
Javanti
Using Tcl to design interactive eLearning materials

Diplom-Medieninformatiker (FH) Christian Kohls

Diplom-Wirtschaftsinformatiker (FH) Tobias Windbrake
Diplom-Medieninformatikerin (FH) Susanne Kaiser

University of Applied Sciences Wedel

Feldstrasse 143 – 22880 Wedel - Germany

christian@kohls.de

Abstract

Javanti is an Open Source authoring tool for multimedia content,
focusing eLearning materials. One can create dynamic and
interactive slides using a visual what-you-see-is-what-you-get
interface. Slides contain learning objects such as formatted text,
animated graphics and several quiz types. Objects can be placed
individually on a virtual board. To provide an interactive learning
environment those objects should respond to user input and
communicate with each other. We needed a scripting language to
define the dynamic actions at runtime. Tcl was our first choice,
because of its flexibility, extensibility and easy integration into
applications. With Jacl there is an implementation of Tcl entirely
written in Java which we use in our software product. This paper
discusses the purpose of Javanti, explains why we decided on Tcl
as an integrated scripting language and shows how Tcl is used to
create interactive eLearning materials.

1. About Javanti

1.1. E-Learning Materials Today

The combination of computer-based training with the immediate
accessibility of the Internet has made a wide range of new
eLearning applications available today to the average corporate
trainer and trainee. The successful merging of these two
technologies can now be utilized for a variety of different, highly
productive training functions including: online lectures,
documentary videos, simulations, virtual experiments, case studies
and game-based learning. Yet in most cases today, even with this
large array of technologically-viable options available, we still
only find simple texts and scripts -- often even without the most
basic of hyperlinks incorporated -- offered to us under the limited
capabilities of a standard browser or presentation program.

1.2. Four Level of Content Creation

1.2.1. Creating slides

With Javanti, we have introduced a 4-level-model of content-
creation. In this model, you can create virtual slides and arrange

them to different curriculum types. Each of these virtual slides
may contain static, dynamic and interactive elements. The model
takes respect to the different technical skills of trainers. Basically
a slide in Javanti is like a slide in an average presentation
program, e.g. PowerPoint. However Javanti’s slides are not
limited to static content. There is a wide range of interactive
objects available by default. In addition course developers may
use Tcl to define individual behavior for objects and slides.

1.2.2. Basic Level

Most trainers start on the easiest level by using standard objects in
a WYSIWYG editor. These elements can be either static (text,
graphic objects, html documents), dynamic (keyframe animation,
video, sound) or interactive (smart answer fields, paint areas,
multiple choice tests). Without any previous knowledge of the
software trainers can design the slides on a virtual white board.
Each slide will be organized in a multi-layered timeline. The
multi-layer concept allows the combination of more than one slide
on the board. That is one can have as many background,
foreground, chapter and content layers as he wants. For example
you can place a table of content element in a foreground layer that
is visible during the complete course whereas the content changes
on a different layer each time you navigate to another page. In
addition we can use chapter layers containing one slide for each
learning episode. The table of content element can be generated
automatically. Several alternatives for navigation through the
course are supported. For a student’s orientation there are many
possibilities to indicate the current progress of the course.
Students have the opportunity to define their own preferred
structuring of the content. On each slide they can write down their
own notes and drawings. Beside the core information on a slide
you can insert links to additional learning materials. These
materials will be available within in a Javanti course for students
that want further insights or need more detailed explanations.

1.2.3. Simple actions

The second level allows object interaction with simple Tcl
commands. We extended the command set of Jacl with some

multimedia commands. Using these commands one can define
property changes, start property animation or jump to other slides.
We can define a list of Tcl commands for different events. For
example by clicking on a picture we can show or hide other
elements, change their size, color or position and start other media
resources (video, animation) within the same slide. The usage of
Tcl in this level is very simple and does not require any
understandings of programming concepts.

1.2.4. Program development

The third level uses the full range of Tcl by adding real
functionality to each slide. This is useful for any type of
calculation, controlling and macros. The response on test
evaluation or mouse events can be defined in small Tcl scripts.
Simple programs can be created in an EasyScript mode by
drag&drop commands to a command list.

On the fourth and highest level, one can optionally write new
object types in Java.

