
Fast Docbook Rendering: Unleash The Power of tDOM,
mod websh and apache2

Simon Hefti
Netcetera AG

Zypressenstrasse 71
8040 Zurich, Switzerland

simon.hefti@netcetera.ch

ABSTRACT
Docbook, an XML application, is more and more used for tech-

nical documentation or books. While Docbook is very powerful,

the Docbook conversion process is still rather slow - motivation

enough to search for faster ways for XML translation. This talk

demonstrates how we combined a set of Tcl extensions to build a

fast Docbook converter based on tDOM, modwebsh and apache2

as a web service. One of the central features of modwebsh is the

re-use of Tcl interpreters for many requests. This includes pre-

compiled application code and other data structures like the Doc-

book XSL style sheet. The re-use of the parsed style sheets allows

very fast translations of Docbook documents into various output

formats such as HTML or PDF.

1. INTRODUCTION
Docbook is a XML description useful for technical documenta-

tion. While it is somewhat clumsy to write, it’s main advantage

is multi-channel publishing, i.e. the possibility to translate it to

various different formats, say plain text or HTML. One interest-

ing way of doing Docbook translations is by applying XSL style

sheets to the document. Since both Docbook and XSL are stan-

dardized, the translation process can be formulated platform- and

even language independent. Because of it’s rich feature set, this

makes Docbook an interesting candidate to study XSLT capabili-

ties and performance.

Often, programmers choose Docbook for documentation because

it works somewhat like the program-compile-link cycle they are so

familiar with, where they can produce output for, say, different plat-

forms from a single source. Docbook allows documentations along

these lines: you specify the content in a standardized XML for-

mat, and derive different output formats from it, like HTML pages

or Windows Help files. One problem is the rather slow “compile”

step. Processing a reasonably large technical document contain-

ing chapters, sections, subsections, tables, images, examples, notes,

and cross-references can easily take 30 seconds and more, depend-

ing on your infrastructure. This makes it tedious to edit documents

when you need to verify the changes frequently.

Reason enough, we think, to see if Tcl can offer a solution to the

problem. The idea is to keep a Tcl interpreter running within an

apache web server, ready to use whenever we need it, and to im-

plement the document transform as a web service. Since the style

sheet itself does not change as frequently as the actual document

does, we also considered to cache the parsed DOM of the XSL

document (more about that in a minute).

During XSL transforms, three processes need to be performed.

One, the document itself needs to be parsed in order to make its

structure and content known to the transformer. Two, the XSL (also

in XML format) needs to be parsed, to configure the transformer.

And last, the XSL instructions need to be applied to the document,

i.e. the transformation has to be performed.

Since some time, Tcl has, while being helpful, started to be consid-

ered a tool coming to a certain age. Therefore, we would not have

been astonished to see the XML train pass the Tcl community. It

turned out different. Tcl has, in our opinion, one of the best XML

parsers around, and the fastest, too. tDOM, an open source project

lead by Jochen Loewer, has reached a stability and feature set that

makes it worth to be considered for all kinds of XML-related work.

tDOM comes with the Mozilla Public License. In this paper, we

use tDOM as XML parser and XSL transformer, and compare it’s

performance against other processors around.

One other way to increase performance is to ensure everything

needed for the task is already ready to use. Java programmers

would say that it takes time to start the virtual machine. Similarly,

it takes some time to start a Tcl interpreter and to configure it for

the XSLT work (by loading tDOM.so, the additional helper code

and the transformer itself). We use modwebsh for this purpose. It

basically provides reusable Tcl interpreters within the apache web

server, enriching the interpreter with the ”web::” namespace which

provides commands useful for web application programming, such

as command dispatching, session management and logging. In this

paper, we just use modwebsh to provide us with a pool of pre con-

figured reusable Tcl interpreters.

For this paper, we used Tcl 8.4, tDOM 0.7.4, Websh 3.5, Apache

2.0.40, and Docbook XML V4.1.2. For the performance compari-

son, we used a a technical documentation containing various chap-

ters and sections as well as tables, examples, and images. On the

client side, we use wget to retrieve a processed document.

2. MEASUREMENTS
We have performed measurements with Xalan-C, Saxon, Gnome

XSLT, and tDOM, where we have taken all but the tDOM from

the most recent Debian packages without any specific configuration

(see table 1 for details). All processes were run under exactly the

same conditions on an otherwise unloaded machine.

With performance measurements, tree points are of importance:

• the end-to-end processing time, i.e. the time elapsed from

the moment when the user issues the command until she gets

the result back,

• the correctness of the result, and

• memory usage.

Here, we do not care about memory usage. It is interesting to note,

however, that xsltproc, xalan, and modwebsh/tDOM (within httpd)

all use about 16 MB, while the Java processes are somewhat fatter.

We have verified the correctness of the transformed documents for

each XSL processors.

For the performance measurements itself, we redirected all out-

put to /dev/null to avoid any file system dependency of the results.

The tests were performed with two examples: a small one for test-

ing purposes (short.xml), and a real-life technical documentation

(t1.xml). The results are compiled in table 2

Clearly, Java based parses cannot compete for command line based

usage, simply because the start-up time of the virtual machine is too

long. It would be interesting to measure the performance of Java

based XSLT processors in a web environment similar to the one

described here for tDOM. We have not considered such a set-up,

however.

