SWIMming in Tcl

Frank Morlang
Overview

- INTRODUCTION
- PROVOCATION
- MOTIVATION
- CHALLENGE
- SOLUTION
- OUTLOOK
Introduction

• **Future Commercial Space Traffic assumption:**
 • Will return as a hypersonic glider
 • What does a (Columbia comparable) fatal break up event (ca. 231000 ft. Alt., *speed > Mach 20*) mean?
 • **Debris** raining down on conventional air traffic will cover a **footprint** of about **300 by 35 nm**
 • No collision of Columbia debris with air traffic was just **luck** (*Casualty probability* for passengers was about **0.3**)
Provocation

• Commercial Space Traffic
 • Only a few movements per year = research + entertainment for private super millionaires = no air traffic integration considerations needed = If ever relevant, in the very far future!

Really?
Motivation

- 10 years between
Motivation

• Now

• Future (Who knows when ?)
Motivation

SWIM

= System Wide Information Management
Motivation

SWIM "Intranet for ATM" concept requests **all** the future air traffic participants acting as communicating sub-systems.
Motivation

SWIM ⇒ Why?

Motivation

What?

SWIM Scope

- Different applications
 - SWIM-enabled applications

Information Exchange Services
- Service specifications for information exchange
- **AIXM, FIXM, WXXM**
- **Information Exchange Models**

SWIM Infrastructure
- Interface management, message comm. protocols
- **SWIM Infrastructure**

Network Connectivity
- Communication networks (Ground/Ground, Air/Ground)
 - **Network Connectivity**
Motivation

SWIM ➔ What?

Motivation

• Technical profiles:
 • Yellow → non critical information
 • Blue → critical information
 • Purple → Air / Ground info exchanges
Motivation

SWIM = What?

Source: Manual on System Wide Information Management (SWIM) Concept, ICAO Doc 10039 AN/511
Motivation

SWIM = What?

Enterprise Service Management
- SNMP
- JMX
- WS-Distributed Management
- WS-Manageability

QoS
- WS-Reliable Messaging
- WS-RM Policy
- DDS Reliability

Security
- WS-Security
- TLS
- DDS Security

Others
- DDS Standard QoS

Policy
- WS-Policy Association
- WS-Policy Attachment
- WS-Policy Framework

DDS QoS Discovery

Interface Management
- WSDL
- UDDI
- IDL
- WS-Metadata
- DDS Automatic Discovery

Inter Operability
- WS-DDS Bridge
- ...

Data Representation
- XML
- XSD
- XPath
- XQuery
- CDR
- ASN.1

Messaging
- SOAP
- MTOM
- DDS
- WS-Attachments
- WS-Addressing
- WS-Notification
- JMS

Transport
- HTTP
- DDSI
- HTTPS
- AMQP
Motivation

Benefits of acting SWIM compliant

• Access to real-time, relevant aeronautical, flight, and weather information \Rightarrow faster dedicated response possibilities

• Reduced implementation, operating and extension costs because of SWIM’s standardized character

• SWIM = requested fundament of the future for info based collaboration in ATM (Air Traffic Management) \Rightarrow being prepared for the future
Challenge

Safe global space traffic integration by taking into account data distribution of its changing debris (= hazard) area during reentry!
Solution

Input:
Hypothetical spacecraft's (returning) runtime data:
- id
- lat
- lon
- alt
- heading
- path_velocity

Output:
Lat_Lon of 4-point-HazardZonePolygon

TFR airspace in AIXM
Solution using:

- **TclHttpd** as the web server
- **Web Services for Tcl** for the server side web service creation on top of TclHttpd
- **TclITLS** for using HTTPS
- **Rpcvar** for complex data type definitions
- **CriTcl** for improved performance by the usage of C code runtime embedding
- **BaseXClient-Tcl** for using the BaseX server protocol to communicate with the hazard area model database server
Solution structure:
Solution

[Diagram showing the solution involving DLR, Data Server, EMS, NEAR GEMS, Services, Consumers EFB Display, SESAR SWIM, FAA SWIM, and a bar chart showing reaction times of the SpacecraftReentryHazardAreaService with varying numbers of connected clients.]
Solution CriTcl usage (excerpt):

critcl::cproc c_calcheading {double lat1in double lon1in double lat2in double lon2in} double {
 /* this is C code */
 double localoperator1;
 double localoperator2;
 double localheading;
 localoperator1 = cos(torad(lat2in)) * sin((torad(lon2in)) - (torad(lon1in)));
 localoperator2 = cos(torad(lat1in)) * sin(torad(lat2in)) - sin(torad(lat1in)) *
 cos(torad(lat2in)) * cos((torad(lon2in)) - (torad(lon1in)));
 localheading = atan2(localoperator1, localoperator2) * (180 / pi);
 if (localheading < 0)
 localheading += 360.0;
 return localheading;
}
Solution (performance enhancement)

Reaction Times of the
SpacecraftReentryHazardAreaService
pure Tcl

Calculate Heading and Calculate Hazard Zone procedures in C using the Critcl
package

- 1 connected client
- 2 connected clients
- 3 connected clients
- 4 connected clients
- 5 connected clients
- 6 connected clients
- 7 connected clients
- 8 connected clients
- 9 connected clients
- 10 connected clients
Solution (scalability)

Sufficient for most small and medium sized cases!

Anyhow
Solution (scalability)

Anyhow
Outlook

SecSWIM

Big Data River

$M_1$$M_2$$M_3$$...$$M_n$
Outlook

Machine Learning

HDFS Mongo DB Data Lake Kafka

Big Data River

Data Ingest Streaming Views / Visualization
Outlook

SecSWIM .foreseen to be developed in ?
Make an educated guess… ^

• Kafkatcl
• TensorFlow (C++ API used inside Critcl)