All levels can be combined and imply the suitability for each
learning Paradigm. Standard elements can support the learning
processes for base knowledge in a traditional way. Simulations,
virtual experiments, case studies and game-based learning can be
implemented by using Tcl or Java to address higher education.

2. Integration of Tcl

2.1. Requirements for Scripts

2.1.1. Usage of scripts

The power of Javanti is hidden in the objects placed on virtual
slides. The complexity of an object can vary from simple text and
graphic elements up to complete applications (database access,
spreadsheets). The appearance and behavior of an object is set by
a list of properties. These properties can also be manipulated
during the runtime of a presentation or learning course. There are
also some actions that define animations or complex work tasks
for an object (e.g. test evaluation, database connections).
Obviously these manipulations must be defined somewhere and
somehow. To define interactive and dynamic actions, respond to
user events and to prepare generated slide content a scripting
language is needed. We found some requirements for a scripting
language used in course development.

2.1.2. Simplicity

The language must be very easy to learn and use. Most course
designers do not have a computer science background. They want
to concentrate on educational content rather than bother with
program development. In Tcl each statement is a simple line of
plain text. Without any knowledge about control and program
structures users can define simple action lists. They do not even
recognize that they are using a programming language.

2.1.2. Full featured language

Full capabilities of a modern programming language are needed.
While some people are frightened by the power of a programming
language, the more professional course developer needs a
sophisticated language to create simulations, experiments and
interactive test forms. Tcl not only satisfies those requirements but
adapts itself perfectly to the skills of a user. Non-technical users
will never see and use all the commands of Tcl. They are happy
with a small subset of powerful commands to delegate work to
Javanti objects. Other users can use simple control structures with
none or only little knowledge of software design to take more
control over Javanti objects. Professional programmers however
are pleased to have access to a wide range of standard Tcl
commands and can take complete control over Javanti.

2.1.3. Simple syntax

The syntax structure must be simple. In future versions of Javanti
our development team plans to offer a visual interface to define
action lists. The most common command settings will be available
in a graphical user interface. For example Javanti’s animation
commands appear in a visual box to define all animation
parameters by using list boxes and numerical sliders. To provide
an adequate representation a very basic structure is needed. Tcl
matches this request because of its simple grammar and
substitution rules.

2.1.4. Multimedia commands

Multimedia commands must be supported. A lot of course
designers like to see a language to create multimedia effects
without programming. With Tcl we were able to create new
powerful commands and add them easily to the Tcl interpreter.
Our multimedia commands operate on all Javanti objects. They
can be considered as links between Tcl programs and Javanti
objects.

2.1.5. Implementation

The language should be easy to implement. When we started the
development of Javanti our human resources were limited. Our
goal was to create a presentation tool with powerful animation and
assessment capabilities. To develop a new language from scratch
in time was simply impossible for us. In addition we never aimed
to create just another language to force even the professional users
to learn a new syntax and another set of commands. Tcl is a very
effective way to add a programming language to any software
application. Actually it took us less than a day to integrate Jacl to
our program. In just a few hours we extended our product with all
the possibilities of a programming language!

2.1.6. Tcl matched perfectly

Tcl was the only programming language on the market satisfying
all our needs. When we considered our options there were some
issues less important to us. For example we did not care too much
about performance. All time-critical actions are performed by
Javanti objects on the board. Tcl as a scripting language acts
mainly as glue between those objects. Also we did not need a

language which fully supported the object-oriented programming
paradigm. For object-oriented development Javanti supports a
plugin interface to integrate new objects written in Java. These
new objects again benefit from Tcl, since Tcl programs can
directly address those objects.

2.2. Usage of Jacl

Javanti is written in Java using its fast graphic engine and GUI
capabilities of Java Swing. To integrate Tcl in Java applications
Mo DeJong and Scott Redman have enlightened the Tcl
community with Jacl, a 100% pure Java implementation of Tcl.
There are some minor restrictions in Jacl, e.g. some commands are
missing. Fortunately none of them is important to our software.

The integration of Jacl into Java applications in general is very
simple and effective. We only had to add two Java Archive Files
to Java classpath to integrate the Tcl interpreter. Once an instance
of the interpreter class has been created, we can use it to evaluate
strings and files containing Tcl scripts.

