this way, the development process itself can have a
large effect on the software architecture design decisions
that are made.

4. CONCLUSIONS AND OUTLOOK

We have discussed the analysis and requirements of sys-
tem and application software for the APEX airborne push-
broom imaging spectrometer. We described how we an-
alyzed these requirements to develop simple experiments
to test critical components of a potential software architec-
ture. Based on successful experimental results, we devel-
oped initial prototype software architectures for both on-
board data acquisition as well as offline scientific post pro-
cessing of hyperspectral data.

The initial prototyping phase resulted in the develop-
ment of key components that are expected to be used with-
out major interface changes throughout the development
lifetime of the software. A summary of these components
is given in table 2.

scripts
gencode code generation from DB schema

idldoc automatic documentation from code
testsuite regression test suite

extended
idl.so IDL execution and data import/export

mysql.so† RDBMS client
svipc.so† Shared memory and semaphore interface
syslog.so Interface to system error logger
tdom.so† XML processing

udp.so† UDP (for waterfall image server)
veu.so data acquisition via PCI device driver

websh.so† Web application framework
embedded

apex Hardware control command language
msgbus Message bus library

†Already existing extensions

Table 2. Uses of embeddable/extendible scripting

The data acquisition software will soon be prototyped
against a hardware simulator and full data acquisition sys-
tem integration is planned for the end of 2003.

While the level 1 post-processor has enjoyed a more
detailed design specification, its implementation is at a less
finished stage of development than the data acquisition sys-
tem. Many of its components are well-defined and just a
simple matter of programming. However, some particular
algorithms (e.g. for correction of smile/frown and point
spread anomalies) are still in the investigative experimen-
tal and prototype phases. Nevertheless, the first functional
delivery of the level 1 post processor is scheduled for the
beginning of 2004. First end-user flight campaigns for the
APEX spectrometer are scheduled for mid 2005.

5. REFERENCES

[1] M. Schaepman, D. Schläpfer, J. Brazile, and S. Bo-
jinski, “Processing of large-volume airborne imag-
ing spectrometer data: the APEX approach,” inSPIE

Imaging Spectrometry VIII, vol. 4816, (Bellingham,
Washington, USA), pp. 72–79, 2002.

[2] M. Schaepman, D. Schläpfer, J. Kaiser, J. Brazile, and
K. Itten, “APEX - airborne prism experiment: Dis-
persive pushbroom imaging spectrometer for environ-
mental monitoring,” inProc EARSel 3rd Workshop on
Imaging Spectroscopy, 2003. To appear.

[3] K. I. Itten, M. Schaepman, L. De Vos, L. Hermans,
D. Schl̈aepfer, and F. Droz, “APEX - airborne prism
experiment: A new concept for an airborne imag-
ing spectrometer,” in3rd Intl. Airborne Remote Sens-
ing Conference and Exhibition, vol. 1, pp. 181–188,
ERIM, 1997.

[4] J. Kelsey, “Tcl interface to System V IPC facilities,”
http://www.neosoft.com/tcl/ftparchive/sorted/net/svipc-
2.2.0/, Visited July 2003.

[5] M. Miller, X. Wu, and P. Thoyts, “Tcl UDP exten-
sion,” http://sourceforge.net/projects/tcludp, Visited
July 2003.

[6] M. Schaepman, D. Schläpfer, and K. Itten, “APEX
- a new pushbroom imaging spectrometer for imag-
ing spectroscopy applications: Current design and
status,” in IGARSS 2000, vol. Vol. VII, (Hawaii),
pp. 828–830, 2000.

[7] D. Schl̈apfer, , and R. Richter, “Geo-atmospheric pro-
cessing of airborne imaging spectrometry data part 1:
Parametric orthorectification,”International Journal
of Remote Sensing, vol. 23(13), pp. 2609–2630, 2002.

[8] R. Richter and D. Schläpfer, “Geo-atmospheric pro-
cessing of airborne imaging spectrometry data. part 2:
Atmospheric/topographic correction,”International
Journal of Remote Sensing, vol. 23(13), pp. 2631–
2649, 2002.

[9] A. Vckovski, R. Brunner, and S. Hefti,
“Websh: The Tcl web application framework,”
http://tcl.apache.org/websh, Visited July 2003.

[10] H. Soderlund, G. Gulik, T. Ritzau, P. Brutti,
and A. Trzewik, “mysqltcl - Tcl Mysql interface,”
http://www.xdobry.de/mysqltcl/, Visited July 2003.

[11] J. Löwer and R. Ade, “tDOM - a fast
XML/DOM/XPath package for Tcl written in
C,” http://www.tdom.org, Visited July 2003.

[12] B. Boehm, “A spiral model of software develop-
ment and enhancement,”IEEE Computer, vol. 21(5),
pp. 61–72, 1988.

