
The Sobyk Binary
Distribution

http://www.etoyoc.com/yoda/papers/tcl2019.Sobyk_Slides.pdf

–Everyone in this room
“Not this again, Hypnotoad”

You broke my 10 year
old production code

in a point release. Namespace deletion
on 8.6 was

fundamentally flawed
and needed to be

refactored

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186

the <Destroy> we are seeing is intended for us.
 ###
 method Hull_Destroy {} {
 ###
 # Destroy our Tk representation
 ###
 my variable tkalias
 if {[info exists tkalias]} {
 set alias $tkalias
 } else {
 set alias {}
 }
 if {$alias ne {}} {
 my Hull_Unbind $alias
 }
 catch {my action destroy}

 # Destroy an alias we may have created
 if { $alias ne {} && [winfo exists $alias] } {
 catch {rename [namespace current]::tkwidget {}}
 } else {
 set hull [my organ hull]
 if { $hull ne "."} {
 catch {::destroy $hull}
 }
 }

 ###
 # Clean up children
 ###
 foreach subobj [info command [self]/*] {
 catch {$subobj destroy}
 }
 foreach subobj [info command [self].*] {
 if {[winfo exists $subobj]} continue
 catch {$subobj destroy}
 }

 }

|
|
|
|
|
|
|
|
|
|
|
|
<
<
<
<
<
<

>
>
>
>
>
>
>

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

the <Destroy> we are seeing is intended for us.
 ###
 method Hull_Destroy {} {
 ###
 # Destroy our Tk representation
 ###
 my variable tkalias
 set tkWidget {}
 if {[info exists tkalias]} {
 set tkWidget $tkalias
 }
 if {$tkWidget eq {}} {
 set tkWidget [my widget hull]
 }
 if {$tkWidget eq {}} {
 set tkWidget [my organ hull]
 }
 if {$tkWidget ne {}} {
 my Hull_Unbind $tkWidget

 }

 ###
 # Clean up children
 ###
 foreach subobj [info command [self]/*] {
 catch {$subobj destroy}
 }
 foreach subobj [info command [self].*] {
 if {[winfo exists $subobj]} continue
 catch {$subobj destroy}
 }

 catch {my action destroy}

 # Destroy an alias we may have created
 if { $tkWidget ni {. {}} && [winfo exists $tkWidget] } {
 ::destroy $tkWidget
 }
 }

I had to back out 6
months of changes in

fossil because you
checked breakage
straight into trunk

The MIME package
was fundamentally

flawed and needed to
be refactored from

first principles to be
right.

I had to back out a little bit of
history on Tcllib

Just
a

bit…

What was all that?
• Each teal commit was originally to the trunk of Tcllib

• Tests passed perfectly fine in the modules the particular
developer was working on

• They outright broke other modules

• Those changes polluted any merge with trunk made after
that date

• By the end, developers like me couldn’t even run some
tests because modules started require Tcl 8.6.9

And why couldn’t I
test with 8.6.9?

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186

the <Destroy> we are seeing is intended for us.
 ###
 method Hull_Destroy {} {
 ###
 # Destroy our Tk representation
 ###
 my variable tkalias
 if {[info exists tkalias]} {
 set alias $tkalias
 } else {
 set alias {}
 }
 if {$alias ne {}} {
 my Hull_Unbind $alias
 }
 catch {my action destroy}

 # Destroy an alias we may have created
 if { $alias ne {} && [winfo exists $alias] } {
 catch {rename [namespace current]::tkwidget {}}
 } else {
 set hull [my organ hull]
 if { $hull ne "."} {
 catch {::destroy $hull}
 }
 }

 ###
 # Clean up children
 ###
 foreach subobj [info command [self]/*] {
 catch {$subobj destroy}
 }
 foreach subobj [info command [self].*] {
 if {[winfo exists $subobj]} continue
 catch {$subobj destroy}
 }

 }

|
|
|
|
|
|
|
|
|
|
|
|
<
<
<
<
<
<

>
>
>
>
>
>
>

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

the <Destroy> we are seeing is intended for us.
 ###
 method Hull_Destroy {} {
 ###
 # Destroy our Tk representation
 ###
 my variable tkalias
 set tkWidget {}
 if {[info exists tkalias]} {
 set tkWidget $tkalias
 }
 if {$tkWidget eq {}} {
 set tkWidget [my widget hull]
 }
 if {$tkWidget eq {}} {
 set tkWidget [my organ hull]
 }
 if {$tkWidget ne {}} {
 my Hull_Unbind $tkWidget

 }

 ###
 # Clean up children
 ###
 foreach subobj [info command [self]/*] {
 catch {$subobj destroy}
 }
 foreach subobj [info command [self].*] {
 if {[winfo exists $subobj]} continue
 catch {$subobj destroy}
 }

 catch {my action destroy}

 # Destroy an alias we may have created
 if { $tkWidget ni {. {}} && [winfo exists $tkWidget] } {
 ::destroy $tkWidget
 }
 }

Core Development

• Core development is driven by TIPs

• TIPs are driven by developer interest

• Developers should not be lashed into making broken
code work

Tcl Users

• Many are not even aware they are running Tcl

• Wrap the workings of production software around semi-
supported extensions

• Expect to be able to write code once, ensure that it
works, and not have to re-write it

• Care less about “fundamental flaws” and more by the
cost of maintaining software

Sean’s Stupid Idea

• Let’s make an environment where Tcl Developers and Tcl
Users can both agree should always work

• Let’s make that tool something that can run in any
environment

• Let’s make the process of full-up testing something that is
repeatable

Sobyk

• Sobyk doesn’t stand for anything.