To extend the command set of the interpreter, we simply created
sub classes of a command interface and added single instances to
the interpreter:

myInterp = new Interp();
myInterp.createCommand("setProperty",

new CmdSetProperty());
myInterp.createCommand("getProperty",

new CmdGetProperty());
myInterp.createCommand("notify",

new CmdNotify());
myInterp.createCommand("go" ,

new CmdGoPage());
myInterp.createCommand("playSound" ,

new CmdPlaySound());

myInterp.createCommand("morph",
new CmdMorph());

myInterp.createCommand("slide",
new CmdSlide());

myInterp.createCommand("save",
new CmdSave());

myInterp.createCommand("load",
new CmdLoad());

…

2.3 Script Types

2.3.1. Slide scripts

In Javanti Tcl scripts will be executed if particular events occur.
We distinguish between slide scripts and object scripts. Both
scripts can be entered in a script editor (see Figure 1). Slide scripts
belong to a specific slide in Javanti. For each slide the user can
define three different Tcl scripts: onEnter, onRepeat, onExit.

The onEnter script will be executed if a slide becomes visible on
the virtual board. Here one can define initial actions, e.g. reseting
Tcl variables or object properties. Animations and slide-in effects
can be defined: objects could slide in one by one from screen
border (an effect well-known from PowerPoint).

The opposite of onEnter is onExit. This script will be executed
after exiting a slide (meaning the slide becomes invisible). This
script type is rarely used. One example is to evaluate the changes
of a slide (input in text fields or an objects is moved by the
student) or to check the answers of a quiz given on that slide.

The onRepeat script will be evaluated continuously again and
again as long as a slide is visible. This is useful for complex
animation steps in simulations. One can use this script to
manipulate elements continuously. For example you can define a

Figure 1.

command to move an element exactly five positions. Since the
script will be executed repeatedly, the element will continue to
move 5 positions again and again. Of course it is more interesting
to calculate the element movement steps each time the script is
executed. By doing so you can define element behaviors for
simulations or virtual experiments.

2.3.2. Object scripts

The second category of Tcl scripts in Javanti are object scripts.
Those scripts belong to one object instance. It is possible to define
individual scripts for each object on the board. For each event that
possibly occurs in the object there is a script property available.
That script will be executed if the event actually occurs at
runtime.

Objects support the regular GUI mouse and key events. Some
objects have properties for uncommon event types: For example
there is a quiz object. This object can be used to assign multiple
choice tests. After the quiz object evaluated the user input it
marks the result as correct of false. Here the quiz object considers
the input of the correct answer as an event. A false answer would
generate another event. For both events one can define a script.

From a technical point of view Javanti objects store Tcl scripts in
simple string properties.

2.4. New Multimedia Commands

In this section we consider some of Javanti’s command extensions
to implement multimedia effects and object communication.

2.4.1. go command

To navigate to other slides of a Javanti course one can use the go
command. Users can step forward and backward or address a slide
by its name:

go next – presentation steps forward
go prev – presentation steps backward
go slide slideName – the slide „slideName“ will be displayed

2.4.2. setProperty commmand

The command setProperty changes a property at course runtime,
e.g. one can change the color, location or size.

The parameters of setProperty define:

- Which property to change (propName)
- The new property value (propValue)
- Which object to change (objName)
- Which slide contains the object (slideName)

The syntax of setProperty is this:

setProperty slideName objName propName propValue

Here is an example:

setProperty contentSlide exampleObj width 30

In the example we are addressing the element „exampleObj“
which is part of „contentSlide“. We change the width to 30% of
the current window size.

2.4.3. getProperty command

To get the current value of a property we created the command
getProperty. This command needs as parameters the name of a
slide, the name of an object and the name of a property:

getProperty slideName objName propertyName

If you want to move an object relative to its current position, you
can use the current property values. The next example moves an
element 10 units to the right:

setProperty slideA elementB x \

[expr 10 + [getProperty slideA elementB x]]

2.4.4. morph command

With setProperty one can directly set a property value. However
in many cases a smooth change of the property values is a better
approach. If you directly set the x location value from 10 to 50 the
object jumps on the screen in one step. There is another command
that lets you change a property’s value in a certain number of
steps. With each step the property value approaches the end value.