That leaves us with xsltproc, xalan, tDOM and modwebsh/tDOM.

The general picture is clear: tDOM outperforms xsltproc, which

outperforms xalan. We find that for the examples considered, tDOM

is the best-performing implementation. The difference between

tDOM and xsltproc is larger for small documents. This fits nicely

with the typical usage in a dynamic web application, say a portal.

There, smaller XML fragments need to be transformed one at a

time, depending on the user settings. For such a situation, tDOM

is the XSLT processor of choice. It is interesting to note that the

mod websh/tDOM is faster than xsltproc despite the fact that com-

munication over HTTP is involved.

3. EXAMPLE CODE
3.1 Compiling the components
Building tDOM is straight forward: configure and make, as usual.

When building httpd, you have to be sure to enable modso in order

to load modwebsh into apache. Building modwebsh is straight

forward as well. For modwebsh.so, you need to specify where the

httpd include files can be found.

building httpd

cd src/httpd-2.0.40/

./configure --prefix=/tDOM-xslt/httpd-2.0.40 --enable-so

make; make install

test if it works

/tDOM-xslt/httpd-2.0.40/bin/httpd -l

buildiung Tcl

./configure --prefix=/tDOM-xslt/tcl8.4b2

make; make install

building websh

cd websh-3.5.0/src/unix

./configure --prefix=/tDOM-xslt/websh-3.5.0 \

--with-tcl=/tDOM-xslt/tcl8.4b2/lib/ \

--with-tclinclude=/tDOM-xslt/tcl8.4b2/include/ \

--with-httpdinclude=/tDOM-xslt/httpd-2.0.40/include/

make; make mod_websh.so

building tDOM

cd tDOM-0.7.4/unix

./configure --prefix=/tDOM-xslt/tDOM-0.7.4 \

--with-tcl=/tDOM-xslt/tcl8.4b2/lib \

Name package name version command line used

Xalan-C xalan 1.2-2.2 xalan -Q -XSL $xslfn -IN $xmlfn

Xalan-J

Saxon saxon-catalog 20000203-5 saxoncat $xmlfn $xslfn

Gnome XSLT xsltproc 1.0.18-0.1 xsltproc $xslfn $xmlfn

tDOM 0.7.4 websh3.5 mwxslt.ws3

tDOM/mod websh 3.5 wget -q http://localhost:5000/mwxslt.ws3

Table 1: XSLT parsers and versions

Parser time

t1.xml short.xml

[ms] [ms]

Gnome XSLT 1800± 400 1000± 30

tDOM 1300± 100 390± 20

mod websh/tDOM 1550± 80 370± 20

Xalan-C 5200± 60 2300± 30

Saxon n/a 29000

Xalan-J n/a n/a

Table 2: XSLT Performance Comparison

--with-tclinclude=/tDOM-xslt/tcl8.4b2/include/

make; make install

3.2 mod websh configuration
In order to load modwebsh into httpd, you need the following con-

figuration lines inhttpd.conf:

LoadModule websh_module /path/to/mod_websh3.5.0.so

AddHandler websh .ws3

This tells httpd to use modwebsh whenever a file with the exten-

sion .ws3 is requested by the client. Remember to starthttpd

with the LD_LIBRARY_PATHset properly. Otherwise, Tcl will

not be found.

3.3 XSLT with tDOM
Here is the pseudo code for a tDOM based xsl processor:

load tDOM

load /tDOM-xslt/src/tDOM-0.7.4/unix/tDOM0.7.so

source /tDOM-xslt/src/tDOM-0.7.4/lib/tDOM.tcl

parse xml

set xmldoc [dom parse \

-baseurl $baseurl \

-keepEmpties \

-externalentitycommand ::fxslt::extRefHandler \

$xmldata]

and same for xsl ...

access the root node of the xml document

set xmlroot [$xmldoc documentElement]

call the method ‘‘xslt’’ on the root node,

giving the xslt dom parsed before

$xmlroot xslt $xsldoc resultDoc

access root node of the resulting document

set root [$resultDoc documentElement]

and show it as HTML

set res [$root asHTML]

there might be more data:

set nextRoot [$root nextSibling]

while {$nextRoot != ""} {

append res [$nextRoot asHTML]

set nextRoot [$nextRoot nextSibling]

}

4. SUMMARY
In this paper, we have compared the performance of different XSLT

processors based on a real-life example of technical documentation.

We find that the tDOM parser for Tcl is a very fast, faster in fact

than the other C-based processor,xsltproc , despite that fact that

it is called from a scripted environment. We find that the tDOM

performance can be made available as a web service through the

usage of modwebsh, which pools pre-configured Tcl interpreters

within a Apache web server, ready to use whenever a request comes

in.

5. RESOURCES
• tDOM: http://loewerj.freeshell.org/tDOM.cgi

• websh: http://tcl.apache.org/websh/

• httpd: http://httpd.apache.org/

• Tcl: http://www.tcl.tk/

• xalan: http://xml.apache.org/xalan-c

• Saxon: http://saxon.sourceforge.net/

• xsltproc: http://xmlsoft.org/XSLT/

6. ACKNOWLEDGMENTS
Many other persons at Netcetera supported various aspects of this

work, especially Corsin Decurtins and Ronnie Brunner.