• The name was picked out of a fantasy name generator
tool because it spoke to me

• Is a distinct enough pattern that application devs who
cargo-cult can simply globally search for references to
“Sobyk” and replace it with their own product’s name

Sobek
Egyptian God

(see: https://
en.wikipedia.org/wiki/

Sobek)

https://en.wikipedia.org/wiki/Sobek
https://en.wikipedia.org/wiki/Sobek
https://en.wikipedia.org/wiki/Sobek

Moby Applications
• Projects that ship one binary that is the entire working

environment

• Need to maintain the ability to re-run processes with older
releases to compare output

• Are end-user applications which need to work on Mac
and Windows, simultaneously

• Documents and simulations developed for these can
involve man-years of effort and multi-year support
contracts

Moby Applications

• Major Efforts

• Old code

• Binary Packages

• Year’s long Commitments

And messing with them leads to old men emerging from
halfway around the world screaming like you cut their leg off

Moby Apps
Product Developer Current State

The Integrated
Recoverability Model T&E Solutions, LLC Actively Developed

BRL Cad Army Research Labs Actively Maintained,

Stuck in Tcl 8.5

SOAR

(Tcl Implementation) University of Michigan

Continues to exist despite
the best intentions of

management

Clay Game Engine (Me) Hypothetical Product

Wait… What

• The “Clay Game Engine” is a thought experiment

• The project models all of the problems of a MOBY
application

• Project is engineered from the start to include regression
tests for high-level integration

• Development work in CGE will act as a path to bring other
MOBY Applications out of the darkness

Why a Game?

In ev'ry job that must be done
There is an element of fun
You find the fun and snap!

The job's a game

Just for Fun

• Developers are human beings

• We normally require payment for drudge work

• Testing is not fun. Supporting Mac and Windows is even
less fun.

• To retain developer interest we need to make the end
result something that is fun

Game Engine Requirements

• Development effort for a title should be roughly that of
RenPy

• Rather than target SDL, games would utilize either Tk or
HTML and SVG in a captive browser

• The Game Engine also happens to mirror the simulation
nature of many MOBY applications

Though it’s more
like…

Why Can’t I use Undroid /
KBS / KitCreator

• Undroid / KBS / KitCreator make generic Tcl
environments

• Each imposes shims on packages that conflict with the
shims that MOBY applications already have on those
same packages

• Many “simplify” the build process by disabling options on
packages that MOBY application users depend on

Bits That I’ve Worked Out
So Far

• Build fulfillment works with ZipFS based kits using Tcl 8.6

• Build system is based on Practcl, can build the Integrated
Recoverability Model for both Mac and Windows

• User-Developed code in both Tcl and C is “easy” to
integrate

Features (that work)
• Mac and Windows applications can be built directly from

source

• The source is checked out of fossil or github, using version
tags that are known to play well together

• The Tcl-Based build system supports falling back to TEA,
Autoconf, and CMAKE where existing build system is not
worth the hassle of rewriting

• Mirrors on http://fossil.etoyoc.com/fossil contain branches of
each major project that include shims to support the Practcl
build system

http://fossil.etoyoc.com

What Needs to be Done
• Windows is currently cross compiled in MinGW. Future

builds need to use MSVC

• Code Signing

• Big component will be external project and code
provenance tracking. Not even started yet.

• The impact of radical changes to the core and Tcllib on
older applications needs to be taken more seriously by
developers

Code Provenance
• A website devoted to the history of Tcl and Tcl packages

• Focus is on the developers themselves as well as the
oddball “beyond the implementation” history of various
modules and components

• Allows people to feel like they have made a mark, even if
their implementations are later rewritten or replaced

• Content is suggested by the community, but curated by
designated historians

Code Provenance

• Will start with GUTTER, and also include machine
readable hints for how projects interact, and which
versions of packages belong in which profiles

Sobyk Technology Profiles

• Sobyk profiles represent a “technology freeze” that
dominates the development cycle of many projects

• Once a selection of packages is selected, tested, and
certified, they do not change

• The requirements for each profile will be spelled out, and
changes that do not serve a specific requirement will have
to wait for another development cycle

Planned Technology
Profiles

• Tcl 8.5.X (BRL Cad)

• Tcl 8.6.8 (IRM Version 4)

• Tcl 8.6.X (Technology Evaluator for the Core Team)

• Tcl 8.7.X (Technology Evaluator for the Core Team)

Wait… 8.6.8

• IRM Version 4 has been Certified by the US Navy for
simulation work

• I’m stuck in 8.6.8 because that was the core that ran
without require a massive rewrite

• Updating the technology after this point requires
undergoing another certification process