Figure 2.

The animation duration is defined in time steps. The syntax of the
morph command is almost the same as in setProperty. Only the
number of animation steps is appended as an additional parameter:

morph slideName objName propName propValue steps

In steps we define how many time steps should pass until the end
value is reached. The property value of an element will
continuously approach that value.

Here is an example:

morph animationSlide example x 50 10

The object „example“ is contained in the slide „animationSlide“.
Starting from its current x location it will move to the new
position x = 50. The animation will last for ten time steps. The
object „example“ will be positioned at nine other locations before
it finally reaches the end location.

In another example (Figure 2) we are using the morph command
to animate a red particle from its original location to a new
destination:

morph $thisSlide particle x 67
morph $thisSlide particle y 37

2.4.5. slide command

The slide command is similar to the morph command. However
animation does not start with the current property value. The start
value is an additional paramerter of this command. With slide
you can animate properties from any start value to any end value.
The syntax is this:

slide slideN objN prop startValue endValue steps

2.4.6. notify command

With notify one can send any type of messages to an object. The
parameters include the name of the slide containing the object, the
name of the object and the message:

notify slideName objectName „any message“

The way an object interprets the received message is up to the
object. Objects of different types may interpret the same message
in a different way.

A message can be both very simple or complex. Simple messages
could be single words, whereas complex messages can contain
instructions or even program code.

3. Create interactive eLearning materials

3.1 Applications of Tcl

Applications of Tcl in Javanti include animation effects,
interaction of objects, navigation structures, tutoring, test
evaluation and simulations. For animations one can calculate an
animation path for an object based on the property values of other
objects. All kind of objects - graphics or sub applications - can be

moved on a slide by one simple Tcl command. A wide range of
test forms can be evaluated by Tcl scripts. Conditional
expressions can be used to select the next test page or a question
depending on the previous results of the student. This can also be
used for smart navigation through a course. Jumps to other slides
of a course can depend on which exercises the student attended
before. The visible content of a slide can be specified by the
number of times the student used it. Texts and explanations can be
more detailed for those who return several time to the same page.
Eventually Tcl scripts can be used to implement simulations or
virtual experiments within an eLearning course.

You may find some of the following examples very simple. Of
course we had to reduce the example code to a minimum. We are
just providing some ideas how Tcl can be used in eLearning
software. The simplicity also demonstrates the power of Tcl in
combination with Java objects. With a few lines of code one can
generate impressive results.

3.2. Tcl and Javanti commands

3.2.1. Data Output

You can use Javanti’s multimedia commands the same way as you
use Tcl commands. You can mix both Tcl commands and Javanti
actions in the same script.

Usually scripting languages such as Tcl get their user input from a
text based console. However Javanti does not have any console.
Rather Javanti provides a graphical environment. You can use all
Javanti objects for user input.

To present messages or results of computing processes you can
manipulate object properties. For example a text object on the
board can display messages if you set its property „text“. Since
you can use Javanti commands the same way like Tcl command,
you can set Javanti properties within a Tcl script:

...
setProperty aSlide anObject text „Hi World“
...

Besides text based feedback, you can also manipulate colors,
sizes, locations and any other properties within a Tcl script.

if {$location == „left“} {
setProperty aSlide anObject x 0

} else {
setProperty aSlide anObject x 80

}

In this example the value of the variable „position“ is compared to
the string „left“. If the content matches, the object will be located
at the left side of the screen (x=0). Otherwise the object will be
located at the right side of the screen (x=80).

3.2.2 Reading property values

As we have seen the program output is shown to the user by
manipulating the properties of objects. User input on the other
hand can be read by getting the current property values of an
object. The user of a course can manipulate some object property
values directly on the graphical user interface:

- He can enter text into text fields. Thus, he changes the
property „text“.

- He can drag objects to other locations (if an object is
dragable) and by doing so he changes the properties x, y

- Objects themselves can contain any type of graphic user
interface components, such as input fields, buttons,
active areas, etc. By activating or changing these
components, the object may change some of its
properties (depending on the object type).

To use property values as user input we can use the getProperty
command. The next line assigns a property value to a Tcl variable:

set myVar [getProperty aSlide anObject y]

3.3. Use variables in courseware

3.3.1. Course data

Variables are used for many purposes. In the context of learning
materials and courseware variables can be used to compute and
store test results, generate user profiles and track user data.
Variables can be used in conditions which will control the work
flow of a learning session.

You can use variables to store user names:

set username [getProperty contentSlide user text]
set age [getProperty contentSlide age text]
set sexInput [getProperty contentSlide sex x]
if {$sexInput > 50} {
set sex m

} else {
set sex f

}

The user name and age can be read directly from two text fields.
The sex of a user can be defined by dragging a graphical object to
either the left or right side of the board. If the user drags the object
to the right border (x > 50) he will be identified as a man (m).
Otherwise she is considered as female (f).

You can use this user input anywhere in your learning application
to make it more individual for a user.

setProperty content helloObject text \
„Hello $username, here is your assignment:“

You can adapt the questions according to the user’s age:

if {$age < 12} {
notify quizSlide questionObject easy
} else {
notify quizSlide questionObject difficult
}

Here we set the level of difficulty according to the age. If we are
teaching a young student we send a message to the assignment
object “questionObject“ to switch to easy questions. Otherwise
we notify the assignment object to ask difficult questions.

You can also adapt the visual appearance of slides taking the user
settings into account:

if {$sex == m} {
setProperty background bgObjects blue 255

} else {
setProperty background bgObjects red 180

}

For man we use a blue background color, wheras woman will
work with a cute red background.

3.3.2. Store test results in variables

You can use variables to count the number of correct and false
answers a user has given:

set correctAnswers 0
set falseAnswers 0
set answerRatio 0

There is an example procedure in which we:

 - increment the number of correct or false answers
 - calculate the ratio between correct and false answers
 - display the variable content in a text element (data output)

proc processAnswer {answer} {
access global counter variables:
global correctAnswers
global falseAnswers
global answerRatio

if {$answer == „correct“} {
incr correctAnswers

} else {
incr falseAnwers

}

#Calculate ratio between correct and false answers
#Multiplication by 1.0 forces Tcl to calc with
#real numbers

set answerRatio \
[expr correctAnswers * 1.0 / falseAnswers]

output:
setProperty background infoOutput text „Correct:

$correctAnswers --- False:\ $falseAnswers ---
Ratio: $answerRatio“

}

You can now invoke the procedure each time the user entered a
correct or false answer. For example in Javanti there is quiz object
supporting Tcl scripts which will be executed after the user
entered a correct or false answer. There one could invoke the
procedures:

call for right answering
processAnswer correct

call for false answering
processAnswer false

3.3.3. Conditioned Learning Flow

One could use answerRatio in conditions. For example you can
deny access to certain slides if the user failed to succeed some
previous tests. You could add a button to a slide which says „Next
chapter“. In the mPressed action list of the button you first check
the answer ratio:

if {$answerRatio >= 1 } {
go slide chapter33

} else {
setProperty background warningHint text „You\

can only start with the next chapter after you\
correctly answered at least 50 percent of the\
questions.“
}

If answerRatio is greater or equal to 1, the playhead jumps to slide
„chapter33“. Otherwise (the ratio is smaller) a warning hint will
be displayed. The warning hint is an object in the background and
it was set invisible before.

3.4 User tracking

As we have learned you can use if-statements to control the
content flow in a learning session. The simplest way is to deny or
permit access to certain slides depending on former test results.

Using if-statements one can introduce a more granular control to
courses. For example we could check the answerRatio after each
question. If the value sinks under a minimum we could start an
additional section for the student:

if {$answerRatio < 0.3} {

go slide extraHelp
}

We can control the navigation flow by considering the history of
displayed slides. We can use a Tcl list to store a list of slides the
user has already used:

set listSlides ““

We would init the list usually on the first slide in the timeline. All
slides of interest should add their names to the list when they are
displayed. This can be done in the onEnter action list of the
regarding slide:

onEnter for slide „intro“:
lappend listlides „intro“

onEnter for slide „physics“:
lappend listSlides „physics“

onEnter for slide „vectors“:
lappend listlides „vectors“

Now a jump to an additional slide „flowVisualization“ could
depend on whether the slides „physics“ and „vectors“ have been
displayed before:

if {[lsearch listSlides „physics“] != -1 \

&& [lsearch listSlides „vectors] !=-1 {

go slide „flowVisualization“

} else {

setProperty background warningHint text „Please \
read the slides ‚Physics‘ and ‚Vectors‘ first.“
}

3.5. Adaption of displayed information

So far we used conditions only for navigation. We can also use
conditions to decide which elements are visible or not. For
example if the answerRatio is on a low level, slides could contain
extra information and explanations. We could even show or hide
navigation objects to only enable navigation options that are
permitted. We can show or hide complete text blocks or any
graphics depending on condition statements.

The following examples can be placed in onEnter scripts to define
the visible content before the slide is put on the overhead
projector:

if {$answerRatio < 0.5} {
setProperty background helpButton visible true

} else {
setProperty background helpButton visible false

}

if {$answerRatio >= 1.0} {
setProperty background nextChapter visible true

}
if {$pageCounter >=3} {
setProperty contentSlide extraInfo visible true

}

3.6 Regular expressions

Tcl supports regular expressions. This is useful to check the input
of answer fields.

Using regular expressions we can allow error tolerance for the
user’s answer. We can use one regular expression to accept all of
the following variations of the word „Vancouver“:
 „Vancouver“, „Vaaancoouver“, „vancouver“ etc.

3.7. Create Simulations and Experiments

Tcl can add real interactivity to eLearning materials. With a Tcl
script a course can react dynamically to user input and direct the
behavior and appearance of objects. One can specify all the
control structures for simulations, experiments, business games or
case studies with Tcl. The input and output of data will use the
infrastructure and graphic interface of Javanti.

The initial setting for an experiment can be defined in the onEnter
script of a slide. Here one can set all the required variable values.
In the onRepeat script the programmer defines all continiuous
dynamic changes. As an example a slide could contain an area
with a virtual gravity field. Inside the field all objects move
according to the physical laws of gravity. Each step of the
movement can be calculated in the onRepeat script. Since this
script will be executed continiuously as long as the slide is
showed, the objects handled in the script will move step by step.
While the simulation is running the user can manipulate the
experiment settings. The event scripts of objects handle the user
input and allow to drag other objects into the gravity field or
change the gravity constant. Finally in the onExit script we can
analyze the current position of the objects and store the results in
variables to access those within other slides.

In the example shown in Figure 3 the onRepeat script defines the
canonball’s movement regarding to a physical law. Each time the
script is invoked one step of the movement will be executed. The
user first can set up the start speed and angle using the sliders. The
flight starts when the user presses on the canon.

4. Conclusion

Using Tcl in our project guaranteed the use of a well-developed
language. The easy-to-use syntax allows every newbie to write
simple actions, while the more experienced developer is satisfied,
too. Javanti's event-driven use of Tcl scripts does not limit the use
of Javanti for eLearning applications but provides a way to build
graphic user interfaces for Tcl in general. Also the use of Tcl and
Java in combination unites the advantages of both worlds.

Figure 3.

5. About the project

Javanti was started by a small team of graduated students at the
Wedel University of Applied Sciences, Germany. In the meantime
there are about 50 students who work for the core team and extend
the software. Several thesis have discussed design issues of the
software. Christian Kohls and Tobias Windbrake who originally
developed the ideas for this software are going to start up a
company. They offer professional consulting, course development
and software engineering to the educational market. They have
successfully used Javanti in commercial projects. The software
itself is an Open Source product and available at the official web
page: http://www.Javanti.org

6. References

http://www.jtap.org
http://www.tcl.tk/software/java/
http://www.t-ide.com/tcl2002e.html

“eLearning Development Environment JTAP – New Approaches
to eLearning Content Creation” / Proceedings of the Second
Research Workshop of EDEN – Hildesheim, Germany 2002

“Multimediales Self-Authoring-Tool jtap im kooperativen
Arbeitsmodus” / Workshop "CSCL - Kooperatives E-Learning",
GI-Jahrestagung Informatik 2002; http://ipsi.fhg.de/concert/cscl-
02/index.html

